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On the basis of the kinematic hypotheses of the Kirchhoff-Love built a mathematical model of micropolar cylindrical meshed panels
vibrations under the action of a normal distributed load. In order to take into account the size-dependent behavior, the panel material
is considered as a Cosser’s pseudocontinuum with constrained particle rotation. The mesh structure is taken into account by the
phenomenological continuum model of G. I. Pshenichnov. For a cylindrical panel consisting of two systems of mutually perpendicular
edges, a scenario of transition of oscillations from harmonic to chaotic is constructed. It is shown that in the study of the behavior of
cylindrical micropolar meshed panels it is necessary to study the nature of the oscillations of longitudinal waves.
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1. Introduction

To solve the problems of static and dynamic mesh plates,
panels and shells, mainly two computational models are used. It
is a phenomenological continuum model and a discrete model. In
the continuum model, a mesh object consisting of a regular
system of frequently located edges of one material is replaced by
an equivalent solid object having some averaged stiffness
depending on the arrangement of the edges and their stiffness
[1,3]. In the discrete model, the edges are represented by beam,
shell, or three-dimensional finite elements [2,5,7,11].
Eachoftheseapproacheshasitsadvantages [4].

Progress in micro-and nano-technologies leads to the interest
of scientists not only to the behavior of full-size mechanical
systems in the form of plates and shells [13,14,16], but also the
need to create mathematical models that take into account the
scale effects at the micro and nano level [10,12,19]. In most
works on this subject linear models are used for numerical
analysis [15,17,18,21,22]. However, there are experimental data
confirming the need to take into account the nonlinearity in
modeling the behavior of the objects under consideration [20].

Despite the large number of works devoted to the size-
dependent behavior of mechanical objects in the form of plates,
panels and shells, studies of the behavior of mesh plates and
shells based on theories that take into account the effects of scale
is very small [6,8,9].

2. Problemstatement

A mathematical model of oscillations of a micro-polar
flexible rectangular cylindrical panel under the action of a

transverse distributed pressure occupying a region in space R®
areaQ) = {O <x<c0<y< b;—g <z< g} is constructed.

The panel consists n of sets of densely arranged edges of the
same material, which allows the use of a phenomenological
continuum model. Taking into account the Kirchhoff-love
hypotheses, the strain tensor components are written as:
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Where u,v,w - axial displacements of the middle surface of the
plate in the directions x,y,z respectively, k - geometric

curvature parameter.

To account for the size-dependent behavior, a non-classical
continuum model based on the Cosser medium is considered,
where, along with the usual stress field, torque stresses are also
taken into account. This assumes that the displacement and
rotation fields are not independent. In this case, the components
of the symmetric bending-torsion tensor are written as follows:
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We take the defining relations for the panel material in the
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components of the stress tensor, m; components of the moment

tensor of higher order, E - Young’s modulus, v - Poisson’s
ratio.

The equations of motion of a smooth plate element
equivalent to a mesh one, boundary and initial conditions are
obtained from the Hamilton — Ostrogradsky energy principle:
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Boundary conditions:
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Here the expression for the classical force and torque:
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as well as expressions for the forces caused by instantaneous
stresses:

The stresses arising in the equivalent smooth panel
associated with the stresses in the edges that make up the angles

@, with the abscissa axis will have the form:
: . . ,
o, - Z":o-x’éj Cosg; Sing; o= Zax’(?j Cos® g, ,
i1 a, i1 g,
n ol5. Sin® n mls Cosg, Sin
O_yy = J (pJ s mxy = Z q)J (pJ
= ; i1 aj
n COS o 1 Sln ?j
= z ' myy z '
=1 a; i= a;
n 6;Cos n J. Sin
= Z §0] , myz = 217(/)] Where aj -
j= =1 a;

distance between edges of j-th family, &, - the thickness of the

ribs, voltage index j are rods. The physical relations for the mesh
plate are determined based on the Lagrange multiplier method:
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expressions for classical forces and moments, as well as the
forces caused by the moment stresses of the cylindrical mesh
panel will take the form: (the upper index shows the account of
the mesh structure):
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Substituting expressions (2) into equations (1), we obtain a
resolving system of equations of motion for a smooth micropolar
cylindrical Kirchhoff-Love panel equivalent to the original mesh
panel.

In this model, the rigidity of the rods to bend in a plane
tangent to the middle surface of the panel is not taken into
account, so the orders of systems of differential equations
describing the behavior of grid and solid panels coincide. At the
same time, the formulations of the boundary conditions of the
corresponding boundary value problems coincide.

The scenario of transition of oscillations from harmonic to
chaotic cylindrical panel with two families of edges is
P =45,9,=135", 5,=6,=6, a =&, =a(Fig
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.1). Taking into account dimensionless parameters: u=-—
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x=cx, y=by, w=hw, 5=h5, a=ha,l=hl, wheres -
dissipation factor, p - the density of the panel material,
q=0,Sin(a,t) - external normal load, g,and e,

- its intensity

and frequency, t - time. The equations of motion of the element
of the considered micropolar mesh cylindrical panel will take the
form (the line above the dimensionless variables is omitted):
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Fig.1.Panel mesh geometry.
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Boundary conditions — rigid sealing at all ends of the panel:
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Initial conditions — zero.

The nonlinear partial differential problem in spatial
coordinates is reduced to an ordinary differential problem by the
finite difference method with the second-order approximation of
accuracy. To do this, the derivatives of spatial variables are
replaced by finite central differences. The Cauchy time problem
is solved by the Runge-Kutta method of the fourth order of
accuracy.

3. Scenarios of transition of oscillations of a
cylindrical panel to chaos

To visualize the scenarios of transition of oscillations of a
micropolar mesh cylindrical panel from harmonic to chaotic for
deflection and displacement, the following characteristics were
constructed and analyzed: signal, Fourier spectrum, wavelet 2D
and 3D spectra based on the mother wavelet Morle, phase and
modal portraits, signs of largestLyapunov exponents.

The following is a scenario of transition of oscillations of a
grid cylindrical micropolar panel from harmonic to chaotic
(Table 1-3).

The parameters of the experiment: 1=05,c=b=1,

h=02, ¢=1, 6=a=02, v=03, o©,=5, te[0;512],
g, €[0;200] .From the data collected in the tables it can be seen

that in addition to the characteristics of the deflection, the nature
of the oscillations of the longitudinal waves should be studied,
which will allow a more accurate picture of the nature of the
oscillations of the system. At load amplitude g, = 0.1, the
Fourier power spectrum for the deflection shows harmonic
oscillations, but the Lyapunov exponent for the deflection is
positive. This discrepancy is explained by the fact that the signal
of the displacement function u has a chaotic component at low
frequencies. Harmonics at the same frequencies are present in the
deflection signal, but the Fourier spectrum does not display them.
These frequencies demonstrate the wavelet spectrum, so it is
necessary to consider the Fourier spectrum and the wavelet
spectrum together. As the load increased, a harmonic appeared
in the signal at an independent frequency w,. When the
amplitude of the load gy = 190 phase portrait of the deflection
shows chaotic oscillations and the power spectrum of the Fourier
transform of the oscillations at two frequencies. Thus, to
determine the type of deflection oscillations, it is also necessary
to consider the function of moving by Ox or Qy.

Tablel. The characteristics of the deflection functionw and
the displacement function u
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Table2. The characteristics of the deflection function w and
the displacement function u
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4. Conclution

A mathematical model of nonlinear oscillations of a cylindrical
panel of a grid structure is constructed. For a deep analysis of the
behavior of a micropolar mesh cylindrical panel, it is necessary
to visualize the characteristics of not only the deflection function,
but also the displacement function, as well as to consider the
entire apparatus of nonlinear dynamics in the aggregate.
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