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The purpose of this work is to study and scientific visualization the effect of additive white noise on the nonlinear dynamics of beam 

structure contact interaction, where beams obey the kinematic hypotheses of the first and second approximation. When constructing a 

mathematical model, geometric nonlinearity according to the T. von Karman model and constructive nonlinearity are taken into account. 

The beam structure is under the influence of an external alternating load, as well as in the field of additive white noise. The chaotic 

dynamics and synchronization of the contact interaction of two beams is investigated. The resulting system of partial differential 

equations is reduced to a Cauchy problem by the finite difference method and then solved by the fourth order Runge-Kutta method. 
Keywords: nonlinear dynamics, contact interaction, chaotic phase synchronization, white noise. 

 

1. Introduction 

 The mechanics of contact interaction is one of the most 

rapidly developing topics of the mechanics of a deformable solid 

and is widely used in various fields of science [2, 4, 5]. A 

mathematical model of the contact interaction of two beams, 

described by the kinematic hypotheses of the first and second 

approximations [1], was constructed. An external alternating 

load and a white noise field affect one of the beams. Using the 

means of scientific visualization of the results of mathematical 

modeling, the nonlinear dynamics of the contact interaction of 

the beam structure located in the field of additive white noise is 

studied. 

2. Statement of the problem 

Geometric nonlinearity of beams was adopted according to 

the model of T. von Karman, the contact interaction is described 

by the B.Ya.Kantor model [3]. The equations of motion, 

boundary and initial conditions are obtained from the Hamilton-

Ostrogradsky energy principle. Beam 1 obeys the kinematic 

hypothesis of the first approximation (Euler-Bernoulli model) 

under the action of transversal load and white noise, beam 2 is 

described by the kinematic hypothesis of the second 

approximation (Timoshenko model). The study of nonlinear 

dynamics is based on the study of phase portraits, wavelet and 

Fourier spectra, signals, chaotic phase synchronization, 

Lyapunov indicators. The values of the highest Lyapunov 

exponent are calculated by three methods: using the Kantz, Wolf 

and Rosenstein algorithm. 

The equations of beams motion will take the form: 
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2,1i  - are serial number of beams. 
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  are the 

nonlinear operators, xi  -is lateral shift function, iw , iu  – are 

functions of deflection and displacement of beams, respectively, 

К– stiffness coefficient of transversal compression of the 

structure in the contact zone, kh  – the gap between the beams, 

the thickness of the beams 1b , 1  - damping coefficient, 

 h

a

2
  - beam geometry parameter. 

The boundary conditions in the case of rigid pinching and the 

initial conditions should be added to equations (1). 

For the beam described by the hypothesis of the first 

approximation, the boundary conditions (2) and the initial 

conditions (3): 
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For the beam described by the hypothesis of the second 

approximation, the boundary conditions (4) and the initial 

conditions (5): 
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Beam 1 is affected by a distributed transverse alternating load 

of the form, additive white noise is added to the system of 

equations in the form of a random term with constant intensity 

)0.165535/(()*0.2(0  randPnPn , 0Pn  — is the noise 

intensity; rand() — standard C++ function that accepts a random 
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integer value from 0 to 65535. This model was calculated using a 

program written in C++. Visualization and analysis of the results 

was carried out on the basis of the MathCad and MATLAB 

programs. 

Pntqq  )sin(0  ,  (6) 

where   - is load frequency; q  - is load amplitude; Pn - 

random term with constant intensity. The resulting system of 

partial differential equations is reduced to an Ordinary 

Differential Equation system by the finite difference method 

with a second-order approximation. The obtained Cauchy 

problem is solved by the Runge-Kutta method. 

3. Results of a numerical experiment 

We present the results of a study of the nonlinear dynamics 

of contact interaction of a beam structure in a white noise field, 

where beam 1 is described by the Euler – Bernoulli hypothesis, 

beam 2 is subject to Timoshenko’s hypothesis (Fig. 1). 

 
Figure 1. Beams structure 

 

Table 1 

Dynamic characteristics of beams

0,1400,1,0,50 00  nk Pqh
 

Beam 1 Beam 2 

Powerspectru

m 

Phase portrait Powerspectru

m 

Phase 

portrait 

    
Wavelet spectrum Wavelet spectrum 

  
Phasesynchronization 

 
Lyapunov exponents 

1.Wolf=-0,020421 

2.Rosenstein=-0,075380 

3.Kantz=-0,021757 

1.Wolf=-0,020456 

2.Rosenstein=-0,054964 

3.Kantz=-0,063093 

The first contact of the beams occurs under load 0q =800.  

Increasing the load to 1400 (Table 1) leads to a change in the 

frequencies of the beams, on the power spectrum of the beam 1 

there is one frequency: 1,5p . On the power spectrum of 

beam 2, there are no pronounced frequencies. 

The oscillations of the system at a given load are harmonic, 

chaos is not observed, as evidenced by phase portraits, wavelet 

spectra portrait of phase synchronization, as well as Lyapunov 

exponents, calculated by three different methods (Wolf, 

Rosenstein, Kantz) are negative. 

Table 2 

Dynamic characteristics of beams

1,1400,1,0,50 00  nk Pqh
 

Beam 1 Beam 2 

Power 

spectrum 

Phase portrait Power 

spectrum 

Phase 

portrait 

    

Wavelet spectrum Wavelet spectrum 

 
 

Phase synchronization 

 
Lyapunov exponents 

1.Wolf=0,00421 

2.Rosenstein=0,05380 

3.Kantz=0,01757 

1.Wolf=0,00456 

2.Rosenstein=0,05964 

3.Kantz=0,03093 

When adding a noise component (Table 2), the dynamics of 

the structure changes. 

The power spectrum of beam 1 contains five frequencies.:

1,5,
11

5
,

6

4
,757.0,

11
4321  p

ppp









 .Two 

frequencies 2 , p - are linear independent, and other 

frequencies are their linear combinations. 

The power spectrum of beam 2 contains four frequencies.:

1,5,
16

14
,82.1,

100

12
765  p

pp






 .Two frequencies  

6 , p -are linear independent, and other frequencies are their 

linear combinations. 

When adding a noise component, the system went into a 

chaotic state, which is visible in the wavelet spectra and in the 

phase synchronization portrait, as well as in Lyapunov’s 

indicators. 

The transition of the system to chaos occurred through the 

scenario of Ruel-Takens-Newhouse.

  



Table 3 

Dynamic characteristics of beams

0,55000,1,0,50 00  nk Pqh
 
 

Beam 1 Beam 2 

Power 

spectrum 

Phase portrait Power 

spectrum 

Phase 

portrait 

    
Wavelet spectrum Wavelet spectrum 

  
Phase synchronization 

 
Lyapunov exponents 

1.Wolf=0,00926 

2.Rosenstein=0,04083 

3.Kantz=0,04083 

1.Wolf=0,00875 

2.Rosenstein=0,05534 

3.Kantz=0,02858 

 

At 0q  = 55000 (Table 3) the power spectrums of beam 1 and 

beam 2 contains five frequencies:

1,5),(2,
5

3
,12.2,

5
313121110  pp

pp






 .  

At 0q =55000, t>100 frequency synchronization occurs:

p ,, 21 . 

With an increase in the amplitude of the forced oscillations, 

the character of the beam signals changes from quasi-periodic to 

chaotic.  

We can observe the scenario of Ruel-Takens-Newhouse. 

Wavelet spectra visualization allow you to see the change in the 

nature of oscillations of beams in time. 

In Table 4, when adding white noise Pno=1, visual, and 

therefore qualitative changes in the dynamics of the model were 

not detected.  

The power spectrums of beam 1 and beam 2 contains five 

frequencies described above.  

Note that in this case the influence of the noise load 

practically did not affect the nonlinear dynamics of the contact 

interaction of the beams.  

An increase in the amplitude of white noise does not lead to 

a change in the scenario of transition of oscillations into chaotic.  

In Tables 5 and 6, we compare the Fourier spectra and signals 

without a white noise field and with noise, respectively. 

 

 

 

Table 4 

Dynamic characteristics of beams

1,55000,1,0,50 00  nk Pqh  

 

Beam 1 Beam 2 

Powerspectru

m 

Phase portrait Powerspectru

m 

Phase 

portrait 

    
Wavelet spectrum Wavelet spectrum 

  
Phasesynchronization 

 
Lyapunov exponents 

1.Wolf=0,00926 

2.Rosenstein=0,04083 

3.Kantz=0,04083 

1.Wolf=0,00875 

2.Rosenstein=0,05534 

3.Kantz=0,02858 

 

Table 5 

Dynamic characteristics of beams

1400,1,0,50 0  qhk  

 

Signals 

 
Power spectrumW1 Power spectrumW2 

  
 



Table6 

Dynamic characteristics of beams

55000,1,0,50 0  qhk  

Signals 

 
Power spectrum W1 Power spectrum W2 

  
Visualization of signals and power spectra allows to visually 

see (Table 5 and Table 6) the qualitative changes in the vibrations 

of the beam structure, under the influence of an external 

alternating load of different intensity and white noise.
 

4. Conclusion 

A mathematical model of the contact interaction of two 

geometrically non-linear beams, described by the kinematic 

hypotheses of the first and second approximation, is constructed. 

Data visualization made it possible to compare signals, phase 

synchronization, phase portraits and identify features of the 

dynamics of contact interaction of the studied beam structure. 

One of the structure beams is under the influence of an external 

distributed alternating load and in the field of white additive 

noise. The effect of the intensity of the noise component (Pn) on 

the amplitude-frequency characteristics of the beams was 

investigated. A numerical experiment was performed for Pn = 

0.1; 0.5; 1, with the same characteristics of the external 

alternating load. With small amplitudes of forcing vibrations 

(q0<10000), the presence of additive white noise with intensity 

Pn = 1 significantly changes the nonlinear dynamics of the 

structure under study and leads to a transition of system 

oscillations from harmonic to chaotic. When Pn = 0.1;0.5 the 

influence of white noise is not significant and can be neglected. 

At q0> 12000, the effect of additive white noise is less obvious. 

This is due to the fact that the system is already in a chaotic state. 

The influence of additive white noise on the scenario of transition 

from harmonic to chaotic oscillations is investigated. Using 

scientific data visualization shown it is shown that the 

consideration of the noise component does not affect the scenario 

of transition of oscillations to chaotic ones. The transition to 

chaotic oscillations occurs according to the scenario of Ruel-

Takens- Newhouse. The phenomenon of a decrease in the noise 

component under the action of additive white noise was found 

(Table 6). 
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