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Abstract

Entity search is a fundamental task in Linked
Data (LD). The task is, given a keyword
search query, to retrieve a set of entities in LD
which are relevant to the query. The state-of-
the-art approaches for entity search are based
on information retrieval technologies such as
TF-IDF vectorization and ranking models.
This paper examines the approaches by apply-
ing a traditional evaluation metrics, recall@k,
and shows ranking qualities still room left
for improvements. In order to improve the
ranking qualities, this paper explores pos-
sibilities of graph analytical methods. LD
is regarded as a large graph, graph analyti-
cal approaches are therefore appropriate for
this purpose. Since query-based graph ana-
lytical approaches fit to entity search tasks,
this paper proposes a personalized PageRank-
based re-ranking method, PPRSD (Person-
alized PageRank based Score Distribution),
for retrieved results by the state-of-the-art.
The experimental evaluation recognizes im-
provements but its results are not satisfac-
tory, yet. For further improvements, this pa-
per reports investigations about relationship
between queries and entities in terms of path
lengths on the graph, and discusses future di-
rections for graph analytical approaches.

1 Introduction
Linked Data (LD) [BHB09] which started by Sir
Tim Berners-Lee has become an important knowledge
source, and entity search for LD [PMZ10] is a funda-
mental task which retrieves entities in LD for query

keywords. Entity search is important for users who
investigate entities themselves as well as relationships
among entities. Due to its importance, several open
tasks for entity search have been published (for in-
stance, INEX-LD [WKC+12], QALD [UNH+17], and
DBpedia-Entity [HNX+17]). DBpedia-Entity is the
most recent open entity search task composing the
existing open entity search tasks and contains com-
prehensive evaluation results for existing entity search
methods. Therefore, this paper deals with this task.

In DBpedia-Entity task, recent methods are in-
spired from information retrieval domains, such as
BM25 and language model (see their website1), how-
ever, there are few methods using graph analyti-
cal methods (e.g., PageRank [PBMW99]). The ex-
isting methods are based on occurrences of terms;
BM25 is a common ranking model-based TF-IDF vec-
torization, language model considers probabilities of
co-occurrence of terms, and, fielded extension meth-
ods over the former basic methods are also included.
Fielded extension methods give high weights for im-
portant attributes of documents (e.g., titles of Web
pages). On the other hand, interestingly, there are
few methods using graph analytical methods such as
PageRank, even though LD is represented as a graph
in nature. This raises a question: Are graph analytical
methods not appropriate for entity search tasks?

To answer the question, this paper firstly analyzes
the existing methods. [HNX+17] indicates that exist-
ing methods achieve 0.46 NDCG@10 score and 0.55
NDCG@100 score, but it is not clear how far the
achievements from goals are. NDCG (Normalized
Discounted Cumulative Gain) is a standard way of
ranking evaluation, which reasonably compares rank-
ing methods, but it hides potentials for improvement.
Therefore, this paper applies a traditional evaluation
metrics, recall@k, which is a ratio of relevant answers
in top-k results over the total number of relevant an-
swers. Thus, recall@k indicates that how many rele-

1http://tiny.cc/dbpedia-entity
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vant answers are absent in top-k results. The anal-
ysis results shown the Total column in Table 1, re-
call@10, recall@100, and recall@1000 are maximally
0.2872, 0.6912, and 0.8708, respectively.

The investigation results indicate that there are still
room left for improving rankings. The low recall for
top-10 results and the high recall for top-1000 results
imply that large amount of relevant results are within
1000 results but most of them are below top-10. There-
fore, this paper attempts to improve the ranking by re-
ranking, which arrange the ranking by applying differ-
ent ranking criteria. It is reasonable to take graph
topological features into account due to the nature
of LD. Therefore, this paper applies graph analytical
methods for re-ranking. The result for the re-ranking
method is expected to be an answer to the question.

In consequence, this paper arranges the aforemen-
tioned question to the following question. Do graph
analysis-based re-ranking methods improve the ranking
quality? This paper attempts to take graph analyti-
cal methods into account and proposes a re-ranking
method PPRSD (Personalized PageRank based Score
Distribution) which distributes calculated relevance
scores by the state-of-the-art in a personalized PageR-
ank manner. Test of PPRSD gives the following an-
swer, the graph analysis-based re-ranking method can
improve the ranking quality but the improvement is
not very significant.

In order to find future directions based on graph
analytical methods for improving entity search, this
paper performs investigations and provides insights.
This paper poses a question for results of the prelimi-
nary evaluation by recall@k, that is, why recall@1000
is not perfect yet? To answer the question, this pa-
per investigates relationship between query terms and
relevant entities for the query, and the investigation
reveals that some terms only exist on distant literals
from relevant entities. Additionally, this paper obtains
a clue for selection of predicates connecting to literals
w.r.t. different distances from the entities. Based on
these investigations, this paper puts discussion on fu-
ture directions based on graph analytical approaches
for entity search.

The following sections discuss the detail for get-
ting the answers to the questions. Section 2 intro-
duces briefly the state-of-the-art shown in [HNX+17]
and showcases the preliminary evaluation in terms of
recall@k metrics, and Section 3 explains the idea and
detail of PPRSD, and Section 4 evaluates the state-of-
the-art and PPRSD using the test collection and shows
the answers to the aforementioned questions. Section 5
displays additional investigations and insights for the
future directions, and Section 6 concludes this paper.

2 State of Current Entity Search
This work explores the future directions of entity
search, to this end, this paper investigates the current
state of entity search, especially this paper sticks to a
leading benchmark, DBpedia-Entity v2 [HNX+17].

As shown in the benchmark, there are various
approaches which are mainly based on informa-
tion retrieval and natural language processing tech-
niques. The list of approaches include fundamental ap-
proaches: BM25 [RZ09], BM25-CA [RZ09], LM (Lan-
guage Modeling) [PC98], SDM (Sequential Depen-
dency Model) [MC05], PRMS (Probabilistic Model for
Semistructured Data) [KXC09], and MLM-all (Mix-
ture of Language Models) [OC03]; fielded extension
approaches: MLM-CA [OC03], FSDM (Fielded Se-
quential Dependence Model) [ZKN15], and BM25F-
CA [RZ09]; extended approaches by entity linking
technique [HBB16] for query: LM-ELR [HBB16],
SDM-ELR [HBB16], and FSDM-ELR [HBB16].

These works are based on a fielded document con-
struction method in [Has18]. As an overall structure,
each entity has 1000 fields together with three addi-
tional fields. The 1000 fields are corresponding with
top 1000 frequent predicates in DBpedia, and the ad-
ditional fields are heuristically constructed such that
one is “name” field which is constitution of predicates
rdfs:label and foaf:name; another is “types” field
which contains rdf:type predicate and predicates end-
ing in “subject”, and the other is “contents” field which
holds the contents of all fields of connected entities ex-
cept those connected by owl:sameAs to remove same
entities in different languages. Aforementioned ap-
proaches use parts of the fielded documents as follows:
BM25, LM and SDM use the contents field; and MLM-
all, PRMS and FSDM use top-10 fields. The field
extension approaches are differentiated by settings of
field weights (e.g., MLM-all uses equal weights for all
fields, while PRMS learns weights for fields).

To investigate the qualities of these approaches, this
paper tests more intuitive metrics recall@k in addi-
tion to NDCG which is shown in [HNX+17]. The
NDCG results are copied to Table 4 (rows of not *-
ed method names correspond to the original results
shown in [HNX+17]). The NDCG result shows com-
parative ranking qualities among these approaches.
While, NDCG is not a clear indicator for distances
from goals. Therefore, this paper investigates more
clear indicator, recall@k (Eqn. 1) which reveals ratio
of relevant results in top-k.

recall@k =
the number of relevant items in top-k
the total number of relevant items

(1)
Table 1 displays recall@k (k ∈ {10, 100, 1000}) and

it indicates that more than 80% of relevant results are



Table 1: Recall@k (k = 10, 100, 1000). Each row corresponds with existing approaches, and the last row is
maximum recall score among them. For each column, the best score is boldface, underlined, and lined in the
bottom. The bottom row indicates gaps from recall@k values (k = 10, 100) from recall@1000, which claims that
large amount of relevant results are below top-10.
Model SemSearch ES INEX-LD ListSearch QALD-2 Total

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000
BM25 .2563 .6669 .9280 .1730 .4860 .7554 .1093 .4598 .7221 .1891 .4677 .6929 .1823 .5175 .7703
PRMS .3719 .7499 .9412 .2312 .5339 .7796 .1839 .5476 .7525 .2273 .5428 .7420 .2522 .5919 .8009
MLM-all .3887 .7705 .9412 .2343 .5527 .7796 .1840 .5655 .7525 .2280 .5706 .7420 .2571 .6136 .8009
LM .3812 .8236 .9412 .2425 .5807 .7796 .1899 .5772 .7525 .2355 .5910 .7420 .2607 .6413 .8009
SDM .3884 .8581 .9865 .2409 .6224 .8567 .1987 .6121 .8256 .2398 .5921 .7991 .2659 .6674 .8633
LM-ELR .3863 .8278 .9412 .2364 .5894 .7796 .1913 .5940 .7536 .2474 .5909 .7401 .2646 .6483 .8006
SDM-ELR .3898 .8581 .9865 .2366 .6307 .8567 .2105 .6180 .8256 .2589 .6172 .7991 .2739 .6782 .8633
MLM-CA .4096 .7843 .9420 .2249 .5917 .8051 .1861 .5834 .8038 .2377 .5953 .7894 .2639 .6370 .8329
BM25-CA .3991 .8326 .9766 .2372 .6266 .8603 .2110 .6261 .8431 .2650 .6157 .8164 .2782 .6727 .8708
FSDM .4459 .8515 .9581 .2390 .6153 .8191 .1980 .5999 .8175 .2466 .6102 .7970 .2812 .6667 .8455
BM25F-CA .4097 .8707 .9704 .2607 .6526 .8544 .2042 .6189 .8325 .2548 .6341 .8157 .2811 .6912 .8653
FSDM-ELR .4536 .8539 .9562 .2477 .6253 .8191 .2022 .6075 .8162 .2507 .6275 .7970 .2872 .6765 .8450
max .4536 .8707 .9865 .2607 .6526 .8603 .2110 .6261 .8431 .2650 .6341 .8164 .2872 .6912 .8708
gap .5329 .1158 — .5996 .3077 — .6321 .2170 — .5514 .1823 — .5836 .1796 —

Table 2: Recall@k (k = 10, 100). Each row corresponds to the maximum recall@k value among re-ranked existing
approaches.

Re-ranking method SemSearch ES INEX-LD ListSearch QALD-2 Total
@10 @100 @10 @100 @10 @100 @10 @100 @10 @100

PageRank .1545 .4664 .1171 .3639 .1059 .4438 .1561 .4519 .1344 .4198
Personalized PageRank .1632 .4779 .1228 .3822 .1146 .4524 .1613 .4587 .1397 .4355

included in top-1000 but only 20% to 45% of them
are included in top-10, which indicates there are room
left for improving rankings. The recalls are calculated
on the top-1000 results presented in the benchmark
data2. The boldface and underlined cells in the ta-
ble show maximum recall scores for tasks and k. All
methods have low recall@10 as well as recall@100, but
still high recall@1000, meaning that ranking perfor-
mance should be improved. The gap row in the table
emphasizes that top-10 results have large room left for
improvements.

3 PageRank-based Re-ranking
This work attempts to improve the ranking qualities
by graph analytical re-ranking methods. LD is mod-
eled as a labeled graph, it is therefore reasonable to
apply graph analytical approaches to evaluate values
of entities. In particular, this paper explores feasibil-
ity of PageRank [PBMW99], which is popular graph
analytical methods to originally evaluate Web pages
and has been applied for many other domains.

This paper models LD data as data graph (Def. 1)

Definition 1 (Data Graph) Given LD data, data
graph G = (V,E) is a graph, where set V = R∪L∪B
of vertices are union of set R of entities, set L of lit-
erals and set B of blank nodes, and set E ⊆ V ×P ×V
of edges between vertices with predicates P as labels.
�

2https://github.com/iai-group/DBpedia-Entity/tree/
master/runs/v2

The subsequent sections introduce naïve baseline
approaches and the proposed re-ranking method,
PPRSD. Section 3.1 introduces re-ranking methods
via PageRank [PBMW99] and personalized PageR-
ank [Hav02], and introduces a preliminary evaluation
of these methods. Then, Section 3.2 explains PPRSD
which utilizes both results of the state-of-the-art and
advantages of personalized PageRank.

3.1 Naïve Graph Analytical Re-ranking

As discussed above, graph analytical approaches are
reasonable for re-ranking criteria, however, with a
little consideration, global evaluation methods like
PageRank do not make sense for ranking entities with
respect to input keyword queries. Roughly speaking,
PageRank evaluates vertices having lots of incoming
links as important. Therefore, when PageRank is ap-
plied to the data graph G, PageRank gives an order
of vertices which is independent from input queries.
Examinations for the global rankings show bad results
(this paper does not include this because it is obvious).

In order to test PageRank and personalized PageR-
ank in a re-ranking manner, this work utilizes an in-
sight from the recall@k results in Table 1. The insight
is that the top-1000 results by existing methods in-
clude more than 80% of relevant results. Thus, the
idea of re-ranking with PageRank and personalized
PageRank is to filter top-1000 result entities by the
existing methods and to apply the graph analytical ap-
proaches. To do so, an induced subgraph (Definition 2)
for the top-1000 result entities are extracted.



Definition 2 (Induced Subgraph) Given set V ′ of
vertices, induced subgraph G′ = (V ′, E′) of graph G =
(V,E) over V ′ is a subgraph of G such that V ′ ⊆ V
and E′ = (V ′ × V ′) ∩ E. �

On the induced subgraph G′ extracted from top-
1000 results, PageRank and personalized PageRank
values are calculated as Eqn. 2 and Eqn. 3. In Eqn. 2,
pr is a PageRank vector with 1000 length, A is a
1000 × 1000 adjacency matrix of G′, e is 1000-length
vector which elements are all 1, and d is a damping
factor which is the probability of random jumps. Sim-
ilarly, in Eqn 3, pprq is a 1000-length PageRank vector
for query q, A is an adjacency matrix as PageRank, s is
1000-length personalized vector for q, which elements
corresponding with matching entities for q are 1 and
other elements are 0, and d is a damping factor.

pr = (1− d) · prA+ d · e (2)

pprq = (1− d) · pprqA+ d · s (3)
A preliminary experiment over these naïve re-

ranking methods shows worse results than the state-
of-the-art. The preliminary experiment tests the feasi-
bility of aforementioned methods (PageRank and per-
sonalized PageRank-based re-ranking methods) on the
DBpedia-Entity v2 benchmark [HNX+17]. The re-
ranking approaches are applied for all the state-of-
the-art methods listed in Table 1. Table 2 displays
maximum recall@k values among the applied methods
of PageRank and personalized PageRank, separately.
Amongst PageRank and personalized PageRank, per-
sonalized PageRank has achieved better performance
than PageRank, therefore, taking relevance to queries
into account results better ranking qualities. Compar-
ing recall@k of the state-of-the-art shown in Table 1,
the re-ranking methods are mostly worse then them.
Consequently, re-ranking methods should more rely on
the state-of-the-art.

3.2 Re-ranking by Score Distribution

The preliminary evaluation on the naïve re-ranking
methods reveal two facts: one is personalized
PageRank-based re-ranking is superior to PageRank-
based re-ranking, and the other is the state-of-the-art
are still more powerful than simple graph analytical
approaches. Therefore, the facts suggest that person-
alized PageRank-based method with utilizing results
of the state-of-the-art can be a better choice. The rest
of this section introduces how to realize it.

The main idea of the proposed approach is that
utilizing relevance scores for re-ranking algorithm via
personalized PageRank. The state-of-the-art rank en-
tities by their own relevance scores, the scores indi-
cate relative relevance degrees among the resulting en-
tities. That is, there are more or less gaps on relevance

scores than those on ranks. Additionally, the rele-
vance scores are more sophisticated than just count-
ing matching entities as naïve personalized PageRank-
based re-ranking approach (s in Eqn. 3).

To realize this idea, this work arranges the personal-
ized PageRank formulation shown in Eqn. 3 to include
the relevance scores calculated by the state-of-the-art
as Eqn. 4 called PPRSD (stands for Personalized
PageRank based Score Distribution).

pprsdq = (1− d) · pprsdqA+ d · t (4)

where pprsdq is a 1000-length relevance score vector
of PPRSD. The personalized vector s is redefined as t,
where each element ti of entity vi ∈ V ′ stores a rele-
vance score of q to vi calculated by one of the state-of-
the-art method. Log likelihood-based relevance scores
(i.e., LM, MLM, SDM, FSDM, PRMS, and their vari-
ations) are negative values in nature, therefore, these
scores are converted to positive numbers by applying
exponential function. In addition, the converted scores
are quite small (e.g., 10−34) because the values in the
log function are products of probabilities, therefore,
the converted scores are multiplied by positive num-
ber so as to make the scores comparable with those
of the other methods. As PageRank-based methods
compute the relevance score vectors (i.e., pr in Eqn. 2
and ppr in Eqn. 3), PPRSD also computes the rele-
vance score vector, pprsd, by the power method. Re-
sult entities ranked by PPRSD are of ordering in the
relevance scores.

4 Experimental Evaluation
The experiment in this paper attempts to confirm
the re-ranking method, PPRSD, improves the rank-
ing qualities in terms of both recall@k and NDCG@k.
Since PPRSD relies on the results of the state-of-
the-art, this experiment uses the standard benchmark
dataset [HNX+17]3 of entity search on DBpedia. Rel-
evance scores for entities in the state-of-the-arts are
obtained from the website of the benchmark4. This
experimental evaluation attempts to answer the follow-
ing question: Does the re-ranking method improve the
state-of-the-are? And, how large or small the improve-
ments are? In order to answer the question, PPRSD
and the state-of-the-art are compared by recall@k
(Eqn. 1) and NDCG@k (Eqn. 5) which is a ratio of
DCG@k (Eqn. 6) over the ideal value of DCG@k re-
ferred as to IDCG@k.

NDCG@k =
DCG@k

IDCG@k
(5)

3http://tiny.cc/dbpedia-entity
4https://github.com/iai-group/DBpedia-Entity/tree/

master/runs/v2
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(a) Damping factor in 0 to 1.
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(b) Damping factor in 0 to 0.2.

Figure 1: Effect of damping factor. Lines represent
base methods for PPRSD. (a) shows recall@10 values
for damping factor 0 to 1 and realizes damping factors
in 0 to 0.2 are optimal, therefore, (b) shows that range
in fine granularity.

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
(6)

The subsequent sections discuss the comparison of
the ranking qualities between the original methods and
the re-ranked methods by PPRSD. More specifically,
Section 4.1 introduces an empirical study for deter-
mining damping factor d in Eqn. 4, and, based on the
choice of the damping factor, Section 4.2 discusses the
comparison between the PPRSD-based methods over
the original methods.

4.1 Effect of Damping Factor

Figure 1 showcases effects of damping factor in var-
ious state-of-the-art which PPRSD is applied, and it
reveals that smaller damping factor (i.e., around 0.1)
achieves the best performances. In the figure, horizon-
tal axis expresses damping factor which ranges 0 to 1.0
in Figure 1(a) and 0 to 0.2 in Figure 1(b), vertical axis
represents recall@10, and lines in the figure represent
the state-of-the-art. FSDM-ELR and BM25F-CA per-
form the best among the state-of-the-art in the figure
around damping factor 0.1. In consequence, keeping
10% of relevance scores is the best choice for PPRSD,
so d = 0.1 is used for the later experiments.

4.2 Overall Evaluation

Table 3 and Table 4 display the comparisons of values
of recall@k for the former and NDCG@k for the latter
among PPRSD and the state-of-the-art. The Model
row of the table represents tasks of entity search and
values of k, and the left-most column shows lists of
the state-of-the-art and re-ranked versions (which are
represented by *) of them by PPRSD. In addition, each
group of rows corresponding with a method includes
imp. row which emphasizes the improvement ratio by
PPRSD. Cells contain recall@k values, and the best
value in a row is emphasized by boldface and underline.

Table 3 shows PPRSD successfully improves rank-
ing qualities of the state-of-the-art. The Total col-
umn represents the ranking qualities among all tasks.
The column indicates that 7 over 12 methods have
been improved by PPRSD in recall@10 and 8 meth-
ods have also been improved by PPRSD but 2 meth-
ods have been degraded the ranking qualities in re-
call@100. This indicates that PPRSD successfully im-
proves the ranking qualities. Note that PPRSD im-
proves not only elementary approaches (e.g., BM25)
but also more sophisticated approaches (e.g., BM25F-
CA and FSDM-ELR).

Table 4 also shows PPRSD successfully improves
ranking qualities of the state-of-the-art. Recall@k
and NDCG@k obviously have correlation, therefore,
the improvements should be confirmed as the success
shown in recall@k. As expected, the best results are
all of PPRSD-based methods. It is worthy to note that
the improvement ratios shown in imp. are larger than
those of recall@k, indicating that PPRSD improves
the rankings not only by just more relevant entities in
the rankings but also better positions of relevant enti-
ties in the rankings. Since NDCG@k is good at rela-
tive comparison between rankings, the results confirm
the improvements of rankings. For example, BM25-
CA* is the best ranking method in terms of recall@10
for QALD-2 task, however, BM25F-CA* is superior to
BM25-CA* and the best in terms of NDCG@10 for the
same task. This means that BM25F-CA* have less rel-
evant entities in top-10 rankings but more relevant en-
tities are in the earlier positions in the top-10 rankings.
Consequently, evaluation based on NDCG@k confirms
the ranking improvements by PPRSD.

5 Investigation for Improvements

This section explores possibilities of further improve-
ments for the state-of-the-art and PPRSD-based re-
ranking methods in the following aspect: Why re-
call@1000 is not 100% yet? Since PPRSD is based
on the state-of-the-art, the upper bound of ranking
qualities is limited by them and improving the state-
of-the-art is also important for further improvement of
PPRSD. Therefore, this work investigates the reason
why top-1000 results have not been perfect yet. To an-
swer the question, this paper investigates path lengths
from relevant entities to entities which literals contain
an input keyword query term (detail in Section 5.1).
The investigation reveals that there are still space left
for including literals within larger distances (i.e., 3, 4,
and 5 hops). Obviously, taking longer paths (or se-
quences of predicates) into account entails explosion
of the number literals included into documents of enti-
ties. As a result, each entity gets noisy documents, and
it is easy to imagine that the noisy documents degrade



Table 3: Recall@k (k=10, 100). Model indicates task types of queries, and top-k indicates the selected k values
(10 or 100). Each cell contains a recall@k value for corresponding condition. For each column, the best score
is boldface and underlined. The most-left column lists the state-of-the-art and re-ranked versions of them by
PPRSD (corresponding with *-ed names). Each group of rows corresponding with the state-of-the-art includes
imp. row indicating the ratio of the improvement by PPRSD.

Model SemSearch ES INEX-LD ListSearch QALD-2 Total
@10 @100 @10 @100 @10 @100 @10 @100 @10 @100

BM25 .2563 .6669 .1730 .4860 .1093 .4598 .1891 .4677 .1823 .5175
BM25* .2735 .6952 .1867 .5144 .1279 .4809 .2036 .5044 .1983 .5466
imp. +6.52% +3.64% +5.38% +5.21% +13.54% +3.70% +7.19% +6.33% +7.57% +4.70%
PRMS .3719 .7499 .2312 .5339 .1839 .5476 .2273 .5428 .2522 .5919
PRMS* .3719 .7499 .2312 .5339 .1839 .5476 .2273 .5428 .2522 .5919
imp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MLM-all .3887 .7705 .2343 .5527 .1840 .5655 .2280 .5706 .2571 .6136
MLM-all* .3887 .7705 .2343 .5527 .1840 .5655 .2280 .5706 .2571 .6136
imp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LM .3812 .8236 .2425 .5807 .1899 .5772 .2355 .5910 .2607 .6413
LM* .3812 .8222 .2425 .5807 .1899 .5772 .2355 .5910 .2607 .6410
imp. 0.00% -0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.03%
SDM .3884 .8581 .2409 .6224 .1987 .6121 .2398 .5921 .2659 .6674
SDM* .3925 .8602 .2409 .6232 .1991 .6134 .2402 .5921 .2671 .6684
imp. +1.11% +0.24% 0.00% +0.08% +0.05% +0.16% +0.17% 0.00% +0.41% +0.13%
LM-ELR .3863 .8278 .2364 .5894 .1913 .5940 .2474 .5909 .2646 .6483
LM-ELR* .3863 .8231 .2364 .5894 .1913 .5945 .2474 .5909 .2646 .6473
imp. 0.00% -0.43% 0.00% 0.00% 0.00% +0.08% 0.00% 0.00% 0.00% -0.12%
SDM-ELR .3898 .8581 .2366 .6307 .2105 .6180 .2589 .6172 .2739 .6782
SDM-ELR* .3936 .8590 .2366 .6305 .2107 .6190 .2589 .6172 .2749 .6786
imp. +1.03% +0.09% 0.00% -0.03% +0.10% +0.18% 0.00% 0.00% +0.37% +0.06%
MLM-CA .4096 .7843 .2249 .5917 .1861 .5834 .2377 .5953 .2639 .6370
MLM-CA* .4096 .7843 .2249 .5919 .1861 .5834 .2377 .5953 .2639 .6371
imp. 0.00% 0.00% 0.00% +0.03% 0.00% 0.00% 0.00% 0.00% 0.00% +0.02%
BM25-CA .3991 .8326 .2372 .6266 .2110 .6261 .2650 .6157 .2782 .6727
BM25-CA* .4085 .8345 .2350 .6301 .2151 .6278 .2701 .6329 .2826 .6795
imp. +2.26% +0.12% -0.38% +0.35% +2.27% +0.38% +0.57% +2.79% +1.33% +0.97%
FSDM .4459 .8515 .2390 .6153 .1980 .5999 .2466 .6102 .2812 .6667
FSDM* .4463 .8528 .2390 .6156 .1980 .5998 .2466 .6103 .2813 .6671
imp. +0.09% +0.15% 0.00% +0.05% 0.00% -0.02% 0.00% +0.02% +0.04% +0.06%
BM25F-CA .4097 .8707 .2607 .6526 .2042 .6189 .2548 .6341 .2811 .6912
BM25F-CA* .4218 .8753 .2628 .6555 .2047 .6226 .2613 .6423 .2865 .6963
imp. +2.95% +0.45% +1.42% +0.34% +0.73% +0.69% +2.00% +1.39% +1.99% +0.72%
FSDM-ELR .4536 .8539 .2477 .6253 .2022 .6075 .2507 .6275 .2872 .6765
FSDM-ELR* .4540 .8552 .2477 .6256 .2022 .6075 .2507 .6277 .2873 .6769
imp. +0.09% +0.15% 0.00% +0.05% 0.00% 0.00% 0.00% +0.03% +0.03% +0.06%

ranking qualities. To obtain hints for preferable paths
for literals, this paper investigates the commonalities
of tail predicates in the paths (detail in Section 5.2).
The investigation reveals that tail predicates should be
different for different lengths of the paths.

5.1 Distance from Query Term

The state-of-the-art rely on terms occurring within two
hops at most, modeled as fielded documents. Sec-
tion 2 introduces the fields of entities taken into ac-
count for the state-of-the-art, and the contents field
includes contents of one-hop away entities. This im-
plies that no method considers terms occurring within
longer hops away.

The fielded document construction limits the pos-
sibilities to reach to the relevant results due to the
absence of query terms in the documents. This fact is

estimated from the preliminary evaluation on recall@k
in Table 1, that is, recall@1000 values are less than
86% (except SemSearch ES task which is designed for
direct matching with terms). In other words, 14% are
below top-1000 results.

In order to answer question why recall@1000 is not
perfect?, this paper attempts to realize the relation
between relevant answers and the numbers of hops
from query terms. To this end, this work investi-
gates the minimum distances from relevant entities to
query terms by performing SPARQL queries in terms
of the distances. SPARQL queries are generated with
a graph pattern of a sequential path from given entity
r ∈ R to literal ` ∈ L which contains query term t,
and predicates and resources between r and ` are ful-
filled by free variables. Figure 3 illustrates a n-length
graph pattern for entity r and query term t. Based on



Table 4: NDCG@k (k=10, 100). Model indicates task types of queries, and top-k indicates the selected k values
(10 or 100). Each cell contains an NDCG@k value for corresponding condition. For each column, the best score
is boldface and underlined. The most-left column lists the state-of-the-art and re-ranked versions of them by
PPRSD (corresponding with *-ed names). Each group of rows corresponding with the state-of-the-art includes
imp. row indicating the ratio of the improvement by PPRSD.

Model SemSearch ES INEX-LD ListSearch QALD-2 Total
@10 @100 @10 @100 @10 @100 @10 @100 @10 @100

BM25 .2497 .4110 .1828 .3612 .0627 .3302 .2751 .3366 .2558 .3582
BM25* .2839 .4463 .2903 .3816 .2534 .3543 .2953 .3624 .2812 .3847
imp. +13.70% +8.59% +58.81% +5.65% +304.15% +7.30% +7.34% +7.66% +9.93% +7.40%
PRMS .5340 .6108 .3590 .4295 .3684 .4436 .3151 .4026 .3905 .4688
PRMS* .5388 .6162 .3590 .4295 .3684 .4436 .3151 .4026 .3913 .4698
imp. +0.90% +0.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% +0.20% +0.21%
MLM-all .5528 .6247 .3752 .4493 .3712 .4577 .3249 .4208 .4021 .4852
MLM-all* .5578 .6303 .3752 .4493 .3712 .4577 .3249 .4208 .4030 .4863
imp. +0.90% +0.90% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% +0.22% +0.23%
LM .5555 .6475 .3999 .4745 .3925 .4723 .3412 .4338 .4182 .5036
LM* .5606 .6529 .3999 .4745 .3925 .4723 .3413 .4338 .4191 .5046
imp. +0.92% +0.83% 0.00% 0.00% 0.00% 0.00% +0.03% 0.00% +0.22% +0.20%
SDM .5535 .6672 .4030 .4911 .3961 .4900 .3390 .4274 .4185 .5143
SDM* .5564 .6718 .4030 .4912 .3961 .4902 .3394 .4274 .4191 .5152
imp. +0.52% +0.69% 0.00% +0.02% 0.00% +0.04% +0.12% 0.00% +0.14% +0.17%
LM-ELR .5554 .6469 .4040 .4816 .3992 .4845 .3491 .4383 .4230 .5093
LM-ELR* .5608 .6518 .4040 .4816 .3992 .4847 .3491 .4383 .4240 .5103
imp. +0.97% +0.76% 0.00% 0.00% 0.00% +0.04% 0.00% 0.00% +0.24% +0.20%
SDM-ELR .5548 .6680 .4104 .4988 .4123 .4992 .3446 .4363 .4261 .5211
SDM-ELR* .5577 .6716 .4105 .4988 .4129 .4999 .3449 .4364 .4271 .5218
imp. +0.52% +0.54% +0.02% 0.00% +0.15% +0.14% +0.09% +0.02% +0.23% +0.13%
MLM-CA .6247 .6854 .4029 .4796 .4021 .4786 .3365 .4301 .4365 .5143
MLM-CA* .6249 .6895 .4029 .4798 .4020 .4786 .3365 .4301 .4361 .5150
imp. +0.03% +0.60% 0.00% +0.04% -0.02% 0.00% 0.00% 0.00% -0.09% +0.14%
BM25-CA .5858 .6883 .4120 .5050 .4220 .5142 .3566 .4426 .4399 .5329
BM25-CA* .6040 .7024 .4132 .5048 .4302 .5181 .3607 .4544 .4475 .5404
imp. +3.11% +2.05% +0.29% -0.04% +1.94% +0.76% +1.15% +2.67% +1.73% +1.41%
FSDM .6521 .7220 .4214 .5043 .4196 .4952 .3401 .4358 .4524 .5342
FSDM* .6549 .7269 .4214 .5044 .4196 .4951 .3401 .4359 .4527 .5350
imp. +0.43% +0.68% 0.00% +0.02% 0.00% -0.02% 0.00% +0.02% +0.07% +0.15%
BM25F-CA .6281 .7200 .4394 .5296 .4252 .5106 .3689 .4614 .4605 .5505
BM25F-CA* .6444 .7361 .4494 .5336 .4288 .5166 .3699 .4672 .4673 .5581
imp. +2.60% +2.24% +2.28% +0.76% +0.85% +1.18% +0.27% +1.26% +1.48% +1.38%
FSDM-ELR .6563 .7257 .4354 .5134 .4220 .4985 .3468 .4456 .4590 .5408
FSDM-ELR* .6572 .7307 .4354 .5135 .4219 .4985 .3466 .4455 .4587 .5416
imp. +0.14% +0.69% 0.00% +0.02% -0.02% 0.00% -0.06% -0.02% -0.07% +0.15%

the pattern, ASK query (which is an indicator func-
tion query in SPARQL) is generated to examine such
pattern exists. Following SPARQL query displays ex-
amples of generated ASK queries for distance 2.

ASK{ 〈r〉 ?p0 ?v0. ?v0 ?p1 ?v1.
?v1 ?p2 ?l. ?l bif:contains ’t’.
FILTER isLiteral(?l).}

This investigation measures the minimum distance
which satisfies the ASK query corresponding with the
distance. The procedure of this investigation is that:
(1) given query q, relevant entity list Aq for q is ob-
tained from the benchmark dataset; (2) parse q into
set Tq of terms; (3) examine ASK queries from length 0
to maximum length (5 for this investigation) for each
pair of relevant entity r ∈ Aq and term t ∈ Tq; (4)
as soon as the ASK query is satisfied, the distance is

recorded; and (5) the obtained distances for each rel-
evant entities are analyzed. Obtained distances for a
relevant entity of a query may be different term by
term. Therefore, this investigation analyses minimum
distance, average distance and maximum distance for
each relevant entity of a query. Consequently, these
distances are individually gathered and calculate their
averages to observe how long distances required to
touch query terms from relevant entities.

Figure 2 showcases the analyzed distances with re-
spect to tasks as well as with regardless of tasks (i.e.,
Total). In the figure, bars represent ratios of relevant
entities having the number of hops (distances) to reach
from query terms, and dashed lines express cumulative
ratios of relevance entities. Three kinds of bars (light-
gray and oblique stripe bars, gray and horizontal stripe
bars, and black and crossing stripe bars) correspond
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Figure 2: The number of hops from relevant entities to query terms. Bars represent ratios of relevant entities
having the number of hops (distances) to reach from query terms. Three kinds of bars (light-gray and oblique
stripe bars, gray and horizontal stripe bars, and black and crossing stripe bars) correspond with minimum,
average, and maximum distances, respectively. Dashed lines express cumulative ratios of relevance entities.
Three kinds of lines (lines with triangles, those with circles, and those with squares) correspond with minimum,
average, and maximum, respectively.
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Figure 3: n-length path pattern generated for given
entity r, query term t and distance n. Circular vertices
are resources and a square is a literal containing t.

with minimum, average (rounded), and maximum dis-
tances. Similarly, three kinds of lines (lines with trian-
gles, circles, and squares) correspond with minimum,
average (rounded), and maximum.

Figure 2 indicates that at least one term is included
in literals directly connected with relevant entities, and
Figure 2(a) indicates that most of the relevant enti-
ties are reachable from query terms within two hops
on average, however, in terms of maximum distances,
still more than 10% relevant entities are not reach-
able within three hops. This fact answers the question
why recall@1000 is not perfect? as some relevant en-
tities are still not found by the query terms due to
the smaller distances to construct entity documents.
This phenomenon is also marked on individual tasks
except SemSeach ES task, which is a simple tasks so
that queries in the task are more directly explaining
requiring entities than others.

5.2 Commonality of Tail Predicates of Paths

A simple solution for improving ranking qualities in
terms of the previous investigation is top include lit-
erals within more hops (i.e., 3 or more), however, it
is obvious that the solution incurs noisy entity docu-
ments by including unnecessary literals within larger
hops. The number of reachable entities in G increases
very quickly as the distance increases. Therefore, ir-
relevant entities contribute to entity documents.

An intuition to avoid this situation is to select
“good” paths from an entity which include meaningful
literals for the entity. A naïve extension is to find paths
from an entity to “good” entities and to include their
documents (suppose the same approach to the state-of-
the-art) into the document of the entity. This paper
wants to clarify there is any difference between self-
descriptive literals and supportive literals for other en-
tities. Self-descriptive literals explain well about target
entities, while supportive literals explain supplemental
facts about the target entities. Self-descriptive literals
tend to be close to the targets, while supportive liter-
als tend to relatively distant from the targets. There-
fore, this investigation attempts to understand the dif-
ferences of predicates with ending literals (called tail
predicates) between shorter and longer paths. The in-
vestigation is done in the following procedure: gathers
surveyed paths for each relevant entities using interme-
diate results of the previous investigation (Section 5.1),
and analyzes the paths in terms of commonalities of
the tail predicates. The commonalities are measured
for different lengths (i.e., 1 to 4) of the tail predicate se-

quences by Jaccard index, Jaccard(Y r
i , Y

r
j ) =

|Y r
i ∩Y

r
j |

|Y r
i ∪Y r

j |
,

where Y r
i is a set of i-length tail predicates of entity r

and | · | is cardinality.

Table 5 display commonalities of tail predicates
among different lengths of paths for different tail
lengths. The results reveal that commonalities of
tail predicates decrease as differences of path lengths
increase. This fact indicates that literals reachable
in different path lengths should select different tail
predicates (e.g., rdfs:label is not always a good
choice.). Due to the tremendous number of tail pred-
icates, the detailed analysis on what kind tail pred-
icates are preferable in particular path lengths is left
for future work. Examples from rough analysis include
rdfs:label and rdfs:comment for 1-length paths and
dbo:wikiPageWikiLinkText for 5-length paths.



Table 5: Commonality (Jaccard index) of tail predicates of top-10 frequent paths from true results to query
keywords. The numbers of top-most and left-most in the tables represent lengths of the paths. These tables
show that only a part (less than 45%) of tail predicates which are related to basic documents of entities is shared
with different lengths of paths.

(a) tail length = 1
Path length

1 2 3 4 5
1 1.000 0.399 0.220 0.250 0.198
2 0.399 1.000 0.429 0.342 0.316
3 0.220 0.429 1.000 0.389 0.439
4 0.250 0.342 0.389 1.000 0.449
5 0.198 0.316 0.439 0.449 1.000

(b) tail length = 2
Path length

2 3 4 5
2 1.000 0.205 0.250 0.190
3 0.205 1.000 0.325 0.316
4 0.250 0.325 1.000 0.449
5 0.190 0.316 0.449 1.000

(c) tail length = 3
Path length

3 4 5
3 1.000 0.250 0.282
4 0.250 1.000 0.481
5 0.282 0.481 1.000

(d) tail length = 4
Path length

4 5
4 1.000 0.449
5 0.449 1.000

5.3 Summary & Future Direction

Summary.

This section investigates relationship between paths
and result entities in order to answer the question Why
recall@1000 is not 100% yet? The answers of this inves-
tigation are 2-fold: (1) literals in distant paths are ab-
sent from documents; and (2) setting of tail predicates
is universal for all lengths of paths. Although, the
first problem is obvious, still the number of reachable
entities in more than two hops is extraordinary large,
therefore, constructing documents from longer paths is
computationally expensive. Additionally, in the naïve
approach, the generated documents may include large
amount of not quite relevant facts to entities.

Future Directions.

To overcome the aforementioned problems, solutions
lies on graph analytical approaches as Section 3 show-
cases their possibilities. A basic idea is to select
appropriate reachable predicates and entities within
two or more hops. To this end, graph analyti-
cal approaches (e.g., PageRank, Random Walks) can
be good choices. As discussed in this paper, non-
personalized PageRank and its families are not appro-
priate, meaning that global centralities do not help.
Therefore, customizable graph analytical approaches
such as ObjectRank [BHP04] and random walk with
restart (RWR) [TFP08] are preferable. There are
some preliminary works based on this idea, namely
FORK [KOAK17], and RWRDoc [Kom18]. FORK has
applies ObjectRank for entity search and it achieves
better precision@k. While, RWRDoc has applies RWR
for determining importances of reachable entities in
terms of RWR scores and it slight improves in terms
of NDCG@k. These indicates that graph analytical
approaches still leave space for improvements.

6 Conclusion
This paper deals with entity search over Linked Data,
analyzes the state-of-the-art in terms of recall@k, and
reveals the possibilities of improvements of the state-
of-the-art. Also, this paper indicates the feasibility of
graph analytical approaches for improving the state-

of-the-art by formulating as a re-ranking problem. For
further improvements, this paper reports two inves-
tigations about relationship between paths to literals
containing query terms and relevant entities to queries.
Results of the investigations support the improvement
possibilities of graph analytical approaches, and devel-
oping them is still left for future works. Consequently,
this paper answers to the first question as Yes, they
are appropriate, but there is still an issue on matching
entities in a graph.
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