
Examination of the Nvidia RTX
V.V. Sanzharov1, A.I. Gorbonosov3, V.A. Frolov2,3, A. G. Voloboy2

vsan@protonmail.com|alexey.gorbonosov@graphics.cs.msu.ru|vova@frolov.pp.ru|voloboy@gin.keldysh.ru
1Gubkin Russian State University of Oil and Gas, Moscow, Russia;
2Keldysh Institute of Applied Mathematics RAS, Moscow, Russia;

3Moscow State University, Moscow, Russia

Hardware acceleration of ray tracing is an active research field, but only with the release of Nvidia Turing
architecture GPUs it became widely available. Nvidia RTX is a proprietary hardware ray tracing acceleration
technology available in Vulkan and DirectX APIs as well as through Nvidia OptiX. Since the implementation
details are unknown to the public, there are a lot of questions about what it actually does under the hood. To
find answers to these questions, we implemented classic path tracing algorithm using RTX via both DirectX and
Vulkan and conducted several experiments with it to investigate the inner workings of this technology. We tested
actual hardware implementation of RTX technology on RTX2070 GPU and the software fallback in the driver on
GTX1070 GPU. In this paper we present results of these experiments and speculate on the internal architecture of
RTX.

Keywords: photo-realistic rendering, ray tracing, hardware acceleration, GPU

1. Introduction

Ray tracing is a cornerstone of photo-realistic
image synthesis. Since first papers on ray tracing
[19], [5], computer graphics researchers developed a
plethora of different techniques to somehow acceler-
ate the computations associated with ray tracing.

The hardware acceleration ray tracing had limited
success out of research papers. Until the RTX tech-
nology by Nvidia was released in their Turing archi-
tecture GPUs. It was stated that Turing hardware
contains special so-called «RT cores» which acceler-
ate ray tracing. In the official Turing architecture
whitepaper [22] it is stated that RT core contains two
units which perform bounding box and ray-triangle
intersection tests. But since RTX is closed source,
we don’t know for sure how exactly it is implemented
and if this is all that is to ray tracing acceleration in
Turing GPUs. In this paper, we present information on
several experiments we did with an RTX GPU. We
analyze the experiments’ results and speculate on pos-
sible techniques used in RTX hardware to accelerate
ray tracing. But first of all, let’s review the research in
ray tracing acceleration hardware to understand what
techniques were already tried out in hardware imple-
mentations and how well did they perform.

1.1 Related work in ray tracing acceleration
hardware

First dedicated hardware solutions closely related to
ray tracing were PCI cards for volume data visu-alization
which implemented ray casting and Phong shading (such
as [9, 12]). Even though these hard-ware traced only
primary rays, it already implemented techniques to
increase the efficiency of parallel tracing such as grouping
rays to make use of memory access coherence [9].
Another notable product was SaarCOR architecture [13]
and its updated version in an FPGA chip [14]. The
SaarCOR chip implemented the whole

ray tracing algorithm - scene and camera data were
uploaded from the host and the chip produced the ren-
dered image. Like the ray casting solutions, SaarCOR
used packet tracing (in groups of 64 rays). The archi-
tecture was fully pipelined to further mitigate memory
access latency - simultaneously traversing one group of
rays, loading data for the next group and intersec-tion
operation performed on another group of rays. An
example of ray tracing hardware which was com-
mercially available is ART AR250/350 rendering pro-
cessor with a custom RISC processor core [4]. The
solution was used to accelerate offline rendering and
was packaged as x86 PC with 16, 36 or 48 render-
ing processors as PCI-X cards and gigabit networking
system. Software side included RenderMan compli-
ant renderer and network communication interfaces
and plugins for 3D applications (CATIA, 3ds Max,
Maya). Details about the custom rendering processor to
our knowledge were never published.

All works mentioned to this point concern fixed
function hardware. One of the first solutions with
programmable stages is RPU (ray processing unit)
[20]. The traversal and primitive intersection tasks
are implemented in fixed function units. RPU sup-
ported custom shaders with features such as recur-
sive function calls, trace instruction to initiate tracing of
an arbitrary ray, asynchronous load instruction to hide
memory latency. RPU also featured geometry shaders,
instancing support and shader tables to look up specific
shader to execute for a particular geome-try object.
As SaarCOR and ray casting solutions, RPU also uses
packet ray-tracing which can result in performance
drops in the case of incoherent rays. The TRaX
architecture [16] implements a different solution -
many identical cores consisting of simple thread
processors. It can be viewed as general pur-pose
architecture and is used in other papers to simu-late their
hardware [7]. In the ray-tracing application TRaX
accelerates single ray performance and features MIMD
execution model as opposed to groups of 4 or

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

more rays and SIMD model in previously mentioned
architectures. The authors in [10] aimed to address
problems with incoherent rays by using N-wide SIMD
processing architecture with filtering of rays to find
coherent groups. The filtering is applied at traver-sal,
intersection and shading stages of the ray tracing
algorithm.

In [1] authors simulate architecture close to that of
Nvidia Fermi GPU. One of the key aspects of it
(related to ray tracing) is work compaction. When a
warp (group of 32 threads) has more than a half of rays
terminated, it terminates and the non-terminated rays are
copied to the next warp. This mechanism allows to
mitigate the effect of incoherent rays and preserve the
parallelism. Another suggestion in this work is related
to stack memory layout for threads. Also [1]
implements the idea of partitioning BVH into treelets
(which approximately matches cache sizes) and group-ing
rays according to treelets they intersect. Another
architecture - STRaTA [7] is built on top of the TRaX
[16] and implements modified treelet technique of [1]
and streaming approach to processing rays associated
with each treelet. STRaTA adds special small buffers to
memory hierarchy to store rays.

In [15] authors focus on improvements related to
memory access, in particular, completely avoiding
random memory access during ray traversal. Their
approach is based around presenting data needed for ray
tracing in two streams - stream of geometry data split
in segments and stream of rays collected as a queue
per geometry segment they intersect. This al-lows for
fetching geometry and rays from main mem-ory into
caches before they are needed for traversal.

Work [6] in addition to MIMD execution model
and treelets proposes using reduced precision BVH
traversal which also allows for chip area and power
savings. Another specific point of [6] is that au-
thors propose small solution which can be integrated
into existing GPU architecture. There are also works
focused on developing mobile ray tracing hardware
(such as [8, 11]). These solutions usually have such
common properties as MIMD execution model, hard-
ware traversal and intersection units. Raycore [11] has
distinctive properties that separate it from other ar-
chitectures - it’s fully fixed function Whitted-style ray
tracing [19], it uses kD-tree as acceleration structure
and includes hardware unit for kD-tree construction.

Summary. Overall, quite a few different architec-
tures and hardware acceleration techniques for ray
tracing were proposed over the years. Detailed re-
view and comparison can be found in [2]. Some of the
mentioned architectures had been implemented in FP-
GAs. Production level hardware applications besides
Nvidia RTX are represented by [4] and mobile GPUs by
Imagination technologies [21]. However, both of
those have no published details, [4] is discontinued
and [21] is not yet available. Therefore, RTX is the
first hardware ray tracing acceleration technology to

reach wide public. But since the implementation de-
tails are closed (like [4, 21]), it is unclear how exactly
does it work and what acceleration techniques it uses. In
this paper, we aim to understand the principles be-hind
ray tracing acceleration in Nvidia RTX hardware by
measuring the performance in several scenarios us-ing
Vulkan and DirectX12 API.

2. Experimental analysis of Nvidia RTX

First let’s briefly review available information
about inner workings of RTX. Access to RTX ray
tracing functionality is available through Vulkan API,
Microsoft DirectX 12 (DXR) and Nvidia OptiX API
libraries [23]. We used both Vulkan and DirectX 12
for our experiments.

2.1 Known details

In summary, for both graphics APIs the corre-
sponding extensions add functionality to create ray
tracing pipeline with the corresponding new shader
types, commands and objects for acceleration struc-
tures, and tools to associate shader groups with accel-
eration structures (i.e. shader binding table).

Acceleration structure is represented as two-level
tree. Bottom level acceleration structure (BLAS) ob-
jects contain actual vertices and top level acceleration
structure (TLAS) contains BLAS object instances i.e.
transformation matrices. The building process is done on
the GPU, acceleration structure is some form of BVH
[17].

Ray tracing pipeline has five shader types - ray
generation, miss, closest hit, any hit and intersection.
Shader programs of first three types are mandatory
and the last two are optional. All stages of ray tracing
algorithm are programmable. There is built-in ray-
triangle intersection shader which is used by default.
Official whitepaper [22] states that RT core has ray-
triangle intersection unit inside. In [18] authors show
2-3.5 times improvement in performance of their algo-
rithm of point location in tetrahedral meshes when us-ing
built-in triangle intersection unit on Turing hard-ware
while Volta hardware (which has no RTX cores, so
software fallback is used for RTX functionality)
shows performance loss in the same scenario.

2.2 Experiments

To understand how RTX works under the hood we
conducted several experiments. As a base for our
investigations we implemented a basic path tracing
algorithm [5] and compare it to Open Source imple-
mentation of path tracing in Hydra Renderer [24].

Implementation of a minimal path tracer using
RTX in Vulkan or DirectX 12 would require devel-
oper to:
1. build acceleration structures using ray tracing extension

API;

2. create ray tracing pipeline containing at least ray
generation, closest hit and miss shader programs;

3. create shader table to bind shader programs to ac-
celeration structures;

4. create and execute command buffers on created
pipeline.

There are several design options even in the minimal
implementation using RTX which can potentially affect
performance. For example, the shading and lighting
code can be executed in a ray generation shader, in
a single (closest) hit shader or in several hit shaders.
We tested two different implementations according to
best practices of RTX for Vulkan and DX12:

1. impl_1 (Vulkan): ray generation shader creating
ray(s) for each pixel in a cycle until the specified
tracing depth is reached;

2. impl_2 (DirectX): ray generation shader spawning
primary ray and closest hit shader taking care of
generating rays until specified depth is reached. To
measure performance in all our experiments we

used Nvidia Nsight Graphics software and 2 GPUs—
GTX1070 and RTX2070. It is known that while
RTX2070 has hardware acceleration for ray tracing,
GTX1070 has software implementation of RTX. Using
this setup we captured frames from our path tracing
application and logged time spent by vkCmdTraceR-
aysNV (Vulkan) or DispatchRays (DirectX 12) func-
tion and «BVH4TraversalInstKernel» kernel in Hy-dra
Renderer. In our first set of experiments we ran
implemented path tracer on three scenes (Sponza,
CrySponza, Hairballs) with different tracing depth.
From measured time we calculated frames per second
and approximate amount of rays traced per second as:

rays = width ∗ height ∗ spp ∗ fps (1)

width, height – rendering resolution, spp – samples per
pixel, fps – frames per second.

scene primary secondary tertiary
Sponza, impl_1 807 437 806
Sponza, impl_2 928 777 694

Sponza, Hydra_SW 480 122 130
Crysponza, impl_1 806 419 388
Crysponza, impl_2 754 635 216

Crysponza, Hydra_SW 276 92 80
Hairballs, impl_1 275 223 256
Hairballs, impl_2 567 155 141

Hairballs, Hydra_SW 61 50 56

Table 1. Million rays traced per second (Mrays/s), 1
sample per pixel, 1024 x 1024 resolution, RTX2070

Fig. 1. Time spent by ray tracing "draw call" per frame (1
sample per pixel, 1024 x 1024 resolution) depending on

rays traced per depth level. Depth = 3

Next, we modified impl_2 with tracing several rays at
each depth level essentially transforming it into an
implementation of branched (recursive) path tracing. As
can be seen in fig. 1, the time increases consis-tently
with the number of rays, even slower in some cases.
For example, with 4 rays per depth level the total
number of rays is 7 times higher than for 1 ray per
depth level (21 against 3). And the performance drop is
6 times for Sponza and 3.6 for Hairballs.

3. Results and discussion

Conclusion #1: Nvidia RTX is primarily aimed at
accelerating random access to memory during ray
tracing. More specifically, traversing BVH tree with a
sets of random rays. This conclusion stems from (fig 2,
right), where we can see that hardware implemen-tation
on the small scene (Sponza) wins only 2 times (477 vs
1140) with «coherent» and «sorted» sets of primary
rays. But breaks away 4-5 times for the same Sponza
and incoherent rays (122 vs 561). Moreover, large
scene (Hair Balls) shows same 4-5 times for both
primary (58 vs 283) and secondary (50 vs 210) rays.
The fact that acceleration is preserved on the scene
where the bottleneck is the memory confirms our con-
clusion.

Conclusion #2: Nvidia RTX implements some ray-
grouping/ray-sorting. It’s done probably in
combination with GPU work creation (see conclusion
#4). This assumption is confirmed by the fact that on
simple scenes (like Sponza) hardware implementa-tion
doesn’t have significant performance drop when we
move from primary to secondary rays (table 1, fig1).
At the same time software implementation sees its
performance degrade much faster. However, on the
scene where ray grouping could not help (Hair balls),
both hardware and software implementation don’t have
significant performance difference between primary and
secondary rays.

Fig. 2. Comparison on GTX1070 (left) and RTX2070 (right) (Open Source implementation vs Nvidia RTX). The left part
of each image (green) shows performance for primary (coherent) rays, and the right part (red) for secondary (random)

rays.

Sponza (66K tris) Hair Balls (224M tris)Cry Sponza (262K tris)

Fig. 3. Test Scenes

Fig. 4. Supposed internal architecture of Nvidia RTX. According to the results of our experiments, the hardware
implementation should be closely connected with the texture units, or it is part of texture unit. We believe the most
interesting part is related to reordering of memory access and thus it should work in analogue to well known memory

access reordering inside texture units. In this way, traversal unit itself could be small enough and probably implements
reduced precision BVH traversal [6] (or some analogue) for better cache efficiency and reducing HW cost.

Conclusion #3: Despite the Nvidia attempt,
placing the whole code in a single kernel («CPU
style» or «uber kernel») is still inefficient for GPUs.
We make such conclusion because of 2 main reasons.
First, open source implementation with separate ker-nel
in Hydra Renderer benefits almost 2 times over
Nvidia RTX for pure software case (fig. 2, left). Sec-
ond, when comparing 2 slightly different implementa-
tions of RTX in Vulkan and DX12 we have found dra-
matic changes in performance depending on a slight
change in the complexity of shaders in
«impl_1» (more complex) vs «impl_2» (simpler), table
1. This can be explained by occupancy drop
depending on code complexity and register pressure.

Conclusion #4: Nvidia RTX uses GPU work cre-ation
for rays. This conclusion is confirmed by simple
observation. When we generated random amount of
rays (10 to 40), we got 2 times slower in comparison
with 10 rays. In contrast to ray tracing, when we cal-
culated Perlin Noise with random noise function calls
(10 to 40), we got exactly 4 times of what we should
have without GPU work creation. Our experiment
with recursive ray tracing (fig.1) also confirms GPU
work creation presence since the time is proportional to
the number of rays.

4. Final conclusion

Our main conclusion is that Nvidia RTX is some
sort of «general» technology, oriented to speeding up
random memory access and irregular work distribu-
tion on GPUs. In this way we can expect in near fu-
ture different sets of algorithms (at least some spatial
search algorithms) to be hardware accelerated.

We believe Nvidia puts a lot of efforts in their com-
piler and software support of GPU work creation. On
the example of this technology we can see, that «the
golden age of software» has ended and the «the golden
age of compilers and HW/SW projects» has started.

Despite the overall complexity of Vulkan and
DX12, such improvements make GPU implementation of
complex rendering engine much simpler for devel-oper.
On the other hand, this simplicity is achieved at the
cost of tying the project to a fairly heavy tech-nology.
We believe that efficient software implemen-tation of
RTX will be complex and expensive due to GPU work
creation and specific compiler that Nvidia puts inside
RTX — even Nvidia’s software implemen-tation on
GTX1070 essentially loses to simple and
straightforward open source ray tracing implementa-tion
in Hydra Renderer.

5. Acknowledgments

This work was sponsored by RFBR 18-31-20032
grant.

6. References
[1] Aila T., Karras T. Architecture considerations for tracing
incoherent rays //High-performance Graphics.

– Eurographics Association, 2010. – p. 113-122.
[2] Deng Y. et al. Toward real-time ray tracing: A survey on

hardware acceleration and microarchitecture tech-niques //
ACM Computing Surveys (CSUR). – 2017. –�. 50. – №. 4.
– p. 58.

[3] Gribble C. P., Ramani K. Coherent ray tracing via
stream filtering //2008 IEEE Symposium on Interac-tive
Ray Tracing. – IEEE, 2008. – p. 59-66.

[4] Hall. D. The AR350: Today’s ray trace rendering
processor. //Eurographics/SIGGRAPH workshop on
Graphics hardware - Hot 3D Session 1, 2001

[5] Kajiya J. T. The rendering equation //ACM SIG-GRAPH
computer graphics. – ACM, 1986. – �. 20. –№. 4. – p.
143-150.

[6] Keely S. Reduced precision hardware for ray tracing.//Proc.
HPG. – 2014. – p. 29-40.

[7] Kopta D. et al. An energy and bandwidth efficient ray
tracing architecture //High-performance Graphics. –ACM,
2013. – p. 121-128.

[8] Lee W. J. et al. SGRT: A mobile GPU architecture for
real-time ray tracing //High-performance graphics
conference. – ACM, 2013. – p. 109-119.

[9] Meißner M. et al. VIZARD II: a reconfigurable inter-
active volume rendering system //ACM Eurographics conf.
on Graphics hardware. – Eurographics Associa-tion,
2002. – p. 137-146.

[10] Nah J. H. et al. T&I engine: traversal and intersection
engine for hardware accelerated ray tracing //ACM
Transactions on Graphics (TOG). – ACM, 2011. – �.
30. – №. 6. – p. 160.

[11] Nah J. H. et al. RayCore: A ray-tracing hardware ar-
chitecture for mobile devices //ACM Transactions on
Graphics (TOG). – ACM, 2014. – �. 33. – №. 5. – p. 162.

[12] Pfister H. et al. The VolumePro real-time ray-casting
system. //Computer graphics and interactive tech-
niques. – N.Y.: Association for Computing Machinery.
– 1999. – p. 251-260.

[13] Schmittler J., Wald I., Slusallek P. SaarCOR: a hard-
ware architecture for ray tracing //ACM SIGGRAPH conf.
on Graphics hardware. – Eurographics Associa-tion,
2002. – p. 27-36.

[14] Schmittler J. et al. Realtime ray tracing of dy-
namic scenes on an FPGA chip //ACM SIG-
GRAPH/EUROGRAPHICS conf. on Graphics hard-ware.
– ACM, 2004. – p. 95-106.

[15] Shkurko K. et al. Dual streaming for hardware-
accelerated ray tracing //High Performance Graphics.
– ACM, 2017. – p. 12.

[16] Spjut J. et al. TRaX: A multi-threaded architecture
for real-time ray tracing //Symposium on Application
Specific Processors. – IEEE, 2008. – p. 108-114.

[17] Stich M. Real-time raytracing with Nvidia RTX,
GTC EU 2018

[18] Wald I. et al. RTX Beyond Ray Tracing: Exploring
the Use of Hardware Ray Tracing Cores for Tet-Mesh
Point Location. Authors’ Preprint — to be presented at
High-Performance Graphics 2019

[19] Whitted T. An improved illumination model for shaded
display //ACM SIGGRAPH – ACM, 1979. –�. 13. – №. 2.
– �. 14.

[20] Woop S., Schmittler J., Slusallek P. RPU: a pro-
grammable ray processing unit for realtime ray trac-

ing //ACM Transactions on Graphics (TOG). – ACM,
2005. – �. 24. – №. 3. – p. 434-444.

[21] Imagination technologies. PowerVR Ray Tracing.
2019. URL = https://www.imgtec.com/graphics-
processors/architecture/powervr-ray-tracing/

[22] Nvidia Turing architecture whitepaper. 2019
URL = https://www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

[23]

[24]

[25]

Nvidia RTX Ray tracing developer resources. 2019
URL = https://developer.nvidia.com/rtx/raytracing Ray
Tracing Systems, Keldysh Institute of Applyed
Mathematics, Moscow State Uiversity. Hydra Ren-
derer. Open source rendering system. 2019 URL =
https://github.com/Ray-Tracing-Systems/HydraAPI Vulkan
specification. 2019 URL = https://
www.khronos.org/registry/vulkan/specs/1.1-extensions/
html/vkspec.html

