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The mathematical model of the contact interaction of two nanobeams obeying the kinematic hypothesis of the second approximation 

S.P. Timoshenko is constructed. There is a small gap between the nanobeams; an external alternating transverse load acts on the upper 

nanobeam. Nanobeams are isotropic, elastic, and they are connected through boundary conditions. Modified couple stress theory has 

been applied to describe the size-dependent effects of a beam nanostructure. Contact interaction is accounted for by the model B.Ya. 

Cantor. The paper studies the effect of the size-dependent coefficient. The system of differential equations is reduced to the Cauchy 

problem by the finite-difference method with an approximation of 0(h2) in the spatial coordinate. Further, the solution was carried out 

by the Runge-Kutta methods of the 4th order of accuracy in time. The convergence of numerical methods is investigated. The visualization 

of the results obtained by the methods of nonlinear dynamics and using wavelet transforms. 
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1. Introduction 

Nanobeams are the components of structures and devices that 

are subject to external dynamic effects of the most diverse nature. 

Therefore, the nature of their oscillations will largely depend on 

control parameters, such as the size-dependent coefficient and 

the type of load [1]. That is why the study of the nonlinear 

dynamics of beams and their contact interaction was devoted to 

a vast amount of scientific work - from the first approximation 

models of Bernoulli-Euler to the models of the third 

approximation Peleh-Sheremetyev-Reddy. We will choose the 

second approximation model developed by the famous scientist-

mechanic S.P. Timoshenko in the first half of the XX-th century. 

It allows to take into account the lateral shear deformation 

together with the inertia of rotation. 

The aim of this investigation is to study the chaotic dynamics 

and the contact interaction of two nanobeams with a small gap 

between them, described by the model of S.P.Timoshenko, under 

the influence of an external transverse alternating distributed 

load. In the scientific literature there is a huge amount of work 

devoted to the study of full-length beams by S.P. Timoshenko [2, 

4, 9], full-size and nanoscale beams of Euler-Bernoulli [4-6]. In 

[8], nonlinear oscillations of Euler-Bernoulli nanoscale beams 

are studied according to the non-local theory of elasticity. The 

beams described by the Timoshenko model are used in scientific 

works for the aviation industry [7]. An important issue is the 

methods of scientific visualization of the results. 

2.  Mathematical model of Timoshenko S.P. 
nanobeams  

A mathematical model of a two-layer nanostructure has been 

constructed, which consists of two parallel nanobeams. The 

beam nanostructure is under the action of an external transverse 

alternating load 𝑞 = 𝑞0 sin 𝜔𝑝𝑡. The beam structure is shown in 

Fig. 1.  

Nanobeams are described by the kinematic model of the 

second approximation - S.P. Timoshenko. To account for the 

size-dependent coefficients, a modified Yang's theory of 

elasticity was applied [3]. The contact interaction of elements of 

a beam’s nanostructure is taken into account according to the 

Winkler model according to the theory of B.Ya. Cantor. 

 
Fig. 1. The settlement scheme 

 

The system of ordinary differential equations in displacements 

describing the movement of beams with allowance for energy 

dissipation, in a dimensionless form, is given below:
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where 𝑖 = 1,2 – is number of nanobeam, 
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Dimensionless variables (with a dash above) are: 
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In system (1), dashes over dimensionless parameters are omitted 

for ease of recording. To the system of differential equations (1), 

one should add the boundary conditions (clamped-clamped): 
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 𝑖 = 1,2 – is number of nanobeam. 

3. Solution methods 

An infinite-dimensional problem using the finite-difference 

method with an approximation of 0(h2) is reduced to a finite-

dimensional system of ordinary differential equations. Next, the 

Cauchy problem was solved by the Runge-Kutta method of the 

fourth order of accuracy in time. The convergence of numerical 

methods is investigated: the finite differences method depending 

on the number of partitions along the length of the beams and the 

Runge-Kutta method depending on the step. In the finite 

difference method, the number of split points was taken to be n 

= 40, 80, 160, 320, 400 for each of the values of the size-

dependent coefficient 𝑙 = 0, 0.1, 0.3, 0.5. In table 1 shows the 

signals of deflection nanobeam 1 (w1) for the 𝑙 = 0, 0.1, 0.3, 0.5. 

 

Table 1. 

Convergence of the finite difference method. 

Signals w1(t), 𝑙 = 0  Signals w1(t), 𝑙 = 0.1 

  
Signals w1(t), 𝑙 = 0.3 

 

 

The convergence of the finite difference method for the 

problem in question occurs when the number of partitions is n = 

160. Scientific visualization of convergence results obtained 

using mathcad. A further visualization of the study of the contact 

interaction and the nature of the oscillations of the two 

nanobeams was carried out by nonlinear dynamics methods with 

the construction of signals, phase portraits, Fourier power spectra 

and using wavelet analysis. For reliable visualization of the 

results, the Morlet, Gauss 8 - Gauss 32, and Haar wavelets were 

used as the mother wavelet. 

4. Numerical experiment 

We present the results of a numerical experiment for the 

contact interaction of two nanobeams fixed along the edges, 

described by the S.P. Timoshenko model. The amplitude of the 

external transverse load 𝑞0 = 5000, the frequency of external 

excitation 𝜔𝑝 = 5.1, the size-dependent coefficient l =  0.1. The 

initial contact interaction of two nanobeams occurs not in the 

central point, but in the quarters. In this case, a change occurs in 

the nature of the oscillations of nanobeams; two Hopf 

bifurcations are observed. Table 2 shows the 2D Morlet wavelet 

spectra 𝜔(𝑡), phase portraits 𝑤(𝑤̇) and Fourier power spectra for 

the upper (w1) and lower (w2) nanobeams. 

Table 2. 

Dynamic characteristics of nanobeams. 
 the 2D Morlet 

wavelet spectra 

𝜔(𝑡) 

phase portraits 

𝑤(𝑤̇) 

Fourier power 

spectra 
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5. Conclusion 

A mathematical model of the contact interaction of two 

nanobeams with a small gap between them was constructed, 

taking into account the kinematic hypothesis of S.P. 

Timoshenko. The convergence of numerical methods used to 

solve the problem is investigated. It is established that the 

convergence of the finite difference method for the problem in 

question occurs when the number of partitions is n = 160. The 

scientific visualization of the results is based on the construction 

of signals, phase portraits, Fourier power spectra and the use of 

wavelet transforms. It has been established that the Morlet 

wavelet is the most informative for this class of problems, since 

it gives the best frequency localization at every moment in time. 

It is worth noting that the Fourier power spectrum gives a general 

picture of the nature of the oscillations of nanobeams over the 

entire time interval. The proposed approach allows us to study 

the nonlinear dynamics of the contact interaction of two 

nanobeams, with a gap between them, under the influence of an 

external alternating load, depending on the size-dependent 

coefficient. As a result of contact interaction, two Hopf 

bifurcations occur.  
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