
Software Platform for Designing and Running Artificial Intelligence
Competitions with a Visualization Subsystem

D.A. Korostelyov1, A.O. Radchenko1, N.S. Silchenko1, R.A. Krylov1, P.N. Migal1

nigm85@mail.ru|jameslistener@gmail.com|silchenko.nk@gmail.com|oktopy@gmail.com|p.migal@yandex.ru
1Bryansk State Technical University, Bryansk, Russia

The paper describes the solution to the problem of testing the efficiency of new ideas and algorithms for intelligent systems.

Simulation of interaction of the corresponding intelligent agents in a competitive form implementing different algorithms is proposed to

use as the main approach to the solution. To support this simulation, a specialized software platform is used. The paper describes the

platform developed for running competitions in artificial intelligence and its subsystems: a server, a client and visualization. Operational

testing of the developed system is also described which helps to evaluate the efficiency of various algorithms of artificial intelligence in

relation to the simulation like "Naval Battle".

Keywords: artificial intelligence, intellectual agent, artificial intelligence competition.

1. Introduction

At present artificial intelligence technologies are

increasingly penetrating into various spheres of human activity.

To apply and develop the technologies and methods of artificial

intelligence effectively, it is necessary to take into account these

trends in the educational process for training modern

professionals, as well as in professional activities in various

fields: information technologies, economics, finances, design of

engineering and control systems, etc.

To form corresponding competences both classical methods

of training (study of relevant algorithms), and more progressive

approaches based on game or competitive principles are used [1].

For implementing the competitive (game) approach a specialized

software platform is usually designed or used, which is a system

of multiagent simulation. Each participant loads into this system

his algorithm represented as a program that implements a special

interface to interact with the system. This program in the system

represents one or more intelligent agents interacting with each

other as a result of simulation (or several simulations). The rules

of interaction and capabilities of intelligent agents are

determined by scenarios and the corresponding software

interface of the system (platform), and the process of

development and simulation becomes competitive.

One of the key components of such platforms is a

visualization subsystem of simulations of intelligent agents’

interaction, which contributes to a better understanding of the

implemented algorithms and results in improving and developing

them more effectively. By means of the visualization subsystem

it is possible to demonstrate the work of both artificial

intelligence algorithms and various data processing algorithms in

a more visual and comprehensive form. This aspect has a positive

impact on students' understanding of the principles of relevant

algorithms.

Such competitions, in addition to training and developing

skills in the use and implementation of artificial intelligence

methods, also allow to find the most talented among the

participants [2]. Usually, to participate in the competition not

many skills are necessary, but to win you need to use unique

algorithms, universal strategies and much more.

At the moment, there are a considerable number of different

platforms for competitions in artificial intelligence [2-5].

However, such platforms are often developed for one specific

competition, and after this completion either become open in the

form of a sandbox, or are completely forgotten by both

developers and participants. Among the most famous platforms

are Ants AI Challenge [3], Russian Ai Cup [4], Mini AI Cup [5].

Ants AI Challenge is a Google product [3]. It was a

competition of intelligent agents, in which users were given API

to interact with the system (Fig. 1). The user developed artificial

intelligence, which based on the tasks of the competition,

performed certain actions aimed at winning in the most effective

way. Among the main advantages of the platform are the

following:

1. A unique set of competition rules is implemented.

2. The interactive visualization subsystem displays

complete statistics during simulation.

3. The interactive visualization subsystem has an intuitive

display of the competition elements represented by a matrix.

4. The visual interactive player uses primitives for display,

so its load on the system is minimal.

Fig. 1. Interface of Ants AI Challenge visual player

As for the disadvantages, they are the following:

1. There is no opportunity to participate in the competition,

because it has already been held and completed.

2. The visual interactive player does not have control

components.

Russian AI Cup is a competition of artificial intelligence and

intelligent agents who fight in the virtual world instead of their

owners (Fig. 2) [4]. At all the previous championships more than

40,000 users have registered on the platform, and they have

developed more than 150,000 different solutions in total. Each

new championship is a new challenge with its own rules, laws

and mechanic.

The main advantages of the platform are the following:

1. A variety of competitions and problems of simulation

the interaction of intelligent agents.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2. The competitions take place in both two-dimensional

and three-dimensional world.

3. There is online access to the visual interactive player

of simulations.

Fig. 2. Interface of Russian AI Cup visual player

There are some disadvantages as well. They are:

1. For each competition, a new visual display module is

used, independent of the previous ones.

2. There is no most part of the statistics. One can view only

the main points of the simulation.

3. The visual player has no control components.

4. There is no possibility of step-by-step simulation

playback.

Mini AI Cup is a product of Mail.Ru Group, which is an

opportunity to prepare for a larger Russian AI Cup competition

(Fig. 3). The conditions for competition seem to be simpler [5].

The platform is a set of mini-contests related to artificial

intelligence and writing intelligent agents.

Fig. 3. Interface of Mini AI Cup visual player

Among the main advantages of the platform are the

following:

1. A variety of competitions and problems of simulation the

interaction of intelligent agents.

2. There is a control system to play back simulations.

3. Detailed displaying of statistics.

The disadvantages are the following:

1. For each competition, a new visual display module is

used, independent of the previous ones.

2. There is no possibility of step-by-step simulation

playback.

As one can see from the description above, the existing

platforms for artificial intelligence competitions are not invariant

to the problems for which it is possible to develop intelligent

agents. Also in the existing systems there is a lack of flexibility

of the visualization system, which could be quite an effective tool

for visual evaluation of algorithms implemented in the form of

intelligent agents, provided that it is possible to adapt them to a

specific simulation problem. Therefore, the development of a

universal platform that provides competitions in artificial

intelligence for different scripts and tasks with different

visualization methods is an urgent problem.

2. Description of building a platform for
simulating the interaction of intelligent agents

Artificial intelligence competitions should be as honest, open

and universal as possible. To ensure this, server-based simulating

of intelligent agents’ interaction is used. This guarantees to avoid

scenario substitution or other violations of the tournament. The

server allows intelligent agents developed by specialists located

far from each other to compete. Also, with the help of the server,

an unlimited number of tournaments for different groups of

participants with unique scenarios can be held. In order to run the

tournament according to any scenario developed by the

organizer, without additional interventions into the system, as

well as to debug the implementation of the algorithms in the form

of intelligent agents, a system of simulating the interaction of

intelligent agents is necessary. This feature allows to organize a

large number of tournaments with a small amount of time for

preparing.

In order the participation in the competition should be more

visual, and the peculiarities of the algorithms – intuitive, a

visualization subsystem of the competition is necessary. Thus,

the reasons for agents’ winning or losing will be clear not only

for the authors of the agents themselves, but also for observers of

the competition, who will also be able to view the visual results

of the interaction of intelligent agents and evaluate the efficiency

of certain implementations of behavioral algorithms. Also, the

visualization subsystem allows to track the errors of algorithms

and their illogical actions from the point of view of a particular

simulation, that improves the efficiency of algorithms

determining the behavior of intelligent agents.

It also should be noted that holding competitions on insecure

devices is not recommended, so that to avoid the possibility to

break the logic of the competition and to win unfairly. Having

other users' intelligent agents on one device is also not

acceptable, because they can be used to update their intelligent

agents.

3. Description of software platform

The software platform for designing and holding artificial

intelligence competitions with visualization subsystem was

implemented in C++ using Visual Studio environment.

The main feature of the platform is interaction with a large

number of people (both participants and organizers). For more

convenient interaction, client-server architecture was used,

which is based on the fact that users have an application by means

of which they can interact with the organizers (Fig. 4).

The server subsystem allows to design tournaments for any

scenarios and agents developed in accordance with the

requirements of the platform. It receives requests from the

administrator or from the client application and processes them

according to the command sent. The administrator can also

receive requests from the organizer for certain actions. The basic

commands are to design a tournament, enter the agent or scenario

into the database, to register or authorize the user, connect the

user to the tournament and run the tournament.

The server subsystem is directly connected with the

subsystem of the tournament by artificial intelligence. Referring

to it, the server runs the tournament and receives the results that

can be provided to administrators, organizers and participants.

The results are obtained on the server, so the organizer himself

must choose how to present the results to the participants.

Fig. 4. Software platform architecture

The client subsystem allows users to interact with the server

using a convenient graphical interface when participating in the

tournament. The client subsystem of intelligent agents’

interaction is located on the client, and the tournament module is

located both on the client and on the server.

Work with the artificial intelligence of running tournament

can be initiated in one of two ways: the user tests the agent before

sending or the administrator begins to calculate the results of the

competition. The subsystem of the competition is located on the

client and on the server, which allows to test intelligent agents

for users quickly, and to calculate the competition on the server

easily.

The subsystem of visual display allows script writers to use

their materials to display the actions of intelligent agents, using

both primitives and textures (Fig. 5). The visual display

subsystem is located on the client. It receives data from the server

(scripts, test intelligent agents) or from the organizers (textures,

competition rules), and then using the script it generates the

simulation and displays it. The generated simulation can be saved

and then loaded for further watching and analysis.

There are two ways to start working with the player. The first

is to load the saved simulation. The second is agent testing. In the

case of agent testing, the subsystem of the tournament is

initialized and the competition is held. The tournament

subsystem interacts with the scenario, which in its turn interacts

with the agent. We get an action log as a result, which is then

used by the player for visual display. If we load the saved action

log, the simulation is played at the player's request by frames

(moves), and the player displays the data on the screen.

Fig. 5. Player interface by the example of "Naval Battle"

simulation

To demonstrate the capabilities of subsystems, examples of

scenarios and intelligent agents for them were developed,

including algorithms visualizing the operation (Fig. 6).

Fig. 6. Visualization of sorting algorithm operation

Also, with the help of the developed platform, an

experimental study was carried out to evaluate the efficiency of

various algorithms of intelligent agents’ behavior by the example

of "Naval Battle" scenario.

4. Description of intelligent agents algorithms
under study

The experimental study of the efficiency of artificial

intelligence algorithms [6] was carried out on the basis of 3 main

options for implementing algorithms of intelligent agent

behavior for "Naval Battle" scenario and some of their

modifications.

1. Algorithm based on random events for the scenario.

2. Algorithm based on the field analytics.

3. Algorithm based on the analytics of ship positions.

4.1. Algorithm based on random events for the
scenario

The algorithm of the simplest intelligent agent based on

random events performs the following actions:

1. Selection of random coordinates to move.

2. Waiting for the opponent's move.

3. Checking if the simulation is not finished, then go to

step 1.

This agent makes an extremely large number of moves due

to the lack of checkings, as it can shoot at the same point, or make

moves where there is no enemy knowingly (for example, next to

the shot ships).

If coordinate validation is additionally made, the intelligent

agent will be able to make a lot fewer moves. This is due to the

fact that now he does not choose the same coordinates and

analyzes his move in accordance with the rules of the game (if

the enemy is dead, there isn’t definitely any other ship in a radius

of one cell; if the enemy is wounded, then there is exactly a

continuation of the ship around). Let us consider 3 modifications

for this variant of the intelligent agent.

1. Modification 1 is dividing the field. The field is divided

into 4 areas of 5x5 cells. Then moves are made in them by turns.

In the case of engaging the target, the next move is made in the

same field.

2. Modification 2 is random moves at the beginning. It

implies ignoring damaged ships in the first 10 moves.

The essence of this modification is that in the first few moves

we can find several damaged ships. In some cases, this will allow

us to determine in which direction the ship is directed at once,

and then finish shooting it. Value 10 for the threshold of the

initial moves is chosen based on the fact that the average party

lasts 50 moves.

When using this algorithm, during the first 10 moves, if a

wounded opponent is found, the rule is applied to him as to the

killed: the moves are not made within a radius of one cell from

it. Thus, by the end of the tenth move, up to 90% of the playing

area can be analyzed.

This algorithm is most effective if the opponent places his

ships remotely from each other.

3. Modification 3 is greedy match. If there is a hit, then not

adjusting cells are checked firstly, but the cells next but one.

This modification is similar to the second, but has some

differences: if the second modification tries to view as much

space on the field, the third does it more consistently and

throughout the whole game.

The use of modification 3 saves moves on damaging three-

and four-deck ships.

4.2. Algorithm based on the field analytics
The principle the algorithm operating on the basis of the field

analysis [7] is as follows: before the move, the agent checks the

presence of damaged ships on the field and acts accordingly to

destroy them. If there are no more damaged areas, the algorithm

makes predetermined moves. The basic version of the algorithm

goes through the field from left to right, from top to bottom.

Let us consider 3 modifications for this variant of the

intelligent agent.

1. Modification 1 is diagonal analytics. On average this

analysis makes it more likely to find ships from larger to smaller.

The essence of the algorithm is that initially the parallels to the

diagonal line with an indentation between them equal to the size

of the largest ship are checked sequentially. If the largest ship has

already been destroyed, reduce the indentation to the currently

largest ship.

This algorithm has a great dependence of efficiency on the

angle in which the opponent has ships, and from what angle he

starts. If ships are evenly spaced, the dependence disappears.

2. Modification 2 is staggered order. It is the most effective

if the opponent has placed his single-deck ships on one of the

colors of the checker.

3. Modification 3 is the method of "dogtooth". This

modification makes the combinations of moves on the field,

shown in Fig. 7, so covering the whole field.

Fig. 7. "Dogtooth" sequence of moves

This modification can significantly speed up finding of ships

if they are located in the direction of the center. This modification

of the algorithm copes with random arrangements in fewer

moves, as it does not analyze potentially useless information,

unlike the other two modifications.

4.3. Algorithm based on the analytics of ship
positions

The principle of the algorithm is as follows: before the move,

the agent receives a set of data about the field and counts the

remaining ships, their quality and quantity [8]. Further, based on

this analysis, the agent chooses his move. The basic agent

performs the analysis but does not use it. This analysis allows to

find large enemy ships more likely (three - and four-deck) and as

quickly as possible to get rid of them, opening the space around

the destroyed ships.

Let us consider 3 modifications for this variant of the

intelligent agent.

1. Modification 1 is looking for neighbors. This

modification allows to look for neighbors effectively. Firstly,

having found a damaged ship, next but one cells from the ship

are checked. In the best case, you can find neighbors or the end

of the three-deck ship. In case if there are no two-, three - and

four-deck ships left, restrictions are removed. If there are no more

places that meet the requirement, the agent tries to finish shooting

them, "connecting" neighboring damaged cells. If there are still

ships in the field, neighboring cells are checked.

This algorithm works very well with space strategies that try

to leave the maximum amount of free space in order to place the

ships as close as possible to each other.

2. Modification 2 is "greedy" finishing. This agent

calculates whether there are two-, three - or four-deck ships left

in the field. If left, the next move is made with the indentation of

two, one or zero cells, depending on the remaining ships. The

agent tries to finish shooting the ship immediately, starting from

the end.

It is the most effective if the opponent puts his ships close to

each other. It also makes it easy to finish shooting large ships.

3. Modification 3 is limiting the field depending on the

remaining ships. This modification ignores the part of the field

depending on the remaining ships. If there is one four-deck ship

left, the moves are made with a margin of 3 cells from the edge.

Thus, 6x6 field is analyzed first of all. The restriction is ignored

when trying to finish the ship. If a four-deck ship is found and

destroyed, the indentation is changed to 2 cells. If all three-deck

ships are found, indentation is changed to one cell. If there are no

more double-deck ships or no cells satisfying the condition, the

restrictions are removed completely.

Using this modification can significantly speed up finding

ships if they are located in the direction of the center.

5. Experiment results

A series of experiments in the form of simulation of

intelligent agents’ interaction was carried out with each of the

algorithms. According to the results of the experiments,

statistical data characterizing these algorithms were obtained.

The average values of these characteristics are presented in table.

1.

The fastest option in terms of the number of moves was

modification 3 of the algorithm, based on the field analytics. This

is due to the fact that it has the most versatile analytics that allows

to reduce the average number of moves to search.

It should be noted that the time to execute a single move in

an analytics-based algorithm without modification is extremely

fast. This is due to the fact that the algorithm does not need to

calculate any action, and it is enough to focus only on checking

the rules of the game and reading information about the next,

predetermined move.

№

Algorithm

Number

of

moves

Average

time (ms)

1. Random events. No modifications. 52.1 23.7

2. Random events. Modification 1. 49.6 24.6

3. Random events. Modification 2. 47 24.3

4. Random events. Modification 3. 55.2 27.1

5. Field analytics. No modifications. 77.9 14.8

6. Field analytics. Modification 1. 50.7 21

7. Field analytics. Modification 2. 51.7 21.1

8. Field analytics. Modification 3. 43.3 21.1

9. Analytics of ship positions. No

modifications.

53.2 27.9

10. Analytics of ship positions.

Modification 1.

38.6 25.5

11. Analytics of ship positions.

Modification 2.

51.9 28.4

12. Analytics of ship positions.

Modification 3.

59.3 45.8

Table 1. Comparison of intelligent agents implementing various

algorithms of "Naval Battle" scenario.

6. Conclusion

The developed system allows to design scenarios with

different conditions, as well as to set their own unique display

and run an unlimited number of tournaments according to these

scenarios. It can also be used as a learning system due to special

scenario tasks in which the user needs to implement the

algorithm and send the result to the server for verification.

In addition to the considered scenario of "Naval Battle" type,

the system was tested on scenarios such as "War of Viruses",

"Snakes", as well as on educational tasks of matrix diagonal

display and array sorting in order to demonstrate the work of the

corresponding algorithms visually. Templates are also available

for the developer to create their own scripts and test agents to

them with the necessary recommendations.

The distinctive features of the developed system in

comparison with other platforms are its versatility and invariant

property, both in the supported scenarios and in the methods of

visualization of intelligent agents’ interaction. Also, the flexible

system of visual display of scenarios allows to develop more

effectively and debug algorithms in various fields of artificial

intelligence.

The system developed was used for artificial intelligence

competition in Bryansk regional IT-festival, held under the

guidance of the 29th international conference on computer

graphics and machine vision GraphiCon 2019.

7. References

[1] Chesani F., Galassi A., Mello P., Trisolini G. (2017) A

Game-Based Competition as Instrument for Teaching

Artificial Intelligence. In: Esposito F., Basili R., Ferilli S.,

Lisi F. (eds) AI*IA 2017 Advances in Artificial

Intelligence. – AI*IA 2017. Lecture Notes in Computer

Science, vol 10640. – Springer, Cham.

[2] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee and

R. Thawonmas. Fighting game artificial intelligence

competition platform. – 2013 IEEE 2nd Global Conference

on Consumer Electronics (GCCE), Tokyo, 2013, pp. 320-

323.

[3] Ants AI Challenge. – URL: http://ants.aichallenge.org.

[4] Russian AI Cup – artificial intelligence programming

contest. – URL: http://russianaicup.ru.

[5] Ai Cup – artificial intelligence programming contest. –

URL: https://aicups.ru/.

[6] Tim Jones, М. AI Application Programming. М.: DMK

Press, 2018. – 312 p.

[7] Norwing, P. Artificial Intelligence: A Modern Approach. –

UK: Glivice, 2014. – 1408 p.

[8] Riley, D. Abstraction and data structures. Introductory

course. – Cambridge, MA; London, UK: MIT Press, 2018.

– 310 p.

