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ABSTRACT
While recommender systems over time have significantly improved
the task of finding and providing the best service for users in various
domains, there are still some limitations regarding the extraction of
users’ preferences from their behaviors when they are dealing with
a specific service provider. In this paper we propose a framework to
automatically extract and learn users’ conditional and qualitative
preferences by considering past behavior without asking any infor-
mation from the users. To do that, we construct a CP-net modeling
users’ preferences via a procedure that employs multiple Informa-
tion Criterion score functions within an heuristic algorithm to learn
a Bayesian network. The approach has been validated experimen-
tally on a dataset of real users and the results are promising.
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1 INTRODUCTION
Over the past decades significant efforts have been undertaken
among researchers, practitioners and companies to develop various
types of recommender systems to meet users’ requests [3, 23]. The
aim of these systems is to personalize service recommendations
for individual users, as well as aggregating users’ preferences to
recommend a service for a group of users in various domains from
movies [26] to restaurants [14, 18], from hotels to recommending
items or products, etc.

Advancement in recommender systems have been performed
by considering the context, which is basically defined as any in-
formation that could be used to characterize the situation of an
entity in a particular domain [11]. On the one hand, considering the
context can improve the performance of the recommender systems,
which leads to enhance the satisfaction degree of users by properly
fulfilling their demands [17]. On the other hand, it can make the
recommendation task more complex, since changes in the context

may cause changes in users’ preferences over time. Self-adaptive
recommender systems have been developed to overcome such prob-
lems in the application domains, where the context of users and/or
of services can influence the recommendation [6, 18, 24].

Users’ preferences are often qualitative and conditional. For
example, if it is sunny, I prefer to go to a restaurant that has a garden
with tables outside. CP-nets [24] are a graphical model to represent
in a compact and intuitive way this kind of preferences. Briefly,
a CP-net is a graph in which each node is labeled with a table
describing the user’s preference over alternative values of this node
given different values of the parent nodes. An example of CP-net is
shown in Figure 1.a. CP-nets has been already used to model users’
preferences in automated decision making and in modeling human
preferences in real-world applications.

In this paper, we propose a framework to automatically con-
struct CP-nets from users’ past behaviors without demanding any
information from the users. Users’ past behavior (or preferences)
is characterized, by the set of domain features, which are logged
in their profiles, through the their interactions with the system.
For example, in the restaurant recommendation domain, the users’
past behavior may be defined by the restaurants that have been
selected previously by the user and each restaurant can be seen as
a combination of values to a set of features (such as, price range,
location, type of restaurant, etc.).

To build a CP-net from agent’s past behavior we perform the
following steps.

• Given the user’s history, for example previous selected restau-
rants, we first identify some of the most important attributes
that have influenced the final choices. Then the selected
attributes become the features/nodes of the CP-net.
• Then, we divide these features in three layers: root layer,
intermediate layer and layer. The root layer contains only
the root node, which is the most important feature according
to both user’s preferences and the procedure used to extract
features. The root node may be for example the price of the
restaurant if the possible options for a user in selecting a
restaurant depend mainly on his budget.
The target layer contains only the target node which is the
most dependent feature. The target node will be selected
according to the domain knowledge. For instance, in the
restaurant recommendation domain, the target not may be
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the type of the restaurant (or food), while in the movie rec-
ommendation domain, the target node may be the name
of the movie. The intermediate layer contains all the other
nodes which correspond to all other selected features.
• Now that we have divided the features in three groups, we
need to express the dependencies among them. We assume
that there are only outgoing arcs from the root node, and
only in-going arcs in the target node, while to identify the
dependency relations between features in the intermediate
layer we learn a Bayesian Network (BN) from the user’s
preferences by exploiting some scoring functions (such as
BIC, and AIC [8]) implemented by an Hill climbing algorithm.
Finally, from the conditional probabilities annotated with
each node of the BNwe define the corresponding conditional
preferences associated to every node of the CP-net.

Experimental results show that the presented approach for building
CP-nets from users’ past behavior is promising in the restaurant and
movie recommendation domains. In the experiments performed on
a real data-set the scoring function BIC is the best one.

The proposed approach to construct CP-nets from users’ his-
tories is important for two reasons: the former one is that users’
preferences are essentially qualitative and constructing these qual-
itative tendencies in the system can increase the knowledge of
the system from users’ preferences. The latter is inspired from the
former advantage, such that this construction is significantly im-
portant when the service system needs to deal with the context that
brings up the dynamicity challenge in a real-time recommender
system [18]. The change in context leads to change on players pref-
erences over the time. Hence constructing users’ preferences in a
qualitative form enables self-adaptive recommender systems [18]
to increase users’ satisfaction degree.

For example, assume that we know from the context that there is
blocked traffic on the road for going to the recommended restaurant,
the system should recommend another restaurant starting from the
built CP-nets modeling the users’ preferences.

Modeling and learning the users’ preferences expressed via CP-
nets is a task that has been studied extensively by adopting various
techniques, such as observing/asking multiple questions to the
users [4]. In some studies, researchers start by assuming a depen-
dency structure (the user’s CP-nets) and then they try to learn the
users’ conditional preferences [9]. Bigot et al. [4] discussed the
possibility of learning Probabilistic CP-nets (PCP-nets), which have
been introduced in [10] in two settings (online and off-line). In
this paper, Bayesian networks are used to learn PCP-nets. In both
settings they assume to have the dependency graph and then they
ask multiple queries to the users to build up and learn the structure
of the network. Similarly, Guerin et al. [15] present an algorithm
for learning CP-net preferences by interacting with users rather
than using users’ histories. Learning conditional preferences may
be a tedious and costly task, even with acyclic CP-nets. However,
the complexity of the problem can be reduced by interacting with
the users to simplify the learning procedure. For instance, Koriche
et al. [19] propose an approach to identify a preference ordering
with binary domains, which uses membership queries. Similar work
has been done in [12], where pairwise comparisons are used e.g.,

Oi > O j between outcomes, under certain assumptions/constraints
on the inputs for learning the structure of the users’ CP-nets.

The rest of the paper is organized as follows. Section 2 provides
some basic notions of CP-nets and Bayesian nets. Section 3 presents
our CP-net constructor and Section 4 describes the experimental
evaluation and the results. Finally, Section 5 summarizes the paper
and provides some hints for future work.

2 CP-NET AND BAYESIAN NETWORK
In this section we present the key notions of CP-nets and Bayesian
Networks.

CP-net: CP-net [5] is a graphical model to represent conditional
and qualitative preference relations between variables (aka features).
Lets assume, there is a set of variables V = {X1, ...,Xn } with finite
domains D (X1), ...,D (Xn ). For each variable Xi , each user specifies
a set of parents P (Xi ) that can affect her preferences over the value
of Xi . So this defines a dependency graph such that every variable
Xi may have P (Xi ) as its immediate predecessors. For each nodeXi ,
there is a conditional preference table that shows for each possible
combination of parents values the preference over values of Xi .

An example of CP-net is shown in Figure 1 (a). It contains three
features (aka variables) X1,X2 and X3, standing for the Price, Qual-
ity and the Type of restaurant, respectively. X1 is an independent
variable, while X2 depends on X1 and X3 depends on both X1 and
X2. This CP-net models the fact that the users strictly prefers a
restaurant with a medium price (x11 ) to an expensive one (x12 ), while
his preference between “medium” quality (x21 ) and “high” quality
(x22 ) is conditioned on the price to be selected. In addition, the pref-
erence on the type of restaurant Chinese = x31 and Mexican = x32
depends on both the quality of the restaurant and the price.

Bayesian Network (BN): A Bayesian network is a probabilis-
tic graphical model that represents a set of variables and their
conditional dependencies via a directed acyclic graph (DAG)G =
(V ,EG ) [7, 16], where V is the set of features, and EG represents the
set of direct arcs (dependency) between the features, e.g., Xi → X j ,
and there is a constraint in BN that avoids any directed cycles
(similarly to the concept of acyclic CP-net).

The strength of the correlation between features is defined in
the second component of the BN, where there is a set of parameters
in the network that show the conditional probability distribution
between variables.

Considering n variables V = {X1, ...,Xn } in a BN, the joint dis-
tribution, that is shown by P (X1 = x1,X2 = x2, ...,Xn = xn ) can
be factorized as follows:

P (X1, ...,Xn ) = P (X1) × P (X2 |X1)... × P (Xn |X1, ...,Xn−1)

=
∏
i
P (Xi |X1, ...,Xi−1) (1)

In a BN, the value of each node Xi ∈ V is dependent on the val-
ues of its parents P (X1,X2, ...,Xn ) =

∏
i P (Xi |Pa(Xi )), otherwise

the node is defined as an independent node. For each nodeXi , there



Figure 1: A CP-net and a Bayesian Network.

is a conditional probability table that shows for each possible com-
bination of parents values the probability distribution over values
of Xi .

An example of BN is shown in Figure 1 (b), where the probability
that I target a Chinese x31 or Mexican x32 restaurant for a dinner
depends on the values of his parents, that are Price (X1) and Quality
of the restaurant (X1). It can be seen that the value of Quality of
the restaurant depends also on the Price (X1). The conditional prob-
ability tables associated at each variable are shown in Figure 1 (b).
For example, the conditional probability table associated to variable
X1 shows that the first value in the domain of X1 has probability
0.2. Other conditional probability tables list the probability that
the child variable/takes one of the values in its domain for each
combinations of values in the domains of its parents.

3 TECHNICAL APPROACH
This section shows our approach to build a CP-net representing
the conditional and qualitative preferences of a user starting from
the history of the user. For the sake of clarification, we will explain
how the constructor works in different sections by using examples
of preferences, which are taken from the domain of the restaurant
recommender system.

3.1 Feature Selection
Within hundred numbers of attributes logged in the data-set sourced
by users’ interactions at searching and selecting appropriate ser-
vices (e.g., selecting the desired restaurant in this context), the
features that are more important on influencing users’ preferences
should be selected. Thus, given a set of variables/features (from the
data set) V = {X1, X2, . . . , Xn }, without the loss of generality we
assume that Xn is the variable corresponding to the target node of
the CP-net, which is the most constrained variable.

In this context, target node points to the Type of restaurant/food,
that may have as values the types of restaurants that the user has
selected before and logged in his profile. We refer Xn ≡ Xt as a
target variable. The values of the target variables are based on the
set of remaining variables V \ {Xn }.

Since every variable (among the other features that a user may
consider to select a service/restaurant e.g., price, location, etc.) may

influence users on targeting a service/restaurant, feature selection
process is required to enhance the effectiveness of the framework.
In other words, in feature selection, we aim to nominate a sub-
set Vs ⊂ V containing features that leverage the values of the
target feature such that |Vs | = m with a given m. Thus, we use
Information Gain1, which is widely used in the state of art for
feature selection [21], to select the most important features to be
considered in the constructor space. This method selects which
feature/attribute represents the greatest information gain (more
details about the function can be found in [21]). Eventually, the list
of features inVs is sorted in decreasing order to build the following
list {X0, X1s , . . . , Xms }. Then, the system attachesXt (as the target
node) at the end of the list as follows V = {X0, X1s , . . . , Xms , Xt }
to achieve the desired list of features in feature selection process.

Once the process is done, the system breaks down the sorted
features into three layers that are detailed in the following section.

3.2 Layers Extraction
Given the above list V = {X0, X1s , . . . , Xms , Xt } we aim to build
an acyclic and directed graph that consists of three layers: Root layer,
Intermediate layer, and the Target layer. Hereafter, we describe in
detail each layer and links connecting the nodes inside the graph.
Notice that the terms “node” and “feature” refer to the same concept
from now on.
• Root Layer: this layer contains only the root node, which
is the most important feature among the others in the list.
In other words, given the list “V ”, the first feature X0 will
be considered as the root node. Since, this node X0 is an
independent feature, it does not have any income link from
the other nodes. As an example, considering the restaurant
selection domain, where the possible options for a user in se-
lecting a restaurant dependmainly on his budget. In this case,
price of the restaurant could be the feature that corresponds
to the root node.
• Intermediate Layer: the main procedure of extracting users’
conditional preferences on the basis of the strength of rela-
tions between features under certain conditions or threshold,

1To use Information Gain function, we took the advantage of FSelector [20] library in
R.



will be executed in this layer. This layer contains all the nodes
except Root and the Target nodes as follows {X1s , . . . , Xms }.
To set the internal links between intermediate nodes, we
need to measure the dependence between any pair of nodes
(Xis ,X js ). The algorithm adds a link between the these
nodes that have dependence values higher or equal to a
given threshold. This threshold value could be determined
automatically or manually. In this paper we decide to fix
this threshold manually as described in Section 4. Assume
that the determined dependencies between all the features
in the Intermediate layer are in [0.0 - 1], thus we can set the
threshold Tr=0.7.
• Target Layer: as the name implies, this layer indicates the
target nodeXt that shows the user’s preference (last attribute
in the sorted list) toward the specific domain. Thus, this layer
has only incoming links from the nodes, which are located
in the Intermediate layer, or in the Root layer.

The action flow is shown in Figure 2, where the selected features
in the list V (Fig 2 (a) ) are segmented into three layers (Fig 2 (b)
). Then, the proposed constructor integrates the layers (Fig 2 (c) )
based upon the dependencies between the features in the second
layer obtained by exploiting the score functions and the algorithm
explained in the next Section 3.3.
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Figure 2: The CP-net Constructor Frontend.

3.3 Feature Dependency Measurement and
Constructing CP-net

Due to the similarity between the concepts described above, we
exploit Bayesian network’s score functions to construct the main
shape of users’ CP-nets in the second layer.

Many algorithms and techniques have been developed to tackle
the problem of building a Bayesian Network, whose performance
vary according to the used score functions from data/domain to
data/domain. Hence, we implement the framework by various kinds
of score functions to decrease the miss classification results which
lead to the suitable technique that accommodate with our data and
provide the highest performance.

Score functions in Bayesian network lies into two main cate-
gories of Information Theory Score such as Mutual information test
(MIT), Bayesian Information criterion (BIC), Akaike Information
Criterion (AIC), Log Likelihood (LL), and Normalized Maximum

likelihood (NMC)), and Bayesian Score Function such as; Bayesian
Dirichlet (BD), and K2 [8].

In general, Bayesian Score Functions try to find a network B
with a maximum value SG with given data SG (B,D) [28]. In these
functions, the procedure of constructing the network begins from a
prior distribution and then computes the posterior probability dis-
tribution. The network with maximum number is the best network
among the other possible networks. While Information Theory
Functions act based on compression [2]. They attempt to recognize
the most compact model over the data D with less score value,
therefore, a model with minimum score is the best model among
the others.

To show the constructor and how the score functions work, we
use Bayesian Information Criterion (BIC) [22] throughout this paper,
but we implement the constructor with all the possible functions
(in the second layer) to evaluate the performance of the algorithm
in the specific domain.

Bayesian Information Criterion [22] is the most popular score
function among the others which is constructed based on likelihood
function. BIC that is known “Schwarz criterion” model is a type of
criterion model selection among the other models. However, the
performance of the function highly differ from data-set to data-set,
it is shown that BIC score function outperforms consistently the
other score functions in constructing Bayesian network structure
in different data-sets [22].

In this score function the lower value points the better fit the
model, or the lower value represents the minimum information loss
related to the candidate model which is shown in Equation 2.

BIC = −2 ∗ ln(θ ) + ln(N ) ∗ k (2)

where k refers to the degree of freedom to be estimated and
N points the number of observations or sample size. The set of
model parameters that maximize the likelihood function is shown
by θ and ln(θ ) refers to the likelihood of the truth model. A more
lower BIC value indicates the obtained model is more likely to be
considered as the best and true network model among the others.
More details about how these functions work are presented in [25].
Hence, to perform the above functions to construct the desired
network in the second layer, we borrow the structures shown in [1],
where the various algorithms have been discussed such as Simulated
Annealing algorithm, Heuristic algorithm, Genetic algorithms.

Taking into account the advantage of the greedy search and
heuristic algorithm [13], we use Hill Climbing (HC) algorithm to
execute BIC, AIC, MIT, LL, BD, NMC, etc. functions to obtain the
structure of the users’ CP-nets in the second layer following the
proposed structure shown in Algorithm 1.

Recalling the feature selection and breaking the list “V” into
three layers, HC starts with an empty graph (G ) in the second layer
and attempts to find a model with high score (or minimum score)
by incrementally searching among the other possible models from
its local neighbors:

In other words, this is an optimization model that begins with an
arbitrary structure of the network, then try to find a better network
by incrementally tuning the scores. Hence, if a new model with
high/minimum score is found, it will be substituted with the old
model. Algorithm 1:



These steps are repeated until no furthermodel with high/minimum
score can be found. Although the algorithm has the problem of
getting stuck in the local region that depends on the starting point,
we took the privilege of its high performance and accuracy to build
the network.

In the following section we show how connecting the layers to
define the CP-net.

3.4 Converting Probability to Preferences
This section show how to interpret the strength correlation between
nodes to user’s preferences under the concept of CP-net. To this end,
the system determines the “maximum” probability of a feature’s
value as the user’s preference. It means if a node from the list “V ”
e.g., Price contains two values in the domain such as cheap and
expensive, the system from the conditional probability table (in
Bayesian Network) that is computed for each node in the list, picks
the value/domain (e.g., cheap) that has highest probability as the
user’s preference (see the table associated to X2 in Figure 3). Once

Algorithm 1: CPnet Constructor Algorithm
Rnode ▷ root node
Inodes ▷ intermediate nodes
Tnode ▷ target node
Score G ▷ score G
ScoreNG ▷ new score G
Function start with empty graph G

ScoreNG ← Score (G )

Initialize ScoreNG with G

while Score (G ) not minimize do
provide acyclic operation G :
add,delete, reverse

if ScoreNG > Score (G ) then
ScoreNG ← ScoreNG

DepMatrix ← dependency (Rnode,Tnode, Inodes )

if Depmatrix (Rnode,Tnode, Inodes ) ≥ Tr then
connectRnode → InodesandTnode

if DepMtx (Inodes,Tnode ) then
connectInodes → Tnode

Function start with empty graph G
ScoreNG ← Score (G )

Initialize ScoreNG with G

while Score (G ) not minimize do
...

if ScoreNG > Score (G ) then
ScoreNG ← ScoreNG

the structure of the network is obtained in the second layer, the
system converts the probability into preference as shown below.

The procedure starts from the independent nodes. The highest
probable value for a feature will be considered as the preferred
value among the other possible values. The independent nodes (as
parents) influence the value of the remaining nodes (as children) on
basis of the probability table as shown in Figure 3. To better under-
stand the conversion let us consider v = {X2, X3, X4} v ⊂ V with
3 features and their binary domains D (X2) = {x21 ,x

2
2 },D (X3) =

{x31 ,x
3
2 } and D (X4) = {x41 ,x

4
2 }. As it is shown in Figure 3, X2 influ-

ences X3 and X4 in the second layer, and similarly X4 influences
X3. Hence, X3 is identified as the most dependent node among
the others with its probability table. The conditional probability
table associated to X3 can be used to derive preferences over values
in D (X2) in the CP-net. In the conditional preference table of the
CP-net associated to X2 we have x22 more preferred than x21 since
the probability of x22 is 0.8 while the probability of x21 is 0.2. Thus,
if x22 is preferred for X2 , then x41 with probability 0.7 is the more
preferred value for X4. Similarly, the value of X3 depends on the
value X2 and X4 according to the probabilities. Here, we just gave
a simple example of features with binary domains but this could be
extended with n numbers of values in the domains for each feature
in the sorted list V .

3.5 Connecting the Layers
This section is in charge of integrating the Root and the Target
nodes to the nodes that are located in the Intermediate layer. Since,
the Root node dominates the other nodes in the two layers, the
system generates a matrix of dependency between them. Practi-
cally, the aim is to find the strength relations between the Root
and the rest, hence we use Chi-square, Information gain, Gain ra-
tio and Symmetrical uncertainty functions [21] to obtained these
dependencies. This process of generating the dependency matrix
is broken down into two sections. First, is applied between the
Root layer and “Intermediate and Target” layers (both together, as
the Root node dominates the rest of the nodes which are located
in these two layers). Secondly, it will be employed between the
Intermediate layer and the Target layer. Having at hand these two
dependency matrix, we set a thresholdCV = [0−1] as a Confidence
Value to eliminate the links between these layers which can not
meet the threshold value. This helps to find out the most impor-
tant dependencies within the user CP-net that can characterize the
user preferences. The described work-flow produces the final user’s
CP-net that characterizes the user’ preferences.

To validate the correctness of the obtained CP-net, we carried
out the cross validation method on a real data-set that is detailed
in the next section.

4 EXPERIMENTAL EVALUATION AND
RESULTS

The main task of recommender systems is to provide the best per-
sonalized service for users in various domains. In this paper, we
validate our procedure for constructing users’ CP-nets from their
past behaviors in the restaurant recommendation domain. In the
following, we describe in detail the experimental setup.
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Figure 3: From a Bayesian network to the corresponding CP-net.

4.1 Data Collection
We exploited two real datasets of users’ preferences over the set
of restaurants in Mexico City, and Movie in Denmark and UK,
from UCL repository2. The former is statistics on users’ restaurant
selections. It contains 1116 samples where each sample carries
11 different features. Each sample indicates the selection of one
restaurant performed by a user. The latter is statistics on users’
movie ratings. Movie dataset includes 2297 instances with around
122 unique users where every sample holds 28 different features.
Due to the page limit, we only present features in the restaurant
selection dataset in Table 1, which shows the description of the
features and their abbreviations.

Then we group the samples that belong to the same user. Next,
we exclude the users who have recorded less than 10 selections
or ratings. This is due to the fact that a small number of samples
does not allow the system to efficiently learn and make inference.
Thus, we select only 18 users with at least 10 recorded samples in
the first dataset. While, the users whose ratings are logged in the
movie dataset have enough instances, so all the unique players are
included.

4.2 Evaluation & Model Selection
To achieve the best CP-net structure representing users’ preferences,
we execute the algorithm with a range of parameters, where each
combination of parameter values specifies a specific structure of
CP-net. For each round, to find the best model to make inference,
the grid search technique is employed to find the optimal tuple of
hyperparameter values.

Evaluation Setting for Dataset 1 (Restaurant): Since we have a
limited number of samples for every user in Restaurant dataset,
the iterative leave-one-out cross validation is the best option to
use for our multi-class classification problem. In each round, one
sample is left out to be considered as the test set and the remaining
samples are used to learn a CP-net using our proposed method and
to train the model using Bayesian Method. In the following, we
have listed the parameters and the set of the values that we have
used to construct multiple CP-nets.
• Number of selected features: We have run the algorithmwith
various number of features to find out the right number that
can provide the best result. Thus we start from all features

2https://archive.ics.uci.edu/ml/datasets.html

“11”, and then we gradually reduce it to the top 4 important
features in the list.
• Dependency: {0.5, 0.6, 0.7}: Since we have defined the de-
pendencies between features in this interval [0-1], we tune
the threshold similar to the number of features to find the
best results.
• Direction: {0.5, 0.6, 0.7}: We also tuned the algorithm with
three values to obtain the direction of the dependency be-
tween the features.
• Threshold (Tr) for connecting the first and the second layer:
{0.03, 0.04, 0.05}. As mentioned above, we use different
functions to calculate the dependencies between layers, thus
we may have different values of threshold.
• Threshold (Tr) for connecting the second and the third layer:
{0.03, 0.04, 0.05}

Evaluation Setting for Dataset 2 (Movie): In contrast to dataset 1,
the unique users in Movie dataset contains fairly enough instances.
Thus, 10-fold cross validation is implemented to validate the sta-
bility of the approach by feeding new data. In each round, 10% of
data is left out to be considered as the test set and the rests –90%–
are used to learn a CP-net using our proposed constructor and to
train the model exploiting Bayesian Method. Similar settings and
parameters have set for number of selected features, dependency,
direction and Thresholds.

Once the model is trained, the algorithm computes a score e.g.,
for each restaurant and movie (rating) option. This score shows
how probable is for the restaurant to be considered according the
user’s interest. Then the system selects a restaurant which has the
highest probability value as the user’s preference.

To evaluate the performance of the method we have used the
following well-known metrics: (i) Precision, that is the fraction of
retrieved instances that are relevant, (ii) Recall, that is the fraction
of relevant instances that are retrieved, and (iii) F-measure that is a
weighted average of precision and recall [27].

The performance of each class is computed (for every user), and
then an average over all classes performance is considered as the
performance of the method for the user.

4.3 Results
Table 2. presents our preliminary experimental results in the restau-
rant recommendation domain. In particular, it shows the perfor-
mance of our approach by considering various score functions.



Table 1: Data-set Information

# Features Restaurant Selection: Description and domain
1 Ub users budget (low, medium, high)
2 Q quality of restaurant (low, medium and high)
3 Al the restaurant serves alcohol or not (yes or not)
4 Sm smoking area inside of the restaurant (yes or no)

5 Ac accessibility of the restaurant
(easy, medium or difficult)

6 Pr restaurant price (low, medium and high)
7 Ar outdoor restaurant or indoor restaurant
8 Os other services, like internet, etc (yes or not)

9 Pk the restaurant has parking area or not
(yes or no)

10 Ur restaurant rate which are given by user/
people (low, medium and high)

11 Tr type of restaurant (Italian, Latin-American, Asian)

Such a performance is measured in terms of “Precision, Recall, and
F-measure”.

Result For Dataset 1: As it is shown in Table 2, within the score
functions implemented by the hill-climbing algorithm, only BIC,
AIC and MDL were applicable in our data-set. The parameters,
which are automatically set to generate such results vary from each
other, since the functions use different strategy to calculate their
scores in constructing BN. BIC has set by 6 number of features,
0.7 arc dependency and 0.03 dependency between layers, while
AIC provides its best result by 7 number of features, 0.6 for arc
dependency and 0.05 for layer dependency. The values of precision
and recall using BIC and AIC are very similar with ∼0.70, however
BIC performs slightly better both in terms of precision and recall.
In contrast, MDL provides a pour results by 0.54, 0.57 and 0.555 in
precision, recall and f-measure, respectively.

It is noticeable that BIC, AIC and MDL with a smaller and greater
numbers of features (reported in Table 2.) result mostly incomplete
or/and a very complex and cycle graph. In addition, we have not
inserted results for K2 and Loglike since the approach with these
score functions often construct CP-nets with cycles, specially after
appending the nodes of the layers in the final step.

Table 2: The Performance of The Proposed Method on The
Restaurant Data-set.

Score
Function Precision Recall F-measure Description # of

Features
Arc
Tr

Dep
TR

D
at
as
et

1

BIC 0.71 0.708 0.706 applicable 6 0.7 0.03
AIC 0.70 0.69 0.694 applicable 7 0.6 0.05
Loglik x x x not-applicable x x x
K2 x x x causing cycle x x x
MDL 0.54 0.57 0.555 applicable 4 0.5 0.05

D
at
as
et

2

BIC 0.51 0.52 0.52 applicable 8 0.4 0.03
AIC x x x causing cycle x x x
Loglik 0.54 0.43 0.485 applicable 8 0.5 0.03
K2 0.55 0.42 0.485 applicable 7 0.6 0.03
MDL x x x not-applicable x x x

Result For Dataset 2: Analogous to the first evaluation, BIC func-
tion works slightly better in all metrics such as precision with 0.51,
recall with 0.52, f-measure by 0.52 and ∼0.50 accuracy, w.r.t K2 and
Loglike on this users’ statistical data (Figure 4. shows a complex
cp-net that is constructed by BIC with 8 features in r). However,
the figures show a weak result for BIC function compared to the
first assessment on Restaurant dataset.

In contrast to the first experiment, both K2 and Loglike were
correctly implemented by reporting around ∼0.49 in F-measure.
These low figures might have obtained due to existing 5 classes
in the target layer (target node has 5 different domains including
Very Bad, Bad, Medium, Good and Very Good which indicate the
users’ rating on different movies), which make classification and
prediction arduous. Taking into account 20% accuracy as the base-
line for random classification, the obtained figures also show around
30% above the baseline that is an admissible result. However further
investigation is required both in terms of design and evaluation to
increase and assess the performance of the constructor.

Figure 4: A complex CP-net with 8 Features.

5 CONCLUSION
We have presented a system for automatically constructing CP-nets
modeling users’ preferences from their past interaction with a ser-
vice provider. To construct the user CP-net we have first constructed
a Bayesian network. We have exploited an heuristic algorithm Hill
Climbing to execute various score functions, such as BIC, AIC, Log-
lik, K2, MDL, in order to recognize the best graph model among
all the possible models. Empirical results from restaurant selection
ad Movie domains have shown that this constructor may have a
significant impact to enhance users’ satisfaction.

This construction may be very useful when the recommender
system must deal with context and the users’ preferences may
change over time. We plan to integrate the proposed constructor in
the Self-adaptive Context-Aware recommender system (SaCARS)
presented in [18]. This integration allows SaCARS to completely
learn and model the users’ conditional preferences from their be-
havior without human interference.
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