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The paper deals with the algorithms of building recognition in air and satellite photos. The use of convolutional artificial neural 

networks to solve the problem of image segmentation is substantiated. The choice between two architectures of artificial neural networks 

is considered. The development of software implementing building recognition based on convolutional neural networks is described. 

The architecture of the software complex, some features of its construction and interaction with the cloud geo-information platform in 

which it functions are described. The application of the developed software for the recognition of buildings in images is described. The 

results of experiments on building recognition in pictures of various resolutions and types of buildings using the developed software are 

analysed. 
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1. Introduction 

At present, the recognition of construction objects in satellite 

and air photographs, which is a part of operation of many 

government departments and commercial structures, is often 

carried out manually. Such processes as cadastral surveys, 

control over observing the borders of separate and protective 

zones, use of land as intended, control over the setting of 

buildings on the state registration and other require considerable 

cost and labor. Therefore, it is necessary to automate recognition 

and classification of objects in satellite and air photographs 

through the use of information technologies, in particular, 

computer vision and machine learning, which show good results 

in related fields. 

The source data for the problem to be solved are usually 

GeoTiff files, which contain both the terrain image and 

information on the spatial resolution of pixels and the image 

binding to geographical coordinates. As the output, it is 

necessary to obtain the contours of the detected buildings in 

vector form in geocoordinates. 

Several phases can be distinguished in the solution of the 

initial problem: 

1. Getting a bitmap of the terrain from the original 

GeoTiff file and direct building recognizing, that is, selecting 

areas in the picture and classifying them as buildings of a 

particular type. 

2. Polygon boundary detection in vector form and 

converting bit-mapped coordinates into geographic ones based 

on geodata from the original GeoTiff file. 

3. Post-processing of selected polygons, including the 

application of rules and heuristics for filtering and classification 

refinements. 

Each processing phase uses its own set of approaches and 

technologies, but for the convenience of the end user it is 

advisable to implement the solution of this problem as a single 

act. 

2. Selection of Methods and Algorithms for 
Solving the Problem of Building Recognition 

The building recognition problem can be referred to a class 

of machine vision problems called "semantic segmentation", in 

which each pixel of the original image must be assigned to one 

of the predefined semantic classes. If the way of referring pixels 

to semantic classes corresponds to the human perception of the 

image, the pixels will be grouped into areas that contain dots of 

a certain class only or mainly this class. Thus, the whole image 

will be divided into a finite number of a segment, each of which 

are an object of one of the required classes or is its background. 

To solve the segmentation problem, two types of methods 

can be distinguished: 1) classical and 2) based on artificial neural 

networks (ANNs). 

Classical methods include such methods as K-means 

clustering, edge detection, watershed transformation and others. 

However, classical approaches, as a rule, show good results only 

on simple images and after careful adjustment of parameters. At 

the same time, they are extremely unstable to various changes in 

the image (brightness, contrast, and others). And, probably, the 

most important drawback is that these methods do not allow to 

determine the class of the found object. 

In their turn, image segmentation methods based on artificial 

neural networks significantly surpass classical methods in 

accuracy and stability. 

Analysis of some papers [1-6] and competition results of 

image processing and Earth remote sensing (ERS) [7-10] 

allowed to conclude that the use of convolutional neural 

networks for solving the problem of building recognition is 

reliable, and U-Net and DeepLabV3 architectures are the most 

attractive for further research and experimental testing. 

On the basis of source code libraries provided by the authors 

of the selected architectures, we tested software for training the 

corresponding neural network models and quality control of their 

work on the basis of Jaccard index. 

At the first stage of the work there were only the results of 

satellite photos, air photos using manned and unmanned aircrafts 

to obtain high-resolution images were only performed by 

outsourcers, so there were tasks of testing the selected ANN 

architectures set in the following areas. Firstly, it was necessary 

to assess the impact of hyper-parameters of networks on their 

work. Secondly, we were to check the assumption that the shade 

marking of buildings can have a beneficial effect on the building 

recognition. Finally, it was necessary to choose one of the 

architectures for further use in the project. 

For the experiments, a set of data on satellite images was 

prepared, including more than 600 images with different types of 

buildings. In total, more than 5,000 buildings of various classes 

were represented in these images. The images were carefully 

labeled and divided into a training sample (448 images), a 

validation sample (110 images), and a test sample (59 images). 

In each sample, images with large buildings, private sector, and 

no buildings are presented in the same proportions. 

Training of each model took up to several days. Therefore, it 

was too difficult to perform experiments for testing all possible 

combinations of hyper-parameters and marking variations. 

Instead, the effect of hyper-parameters on the shade marking was 

first studied and their best combination was chosen. Then, using 

the best and worst combination of hyper-parameters ANN work 

was tested on the marking without shades influence. The result 

of this check is presented in tables 1-2. 
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The following conclusions were made according to the 

analysis of Tables 1-2. 

1. Both architectures showed that taking shades into account 

only makes the result worse. Therefore, in the future, it was 

decided to perform the marking and all other works without 

taking shades into account. 

2. The best values of Jaccard index were achieved with the help 

of DeepLabV3 network: 89.5% vs 77% from U-Net. 

Therefore, it was decided to conduct further research on the 

basis of DeepLabV network. 

3. When we decrease the value of output stride in the studied 

sample, a slight improvement of the result was observed 

(especially noticeable on smaller objects), however, it should 

be noted that source intensity increases multiply (the 

consumption of time and memory clock for GPU computing, 

training time). The optimal value of this parameter is 16.  

4. Increasing batch_size results in memory consumption during 

training, but allows to get a much better result and reduces 

training time. When training, it is recommended to increase 

this parameter as much as GPU memory allows. 

Table 1. Results of U-Net Testing 

№ Number of layers 
Number of 

features_root 
IoU, (%) 

Marking with shades 
1 3 32 65 

2 3 48 69 

3 3 64 52 

4 4 32 70 

5 4 48 71 

6 4 64 57 

7 5 32 66 

8 5 48 69 

9 5 64 68 

Marking without shades 

10 3 64 67 

11 4 48 77 

Table 2. Results of DeepLabV3 Testing 

№ 
Reduction factor of 

output_stride 
Batch_size IoU, (%) 

Marking with shades 
1 16 2 68 

2 16 4 71 

3 8 2 70 

4 8 4 72 

Marking without shades 

5 16 2 86 

6 16 4 89 

7 8 4 89.5 

 

3. Software Development for Building 
Recognition  

Simultaneously with the experiments on selecting neural 

network architecture, software was developed which is intended 

to function as a part of a cloud geoinformation platform (CGIP). 

This platform is being created at Innopolis University and should 

become a comprehensive system for promoting products and 

services in the field of remote sensing of the Earth. Building 

recognition in images service (BRiIS) is one of the internal 

services of the cloud geoinformation platform and does not 

communicate directly with the users, but the results that the user 

gets directly depend on the quality of its operation. BRiIS is quite 

a resource-intensive part of CGIP, and its implementation has a 

search character: the scenarios are very likely when models and 

algorithms of BRiIS core may undergo significant changes. 

These factors have determined the requirements for the 

organization of BRiIS and CGIP interaction: BRiIS should be as 

isolated from CGIP as possible; BRiIS should be easy to scale; 

there should be means of monitoring BRiIS operation. Taking 

into account these requirements, the architecture of BRiIS 

service has been developed, shown in Fig. 1. 

The following data flows can be identified: task information 

and source files come from the platform to BRiIS, and resulting 

files and diagnostic messages - from the service to the platform. 

It was decided to organize the first flow through which tasks 

are transferred on the basis of RabbitMQ queue. The web user 

interface is on the platform side. The user chooses files for 

processing and additional recognition options: building classes 

and images he is interested in, and others. The platform generates 

processing tasks and sends them to the queue. 

 
Fig. 1. Service BRiIS architecture 

Service BRiIS guards the task queue, and as messages 

appear, the Service de-queues and processes them. This way of 

transferring tasks provides not only their guaranteed delivery, but 

also provides scalability of the system. If necessary, several 

BRiIS will be launched guarding the same task queue and 

performing the tasks in parallel. 

The message contains JSON data structure. It contains the 

identifier and the task type, the path to the source directory, and 

the path to the target directory where service BRiIS should write 

the resulting files. 

For debugging purposes, a command-line utility has also 

been developed that allows you to send tasks to the queue for 

processing one at a time or in batches. 

The second data flow, which provides the feedback from 

service BRiIS, is organized by sending diagnostic messages by 

POST over HTTP Protocol in JSON format. Messages are sent 

when significant task processing events occur: when the task is 

de-queued, when processing begins, when polygons are formed, 

and when it is completed. 

The third data flow is provided by file exchange. For its 

successful functioning service BRiIS should have access to the 

file system of the geographic information platform. During task 

processing service BRiIS refers to itfor the source files, and 

writes intermediate and final results. The path to the source 

directory and the resulting directory is specified in the message 

de-queued from the task queue. 

The central part of the service is a task processing module, 

which is based on convolutional neural network DeepLabV3. 

The neural network is surrounded by a processing pipeline of 

geographical images. First, the image is cut into fragments of the 

desired size, they are transferred in batches to the neural network, 

the resulting segmented fragments are combined into the image 

of the original size. Then, vectoring procedure finds the outlines 

of buildings, approximate them in polygons with pixel 

coordinates, and performs the initial filtering of noise and 

transfers the polygons into geographical coordinates based on the 

position and scale data of the source geoimages. Finally, the 

selected polygons are post processed based on heuristics. 

 BRiIS uses a large number of libraries, many of which are 

large, require related libraries of certain versions, or involve a 

non-standard installation process. All this greatly complicates the 



environment adjustment for BRiIS. In some cases, with certain 

combinations of operating system versions and installed 

software, adjustment may not be possible. Therefore, we decided 

to run BRiIS in an isolated docker container environment. 

In addition to insulation of applications, using docker 

containers makes it easy to deploy and replicate. The operating 

environment, all necessary libraries with all dependencies, as 

well as application modules and scripts are packaged into the 

image. This image is transferred to other machines, unpacked, 

and the service container is started. 

Machine learning utilities shown in Fig. 1 are not a direct part 

of CGIP, they are designed to prepare neural network models, 

which are then used by BRiIS. The utilities allow to generate 

ground truth labels based on the original GeoTiff files, and the 

ground truth label, made in the vector form in GIS-systems, then 

to assemble these training sets in a special format of tf-records 

and finally to execute the learning procedure itself. 

Python was chosen as the language for creating BRiIS and 

related programs. Neural networks are made with the use of 

open-source libraries for machine learning TensorFlow from 

Google. Framework Nvidia from CUDA is used to speed up 

calculations. 

4. Evaluation Criteria  

Taking into account the objectives of service BRiIS 

developing, there are two main typical scenarios of its 

application: 

 reconciliation of the building boundaries, recorded within 

the new session of ERS, with the registered; 

 detection of new buildings within the new session of ERS, 

not previously recorded. 

In the first case, it is of paramount importance to determine 

the boundaries of buildings as accurately as possible. For these 

purposes, the best are the criteria for calculating the accuracy of 

the recognition algorithm, based on the quantitative similarity 

between the ground truth label and the predicted one in the pixel-

by-pixel comparison. In this paper one of the strictest criteria was 

used, that is Jaccard index, which in its finitely multiple version 

(at a given resolution, the image is a finite set of pixels) can be 

written as follows: 

𝐾 =
𝑛(𝐴 ∩ 𝐵)

𝑛(𝐴) + 𝑛(𝐵) − 𝑛(𝐴 ∩ 𝐵)
=
𝑛(𝐴 ∩ 𝐵)

𝑛(𝐴 ∪ 𝐵)
. 

 

This measure is also called Intersection over Union (IoU), 

which reflects the essence of the fraction above. 

For the second case, more suitable are measures based on 

counting the number of buildings, which polygons in the 

predicted label sufficiently intersected with the polygons of the 

ground truth label. In other words, the comparison is not made 

by pixels, but by pieces (or buildings). The score is calculated as 

follows: 

𝐹𝑠𝑐𝑜𝑟𝑒 =
2 ∗ Precision ∗ Recall

(Precision + Recall)
, 

Precision =
𝑇𝑃

(TP + FP)
, 

Recall =
𝑇𝑃

(TP + FN)
, 

where Precision is called algorithm accuracy, Recall is the 

completeness, TP is the number of true positives, FN is the 

number of false positives, and FN is the number of false 

negatives. In this paper, a building is considered to be correctly 

detected if Jaccard index for it and its label exceeds 50%. 

After finishing software development of service BRiIS, 

including results visualizer modules, it became possible to use 

not only a bit-mapped metrics based on Jaccard index (IoU), but 

also F-score objective measure, which allows to assess the results 

better in the context of the ultimate goal – building recognition. 

There is certainly a direct connection between Jaccard index 

and F-score: the better the image is segmented, the easier it is to 

find the correct building boundaries. However, there is a 

significant difference. Bit-mapped metrics is much more loyal to 

the gaps or, on the contrary, false recognition of small buildings, 

as well as to situations where two close buildings merge into one 

or, conversely, one building of a complex configuration breaks 

apart. 

To quantify the quality of building recognition based on F-

score and results visualizing, a separate application is developed 

in Python using Tkinter library. 

5. Study of Network DeepLabV3 Operation in 
Images of Various Types  

At the second stage of the work, not only space images were 

ready, but also air photographs: in the urban area with the 

resolution of 0.05 and 0.1 m/pixel, in rural areas – with the 

resolution of 0.1 m/pixel. In addition to red-green-blue images 

(RGB), there were also colored infra-red (CIR) satellite images 

with the resolution of 0.5 m/pixel. In total tagged images 

consisted of approximately 50,000 buildings. For evaluation 

images of different types and with various types of buildings, 

containing over 7,000 buildings, were left (i.e. not used in 

training). 

Now the task was to test in practice how the combination of 

training sets affects the final result. 

Intuitively, it has been assumed that separate models for 

datasets of air photos (made by unmanned aerial vehicle, UAV 

and by manned aircraft, MA) and space photos (made by satellite, 

SAT) should be trained, as their scales are too different. 

Similarly, RGB data sets differ from CIR sets, and therefore 

separate models should also be trained for them. So, the 

following models were trained: 1) UAV+MA, 2) SAT(RGB), 

3) SAT(CIR) and the results were evaluated based on F-score. 

The results of the evaluation are shown in table. 3 (the second 

column). Fig. 2 shows an example of the results of building 

recognition in UAV image. 

Then a general model for all RGB images (together UAV, 

MA, SAT) was trained and a separate one for SAT(CIR) images. 

The results of evaluation of these models are shown in table. 3 in 

the third column. As it can be seen from table 3, the result of F-

score has not changed for UAV+MA images, but improved for 

SP images. Probably, this improvement of recognition results of 

SAT images is due to the training set is too small, and adding 

UAV and MA images, even differing in scale, beneficially 

effects learning. 

Since the training set for SAT(CIR) is even smaller than 

SAT(RGB), then a unified model for all types of available 

images was trained. The results of evaluation of the unified 

model are shown in table. 3 in the fourth column. As it can be 

seen from table 3, the result of F-score has not changed for MA 

images, but improved for UAV images and slightly deteriorated 

for SAT. However, the overall F-score has slightly improved. 

Another advantage of the unified model is that there is no 

need to prepare separate datasets for different types of recording. 

Also, the unified model will speed up the work of the service, 

since no time will be spent on downloading different ANN 

models in case of recognizing images of different types. 

For evaluating the results and forming columns 2-4 of table 

3, all objects larger than 2x1m for air photographs and 4x4 for 

satellite images were taken into account. If we ignore all 

buildings less than 3x3 and 7x7 respectively, the results are 

significantly improved (see the fifth column of table 3). This 

proves the assumption that small objects are the most difficult to 

recognize. 



Table 3. Results of Network DeepLabV3 Testing 

Image 

F-score 

Three 

separate 
models 

Two 

models 
(RGB/CIR) 

Unified 

model 

Unified 

model 

(3х3, 

7х7) 

UAV  

16-1-239-157-В-

1 
0,879 0,878 0,850 0,923 

16-1-239-157-В-
2 

0,846 0,871 0,885 0,940 

16-1-239-157-В-

3 
0,904 0,896 0,913 0,946 

16-1-239-157-В-
4 

0,813 0,857 0,861 0,922 

16-1-239-157-A-

7  
0,846 0,826 0,884 0,927 

16-1-239-157-A-
9 

0,852 0,872 0,887 0,946 

16-1-239-157-A-

10  
0,867 0,862 0,885 0,899 

16-1-239-157-A-

11 
0,868 0,915 0,906 0,965 

16-1-239-157-A-

13 
0,883 0,854 0,888 0,937 

16-1-239-157-A-
14 

0,858 0,878 0,888 0,928 

16-1-239-157-A-

15  
0,930 0,853 0,888 0,930 

Konstantinovka 0,867 0,846 0,872 0,893 

Averagefor UAV 0,868 0,867 0,884 0,930 

MA  

16-33-23-(131-д) 0,760 0,771 0,763 0,829 

mesha_2_12 0,790 0,783 0,808 0,865 

16-33-23-(018-е) 0,777 0,772 0,770 0,798 

16-33-23-(018-b) 0,761 0,781 0,770 0,721 

Average for MA 0,772 0,777 0,778 0,803 

SAT  

Fr4a_RGB 0,705 0,710 0,685 0,764 

Fr7a_RGB 0,612 0,694 0,658 0,715 

Fr7a_CIR 0,605 0,667 0,666 0,728 

Average for SAT 0,641 0,690 0,672 0,740 

Total average 0,812 0,823 0,828 0,872 

The main task of the work was to create a service for building 

recognition without additional classification by their functional 

profile or other criteria. However, most part of marking at the 

second stage was performed according to ten classes: 

Background, Residential building, House, Industrial or 

commercial building, Administration or educational building, 

Other non-residential building, Building under construction, 

Greenhouse, Garages, Foundation of building. A separate model 

was trained on these data, but its results were much worse due to 

frequent errors in the classification of found objects. Tables with 

the results for ten classes are very bulky, that is why they are not 

given in this paper. 

6. Conclusion 

Analysis of papers and experimental data obtained when 

testing software developed by the authors prove the efficient use 

of convolutional neural networks and, in particular, DeepLabV3 

architecture for building recognition in satellite and air photos. 

The average F-score on the sample of images under study 

exceeded 80%, which is a very good result, taking into account 

the fact that the test sample of images had difficult for 

recognition objects. 

These objects hard for recognition include poorly structured 

clusters of containers and tents in markets, neighborhoods with 

old low-rise buildings and an abundance of small very close to 

each other household buildings, as well as industrial facilities of 

complex shapes with many link buildings and transporters 

between buildings. 

F-score results are much lower than 80% for all these types 

of complex constructions. This is quite natural, because even a 

man using semantic context find it difficult to determine where 

the boundary between such objects are. However, finding such 

areas in the processed images and the application of separate 

models and algorithms to them can give a significant increase in 

the quality of recognition. It is the development of such 

combined architectures that is a priority for further research 

within the framework of the project development. 

 

 
 

 
 

 
Fig. 2. Example of recognizing on UAV model, trained only 

on UAV+MA sets (first is an original image, second is 

reference marking, third is the result of recognition result 

on top of the reference marking) 
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