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In the present study, 45 patients with schizophrenia syndromes and 39 healthy subjects are studied with electroencephalogram 

(EEG) signals. The study groups were of different genders. For each of the two groups, the signals were analyzed using 16 EEG 

channels. Multiscale entropy, Lempel-Ziv complexity and Lyapunov exponent were used to study the chaotic signals. The data were 

compared for two groups of subjects. Entropy was compared for each of the 16 channels for all subjects. As a result, topographic 

images of brain areas were obtained, illustrating the entropy and complexity of Lempel-Ziv. Lempel-Ziv complexity was found to be 

more representative of the classification problem. The results will be useful for further development of EEG signal classification 

algorithms for machine learning. This study shows that EEG signals can be an effective tool for classifying participants with symptoms 

of schizophrenia and control group. It is suggested that this analysis may be an additional tool to help psychiatrists diagnose patients 

with schizophrenia. 
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1. Introduction

Schizophrenia is associated with disorders in the lobes and 

areas of the brain, which are responsible for information 

processing, temporary memory and executive functions [3]. The 

diagnosis of schizophrenic spectrum disorders and other 

psychotic disorders is challenging. The scientific community is 

constantly working to integrate the latest clinical and scientific 

advances in the field of psychiatry into diagnostic and statistical 

manuals. [5] 

However, quantifying and evaluating abnormalities in the 

cerebral cortex can help to understand the mechanisms of such 

psychotic disorders. Recent advances in the area of analysis of 

complexity of time series provide insights into nonlinear 

electroencephalogram (EEG) signals. [1]. The complexity of 

time series can be investigated by using several measures, for 

instance, Approximate Entropy or Sample Entropy - SampEn. 

Traditional entropy-based algorithms quantitatively determine 

the regularity (ordering) of a time series. Entropy rises as the 

degree of irregularity increases and is maximum for completely 

random systems. However, an increase of entropy is not always 

associated with an increase of dynamic complexity. For 

example, randomized time series have a higher entropy than the 

original time series, since the process of generating of surrogate 

data reduces the correlation and worsens the information content 

of the original signal. 

It is worth noting that many methods have been developed 

for estimating the complexity of time series based on entropy 

presented in the review [6], but preference is given to Multiscale 

Entropy - MSE. Multiscale entropy relies on sample entropy 

calculations at different scales: the MSE algorithm uses the 

SampEn algorithm to analyze time series that represent the 

system dynamics at various levels. Multiscale entropy has 

become the predominant method for quantifying the complexity 

of signals. This method has been successfully used in various 

fields of research, including biomedical time series [2]. The 

disadvantages of this method include: a discrete representation 

of a signal of continuous nature (significantly affects on the 

entropy estimate), signal length, presence of noise, selection of 

parameters (length of the analyzed sequence, cell size of the 

phase space). 

Another common method for estimating of the complexity 

of EEG signals is the Lempel – Ziv complexity - LZC. This 

method is non-parametric, model-independent and easily 

calculated. In addition, it does not require long time series [12]. 

The LZC algorithm provides more reliable results for short 

signal segments, which is important in most experimental and 

clinical studies [4]. 

The oscillatory character by virtue of EEG is indicated of 

the hypothesis that EEG signals originate from a nonlinear 

dynamic system. Therefore, the unpredictability of the EEG can 

be considered as a phenomenon characterized by randomness. 

The essential property of chaotic dynamics is the so-called 

sensitive dependence on the initial conditions. This property can 

be quantified by calculating the first positive Lyapunov 

exponent (L1) in the system [8]. Studies [10] showed that 

patients with schizophrenia, the values of Lyapunov's senior 

exponent were lower in the left lower frontal and anterior 

temporal areas compared with the control group. 

The purpose of this study is to compare the signal 

complexity estimates obtained by the MSE, LZC methods and 

the Lyapunov senior exponent. It is suggested that nonlinear 

EEG analysis can be a useful tool in the analysis of EEG data 

for studying the neurodynamics of the brain of patients with 

schizophrenia. 

 

2. Methods. 

2.1. Subject of research. 
Two EEG data archives were analyzed for two groups of 

subjects [http://brain.bio.msu.ru/eeg_schizophrenia.htm]. The 

subjects of the survey were adolescents who were tested by a 

psychiatrist and divided into two groups: healthy (n = 39) and 

with symptoms of schizophrenia (n = 45). Each file contains an 

EEG record for one subject. Each TXT file contains a column 

with EEG samples from 16 EEG channels, according to Fig.1. 

Signals were recorded by channels: 'F7', 'F3', 'F4', 'F8', 'T3', 'C3', 

'Cz', 'C4', 'T4', 'T5', 'P3', ' Pz ',' P4 ',' T6 ',' O1 ',' O2 '. Each 

number in the column represented the EEG amplitude (𝜇𝑉) on a 

separate sample. The first 7680 samples represent 1 channel, 

then 7680 - channel 2, etc. The sampling rate is 128 Hz, so 7680 

samples correspond to 1 minute of EEG recording. 

2.2. Multiscale Entropy 
The entropy calculation method MSE was presented in [2]. 

For a given discrete time series {𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁} , the 

sequence is determined from the simplified time series {𝑦(𝜏)}  

with respect to the scaling parameter𝜏. The original time series 

is divided into non-overlapping windows with a length 𝜏, and 

then the values are averaged for each window. Thus, each 

element of the simplified time series is calculated by the formula 

𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖 ,   1 ≤ 𝑗 ≤ 𝑁/𝜏.

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

 

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



 

 

 

 
Fig. 1. Configuration diagram of electrodes on the surface of 

head 

For the first scale, the time series {𝑦(1)} is equivalent to the 

original time series. The length of each time series corresponds 

to the length of the original time series divided by the scaling 

parameter 𝜏. 

The calculation of the quantitative measure of entropy 𝑆𝐸  

for each simplified time series is made by the formula 

 

𝑆𝐸(𝑚, 𝑟, 𝑁) = 𝑙𝑛
∑ 𝑛𝑖

′𝑚𝑁−𝑚
𝑖=1

∑ 𝑛𝑖
′𝑚+1𝑁−𝑚

𝑖=1

, 

where 𝑚 – the increment of the length of the data vector, 𝑟 – the 

cell size of the phase space (inaccuracy), 𝑛𝑖
′𝑚 –  the probability 

of repeating a sequence of data of a given length in the original 

data. 

 

2.3. Lempel – Ziv complexity 
Lempel and Ziv proposed a measure of the complexity of 

patterns for sequences of finite length [9]. Later, Kaspar and 

Shuster developed an algorithm for computing the LZC on a 

computer that determined the measure of complexity [7]. LZC 

calculates the number of new images, i.e. segments that are not 

consistently represented in all previous data. In this algorithm, 

the EEG signal {𝑥(𝑛)} is converted into a binary sequence 
{𝑠(𝑛)} by comparing with the average value of the signal 𝑚. 

After receiving a binary sequence, the corresponding measure 

of complexity 𝑐(𝑛) is increased by one until a new sequence is 

detected. The process of searching for sequences is repeated 

until the last character of the time series is read. LZC is defined 

as 

𝐿𝑍𝐶 = 𝑐(𝑛)/𝑏(𝑛), 
где 𝑏(𝑛) = 𝑛/𝑙𝑜𝑔2(𝑛). 

 

2.4. Lyapunov exponent. 
Lyapunov exponent give an estimate of the average 

exponential divergence or convergence of nearby trajectories in 

the phase space. Obtaining a positive value of the Lyapunov’s 

exponent is characterized by dependence on the initial 

conditions and shows that the system of interest is chaotic. 

To calculate the Lyapunov senior exponent. L1, a modified 

version of the Wulf algorithm was used [11]. Essentially, the 

tangent vectors to points on the reference path are approximated 

by difference vectors in the phase space. The Wulf algorithm is 

based on the fact that the time series is normalized to match the 

equilibrium state to zero. Next is the reconstruction of the 

trajectory in the phase space. After that, with some step for the 

coordinate vector of the reconstructed phase space, the indicator 

component is calculated. For each component calculation, the 

series is renormalized so that the initial discrepancy coincides 

for each next component. Then the procedure is repeated. 

3. Results 

For a comparative analysis of complexity (MSE, LZC, L1), the 

same EEG signals of two groups were studied. The average 

values for each of the EEG recording channels were calculated 

for the control group (norm) and patients with schizophrenia 

syndromes (sch). ). Statistical analysis based on P-value was 

used to compare methods of signal complexity. P-value is the 

probability that the criterion value will be not less than the 

critical value, provided that the null hypothesis about the 

absence of differences between groups is true. If the P-value 

was less than 0.05, the difference between the mean values was 

considered significant. Thus, the method that will show the 

largest number of channels with P<0.05 will be considered the 

most characteristic. 

 The results of calculation of MSE, LZC, L1 presented in 

Tables 1-3 are consistent with the majority of previous works, 

showing that patients with schizophrenia are characterized by 

less complex neuropsychological measurements. The analysis 

showed that the most characteristic channels for MSE entropy 

assessment are: F3', 'F4', 'T6'. 

Table 1 Average MSE  

Channel 
Control group 

(Average + SD) 

Sch group  

(Average + SD) 

P- 

value 

'F7' 0,9296 ± 0,1154 0,8859 ± 0,1495 0,1568 

'F3' 0,9524 ± 0,1306 0,8867 ± 0,1267 0,0296 

'F4' 0,9655 ± 0,1230 0,8866 ± 0,1221 0,0042 

'F8' 0,9629 ± 0,1563 0,9035 ± 0,1385 0,1075 

'T3' 0,9670 ± 0,1363 0,926 ± 0,1386 0,1705 

'C3' 0,9604 ± 0,1047 0,9309 ± 0,1043 0,2085 

'Cz' 0,9454 ± 0,1087 0,9165 ± 0,0866 0,2180 

'C4' 0,9412 ± 0,1026 0,9212 ± 0,1025 0,4021 

'T4' 0,9737 ± 0,1329 0,9346 ± 0,1256 0,1587 

'T5' 0,9891 ± 0,1586 0,9608 ± 0,1354 0,3733 

'P3' 0,9267 ± 0,1063 0,9151 ± 0,1117 0,6317 

'Pz' 0,9044 ± 0,1029 0,8907 ± 0,1031 0,5801 

'P4' 0,9161 ± 0,1090 0,8955 ± 0,1091 0,4415 

'T6' 0,9922 ± 0,1446 0,9112 ± 0,1323 0,0094 

'O1' 0,8822 ± 0,1130 0,9007 ± 0,1271 0,4969 

'O2' 0,8747 ± 0,1086 0,8843 ± 0,1332 0,7071 

The analysis of the data presented in Table 2 shows that the 

objects in the control group are characterized by a lower average 

value of LZC compared to objects with schizophrenia 

syndromes. The most indicative channels for LZC estimation 

are: F4', 'Cz', 'P3', 'O1', 'O2'.  

It should be noted that the complexity of the Lampell-Ziva 

characterizes the chaotic nature of the signal with an inverse 

value in relation to the entropy and Lyapunov exponent, i.e. the 

higher the value of LZC the more regular the time series. 

Table 3 presents average values of Lyapunov exponent L1 

for two groups of research objects. The analysis of the average 

values of Lyapunov senior exponent for all study objects 

showed that the most typical results were obtained through the 

channel 'O1'. 

Visualization of the data which was obtained in the Matlab 

software package, algorithms for constructing topographic 

images of the EEG signal spectra shown in Fig.2. Topographic 

images are constructed in accordance with the layout of the 

electrodes in Fig. 1. The channels used in the research are 

marked with dots. Values at intermediate points were 

interpolated by using a spherical spline. 

Table 2 Average LZC 

Channel 
Control group 

(Average + SD) 

Sch group  

(Average + SD) 

P- 

value 

'F7' 0,0128 ± 0,0592 0,0284 ± 0,0813 0,3514 

'F3' 0,1418 ± 0,0261 0,1542 ± 0,0365 0,0793 



 

 

'F4' 0,1415 ± 0,0294 0,1597 ± 0,0406 0,0239 

'F8' 0,1667 ± 0,0413 0,1862 ± 0,0459 0,0631 

'T3' 0,1707 ± 0,0371 0,1766 ± 0,0540 0,5992 

'C3' 0,1382 ± 0,0298 0,1517 ± 0,0391 0,1282 

'Cz' 0,1317 ± 0,0292 0,1469 ± 0,0362 0,0497 

'C4' 0,1370 ± 0,0306 0,1524 ± 0,0377 0,0576 

'T4' 0,1722 ± 0,0544 0,1765 ± 0,0490 0,7377 

'T5' 0,1668 ± 0,0433 0,1762 ± 0,0434 0,3813 

'P3' 0,1261 ± 0,0322 0,1487 ± 0,0402 0,0085 

'Pz' 0,1197 ± 0,0291 0,1353 ± 0,0387 0,0626 

'P4' 0,1251 ± 0,0338 0,1427 ± 0,0395 0,0536 

'T6' 0,1619 ± 0,0471 0,1601 ± 0,0464 0,8733 

'O1' 0,1057 ± 0,0332 0,1338 ± 0,0412 0,0025 

'O2' 0,1032 ± 0,0324 0,1280 ± 0,0416 0,0083 

 
Fig. 2. Topographical representations of MSE(a), LZC(b) and 

L1(c) 

 

Table 3 Average L1 

Channel 
Control group 

(Average + SD) 

Sch group  

(Average + SD) 

P- 

value 

'F7' 0,4213 ± 0,1196 0,4251 ± 0,1558 0,9173 

'F3' 0,5704 ± 0,1467 0,5716 ± 0,1245 0,9722 

'F4' 0,5683 ± 0,1556 0,5571 ± 0,1914 0,7964 

'F8' 0,5554 ± 0,1540 0,5483 ± 0,1567 0,8395 

'T3' 0,5064 ± 0,1887 0,5207 ± 0,2236 0,7638 

'C3' 0,5557 ± 0,1501 0,5650 ± 0,1881 0,8122 

'Cz' 0,5758 ± 0,1808 0,6015 ± 0,1436 0,5063 

'C4' 0,5891 ± 0,1263 0,5781 ± 0,1811 0,7574 

'T4' 0,5308 ± 0,1544 0,5098 ± 0,2154 0,6383 

'T5' 0,5121 ± 0,1944 0,4800 ± 0,2267 0,5302 

'P3' 0,5853 ± 0,1919 0,5511 ± 0,2116 0,4797 

'Pz' 0,6177 ± 0,1463 0,6163 ± 0,1340 0,9665 

'P4' 0,6021 ± 0,1981 0,6061 ± 0,1302 0,9145 

'T6' 0,5504 ± 0,1525 0,5912 ± 0,0968 0,1977 

'O1' 0,6908 ± 0,1045 0,5861 ± 0,1990 0,0106 

'O2' 0,5971 ± 0,2503 0,6602 ± 0,1062 0,1958 

Comparison of topographic images of EEG signal 

complexity obtained by different methods allows us to conclude 

that the subjects from the control group and the patients with 

schizophrenia syndromes have clear differences in activity 

readings in the cortical areas. Cross-correlation function was 

used to measure these differences. Cross-correlation was 

determined for the average LZC for all subjects for each of the 

EEG channels. Fig. 3 shows the visualization of the cross-

correlation function for both groups. 

 
Fig. 3. Cross-correlation of LZC for a) control group and b) 

schizophrenia syndrome group  

The following pairs of electrodes with the lowest value were 

identified: for the control group - O2-F8, O2-T3, O2-C4, O2-

T4, O2-T5, O2-P3, O2-Pz, O2-P4; for the group with 

schizophrenia syndromes - C3-F8, C3-T3, Cz-T3, Cz-C3, C4-

C3, C4-Cz, T4-C3, T4-Cz. Thus, a decrease in cross-correlation 

values in patients with schizophrenia was found for LZC in the 

left hemisphere compared to the right hemisphere, mainly in the 

parietal zone. The control group is characterized by weak cross-

correlation, predominant right occipital zone with parietal zone.   

These results support the assumption that schizophrenia may be 

a disruption of the activity ratio in different brain regions. 

4. Conclusion 

The proposed method of visual analysis of EEG allowed us 

to compare the interaction between the activity of brain regions. 

This approach makes it possible to evaluate the symmetry of 

activity on the basis of topographic images, to localize the 

activity centers and to correlate the activity of interaction 

between hemispheres by means of cross-correlation analysis. 

The most characteristic EEG channels were selected for 

each method. Comparison of the methods for determining the 

signal complexity has shown that the most characteristic is LZC, 

because 5 significant channels were determined for this method. 

The results will allow to implement the evaluation 

functionality with the use of machine learning for further 

research in medical diagnosis of schizophrenia. 
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