
A lookup index for Semantic Web resources

Eyal Oren and Giovanni Tummarello

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. Developers of Semantic Web applications face a challenge
with respect to the decentralised publication model: where to find state-
ments about encountered resources. The “linked data” approach, which
mandates that resource URIs should be de-referenced and yield meta-
data about the resource, helps but is only a partial solution and not
followed widely. We present a simple lookup index that crawls and in-
dexes resources on the Semantic Web. Our index allows applications to
automatically retrieve sources with information about a certain resource.
In contrast to more feature-rich Semantic Web search engines, our index
is limited in scope and functionality and is therefore simple, small, and
scalable.

1 Introduction

The Semantic Web can be seen as a large knowledge-base of statements about
resources. These statements form an interconnected graph since statements may
mention the same resources as other statements. A fundamental feature of the
Semantic Web, as opposed to older forms of semantic networks, is that the graphs
are decentralised: there is not one single knowledge-base that contains the graph
of statements but instead anyone can contribute statements on his “personal”
web-space. The complete graph is only visible after crawling and integrating the
fragments mentioned on these personal subspaces.

This decentralised nature of the Semantic Web is well-known and, similarly
to the decentralised nature of the ordinary Web, actually one of its benefits:
anyone can make any statement about anything without the need for centralised
control or authorisation. But for developers of Semantic Web applications, which
operate on Semantic Web data, the decentralisation poses a challenge: how and
where to find statements about certain resources?

This paper introduces Sindice, a simple lookup index that helps application
developers answer exactly this question. The index crawls the Semantic Web
and indexes the resources encountered in each source. A simple HTTP API
returns sources containing statements about a given resource, ranked in order
of relevance. In contrast to full-blown “Semantic Web search engines” we have
a purposely limited scope: we only index RDF documents and we only index
occurrences of resources; as a result, our code is simple and our index is relatively
small.



2 Sindice architecture

Our Sindice index maintains a list of resources and the sources in which these
resources appear (either as subject or as object of a statement). The basic func-
tionality of the index is to return such a list of sources for any given URI, so as to
allow the requesting application to visit these sources and fetch more information
about the resource in question.

The service is provided for usage in Semantic Web applications, to imple-
ment for example a “find more information” button which would find additional
sources of information through Sindice. Our lookup service augments the “linked
data model” which mandates that information about an RDF resource should
be available on the URI identifying the resource. Sindice promotes this approach
(in its ranking algorithm) but also supports URIs that are not URLs and cannot
be dereferenced (such as telephone numbers, isbn numbers or general concepts);
most importantly, Sindice helps locating statements made outside the “authori-
tive” source for a resource.

2.1 Design requirements

The architecture for our Sindice index consists of three components for indexing,
lookup, and ranking of resources. These three components provide the three
methods in the Sindice API:

– lookup(uri) => url[]: lookup of a URI returns a ranked list of URLs in
which the given URI has been mentioned,

– index(url) => nil: parses and indexes document at given URL,
– refresh() => nil: refreshes the index by re-visiting and updating all known

sources.

We have two design requirements: first, we want to minimise the index size, so
as to allow indexing of the whole Semantic Web without requiring complex disk
solutions such as networked storage, disk-arrays or clustered machines; secondly,
we want to minimise lookup times, so as to allow applications to use Sindice by
default to lookup more information for any encountered resource.

To fulfil these requirements, we focus on simplicity: we only index occurrences
of resources but not the actual statements in which they occur; we only allow
lookups from resources to sources but not in the other direction (i.e. one cannot
ask which resources are mentioned by a particular source); we use a simple rank-
ing algorithm that produce useful results without requiring much computation
time or background knowledge.

2.2 Index design

We aim for storing at least 300 million resources, mentioned on maybe 3 million
sources. These numbers serve only as an indication of our scalability target and



are informed by earlier crawling results from SWSE1 and Swoogle2 @@ding/finin
“characterising semantic web on the web”. In designing the index, we optimise
for disk space and lookup times. Since the only required access pattern is from
resource to mentioning sources, a hashtable-like index seems natural. The key to
such a hashtable would be the URI of the resource and the value of the hashtable
would be the list (array) of mentioning sources.

In Listing 1.1 we describe the basic indexing algorithm, while abstracting for
a moment from the exact implementation of the hashtable-like occurrence index.
As shown in the listing, when indexing a new source, we extract each mentioned
URI in that source and add it to the “occurrence” index to indicate that the
indexed source mentions the found URI.

Listing 1.1. Indexing algorithm pseudo-code� �
def index(source)

resources = subject and objects in(source)
for resource in resources

occurrence[resource] += source
end

end� �
With such a hashtable-like index, lookups are implemented by simple lookups

in the hashtable and ranking of the results, as shown in Listing 1.2. Since the
hashtable-like index uses the resource URI as key and the mentioning sources as
values, average lookup complexity is O(1). Worse-case lookups of frequently men-
tioned resources, especially frequent classes such as foaf:Person or sioc:Forum,
would cause a higher runtime simply to read and return the large set of men-
tioning sources, but we do not envision these to be requested often.

Listing 1.2. Lookup algorithm pseudo-code� �
def lookup(resource)

sources = occurrence[resource]
return rank(sources)

end� �
2.3 Index implementation

In abstract sense our index design is clear, but we have several choices for con-
crete implementation of such a hashtable-like index. We have experimented with
the following options:

Database: using a database table with the resource URIs as primary keys.
The advantage is simplicity of implementation, the disadvantages are: that
databases typically incur a slight overhead in query processing which we
would not use since we have only simple key lookups, that many databases
have upper limits on the amounts of rows which we could possibly reach,
and most importantly, that databases typically need to have the complete

1 http://swse.deri.org
2 http://swoogle.ubmc.edu



list of primary keys in memory to ensure fast access to the data; in our case
300 million primary keys (resources that are each maybe 128 bytes to 500
bytes long) would imply main memory requirements of 38GB-150GB which
is rather more than our standard available hardware offers.

Filesystem: implementing our own hashtable using the filesystem with one file
for each resource containing the list of mentioning sources. The advantage of
this solution is scalability: storing only a list of sources and compressing the
contents of each file, each resource-file would occupy between 50 bytes to 300
bytes, resulting in an index size (disk-space) of 30GB which is well inside
the range of current typical hardware. The disadvantage however, is that
filesystems typically have a minimal block-size (configured at formatting
time) which is an lower limit on occupied disk-space for each file. On for
example the ext3 filesystem, typical block-size is 2K, so even if our files
are only 50 bytes long, they would each occupy 2KB in diskspace; in the
future we will experiment with filesystems without such limitations, such as
Reiser43.

Persistent hashtable: using an existing library for persistent hashtables such
as Berkeley DB. This solution is very similar to the second (persisting the
hash-table directly onto the filesystem) except that Berkeley DB allows us
to configure various parameters of the hash-table (bucket size, overflow rate,
hash-function, etc.) and that Berkeley DB manages all the necessary inter-
nals to allow transaction management, concurrent access, locking etc.

After experimenting with these options and considering their characteristics,
we implemented Sindice using the Berkeley DB persistent hashtable. We are still
in the process of tuning it for best concurrent performance and disk space usage
(e.g. bucket size and fill factor).

2.4 Source metadata

Additionally to the resource occurrence hashtable, we maintain a small hashtable
with metadata for each visited source. This hashtable is used for managing the
crawling and fetching process, and for the ranking (explained in the next section).
To prevent over-requesting metadata sources and to follow the Robot (crawling)
guidelines4, we store visiting times and content hash for each source. We only
revisit sources after a threshold waiting time and we only reparse the source’s
response if the content hash has changed. We do not yet use E-Tags and HTTP
“last-modified” headers but consider doing so in the future.

2.5 Ranking phase

Since for popular resources our index could easily return many hundreds or
thousands sources, a good ranking algorithm is crucial. But on the other hand,

3 http://www.namesys.com/v4/v4.html
4 http://www.robotstxt.org/wc/guidelines.html



we want to keep the index small, and thus amount of metadata minimal, we
want to rank resources fast.

We have designed a ranking function that requires only little metadata for
each source and is relatively fast to compute; in contrast to more optimal ranking
functions such as HITS (Kleinberg, 1999), PageRank (Brin and Page, 1998), or
ReconRank (Hogan et al., 2006), it does not construct a global ranking of all
sources but ranks sources based on their own metadata and external ranking
services. We currently use the following metadata in ranking:

Hostname: we prefer sources whose hostname is the same as the resource’s
hostname. For example, we consider that more information on the resource
http://eyaloren.org/foaf.rdf#me can be found at the source http://
eyaloren.org/foaf.rdf than at an arbitrary “outside” source, such as
http://g1o.net/g1ofoaf.rdf. We thus reuse the Internet’s own authority
mechanism and favour the notion of linked Semantic Web data, as advo-
cated by e.g. Sauermann et al. (2007), in which resources use URIs that are
resolvable and return valuable information.

Relevant statements we prefer sources that mention this resource more often
than sources that mention this resource less times (considering that both
sources mention the resource at all).

Source size: we prefer sources with more information than sources with little
information.

External rank: we prefer sources hosted on sites with a high ranking in exist-
ing ranking services (such as Google’s PageRank). We thus use techniques
@@cite to estimate a ranking for each source at index time and assume
that highly-ranked websites also produce valuable RDF data. For exam-
ple, using an external rank the source http://www.deri.ie/fileadmin/
scripts/foaf.php?id=95 would rank higher than the source http://g1o.
net/g1ofoaf.rdf for the same example resource http://eyaloren.org/
foaf.rdf#me, because http://deri.ie has a higher estimated PageRank
than http://g1o.net.

3 Current implementation

The current implementation is online at http://sindice.com/, the source code
is available5 under LGPL license.

To fetch and transform all RDF to canonical ntriples format, we use the
Redland (Beckett, 2002) “rapper” utility: although we do not need to parse the
RDF but only extract the resources mentioned, such extractions are difficult
in XML since URIs can be mentioned without being true resources (e.g. as
namespace declarations). For this reason, we employ rapper to parse all RDF
into ntriples, and use a simple regular expression to extract all resource subjects
and objects.

5 https://launchpad.net/sindice/



To update our index, we use the pinging service http://pingthesemanticweb.
com: we ask it periodically (currently every hour) for recently updated RDF doc-
uments and index each of these sources if they have changed since the last time
we saw them. We also offer a Web interface and an HTTP API where people
can submit their own RDF documents for indexing, but we prefer to reuse the
http://pingthesemanticweb.com service since it already receives many pings
from updated RDF documents.

Fig. 1. Overview page of Sindice

Figure 1 shows the human-readable Web interface for Sindice. It shows some
index statistics and access to the two API functions: lookup of a resource and
parsing or updated source. The third API function, refreshing all sources, is
not accessible over the Web interface to prevent denial-of-service attacks. Apart
from the Web interface Sindice offers an HTTP API interface that returns XML,
JSON, or plain text results, through which developers can lookup sources from
within their programs.

Figure 2 shows the resulting lookup of a sample resource, in this case http://
www.w3.org/People/Berners-Lee/card#i. As can be seen in the shown results,
ranking was not yet taken into account at the time of the screenshot. Lookups on
the current prototype take around @@@0.025s in average (variance probably due
to disk cache, network lag, processor load and the amount of sources returned).



Fig. 2. Lookup of example resource

4 Related Work

We are aware of two Semantic Web search engines that index the Semantic
Web by crawling RDF documents and then offer a search interface over these
documents.

SWSE6 crawls not only RDF documents but also “normal” HTML Web
documents and RSS feeds and converts these to RDF (Harth et al., 2007; Hogan
et al., 2007). SWSE stores the complete RDF found in the crawling phase and
offers rich queries (expressiveness comparable to SPARQL) over this RDF data.
Since SWSE also stores the provenance of all statements, it can also provide the
source lookup functionality that we provide but with a cost: lookups are slower
than in Sindice and the index is larger.

Similar to SWSE, Swoogle (Finin et al., 2005) crawls and indexes the Se-
mantic Web data found online. Again, the same differences apply: Swoogle offers
richer functionality than we do but at a cost of index size and lookup times.

Finally, we compare our index to http://pingthesemanticweb.com. They
maintain a list of recently updated documents, and are currently indexing over
seven million RDF documents, but in contrast to our service, they do not index
the statements or resources mentioned in these sources. Still, the service is very
useful as companion to ours and indeed we use it to find recently updated RDF
sources.

5 Conclusion

We have presented a simple lookup index for Semantic Web resources. Our index
is small and scalable and allows for fast lookups. In contrast to other approaches,
6 http://swse.deri.org/



our scope is purposely limited to keep the index simple and small. Future work
and discussion in the workshop will be focused on improving performance and
concurrency and evaluating and discussing the ranking approach.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

D. Beckett. The design and implementation of the Redland RDF application
framework. Computer Networks, 39(5):577–588, 2002.

S. Brin and L. Page. Anatomy of a large-scale hypertextual web search engine.
In Proceedings of the International World-Wide Web Conference. 1998.

T. W. Finin, L. Ding, R. Pan, A. Joshi, et al. Swoogle: Searching for knowledge
on the semantic web. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). 2005.

A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for
crawling and indexing semantic web data. In Proceedings of the International
Semantic Web Conference (ISWC). 2007.

A. Hogan, A. Harth, and S. Decker. Reconrank: A scalable ranking method
for semantic web data with context. In Second International Workshop on
Scalable Semantic Web Knowledge Base Systems. 2006.

A. Hogan, A. Harth, J. Umbrich, and S. Decker. Towards a scalable search and
query engine for the web. In Proceedings of the International World-Wide
Web Conference. 2007. Poster presentation.

Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46, 1999.

L. Sauermann, R. Cyganiak, and M. Völkel. Cool URIs for the semantic web.
Tech. Rep. TM-07-01, DFKI, 2007.


