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Abstract

In this paper, we propose a novel semantic SLAM framework based
on human cognitive skills and capabilities that endow the robot with
high level interaction and planning in real-world dynamic environment.
Two-fold strengths of our framework aims at contributing: 1) A seman-
tic map resulting from the integration of SLAM with the Triplet On-
tological Semantic Model (TOSM); 2) Human-like robotic perception
system that is optimal and biologically plausible for place and object
recognition in dynamic environment proposing semantic descriptor and
CNN .We demonstrate the effectiveness of our proposed framework us-
ing mobile robot with Zed camera (3D sensor) and a laser range finder
(2D sensor) in real-world indoor environment. Experimental results
demonstrate the practical merit of our proposed framework.

1 Introduction

Building the autonomous mobile robot with human-like intelligence for semantic map construction and cognitive
vision-based perception are two the most significant challenges for long-term planning and high-level interaction
in indoor environment.

The problem to determine the appropriate method for building and maintaining the map that encodes both
casual and world knowledges has become an active research area in the robotics. Many studies in the last decades
have focused on spatial representation of the environment for building metric, topological and appearance-based
maps. However, semantic mapping of environment for the robots has not been as intensively studied. The
information provided by the conventional mapping approaches assists only in robot navigation while qualitative
information about the structure of environment for task planning is not generated. For instance, metric map
that contains geometric representation of the environment provides shape of the room without any semantic
understanding to indicate whether it is office or lecture room. Our proposed framework tackles this issue by
constructing the map that combines spatial representation with semantic knowledge of environment and provide
autonomous navigation to robot for perform high-level task without human intervention in global dynamic
environment.

The semantic interpretation of the environment also plays an essential role to improve the perception ability of
the robot for performing real-world operations such as object and place recognition in more reliable and intelligent
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manner. Nowadays, approaches for robotic perception range from traditional computer vision using handcrafted
features to advanced deep learning with convolutional neural network or combination of both. However, these
artificial vision algorithms have practical limitations to process in real time [bohg17]. Therefore, biologically
plausible algorithms combined with analogies of artificial perception are getting the attention. Our proposed
framework handles the current challenges by developing the effective solution that enables the robot with the
potential of human-like vision for recognizing the objects and places using semantic perception.

The primary goal of our novel semantic framework is twofold for developing semantic perception system
and endowing the robot to incrementally build a consistent semantic map while simultaneously determining its
location within map.

Our proposed semantic SLAM framework makes an original contribution to three important research areas in
robotics with the following characteristics:

• Human-like brain GPS system for building semantic maps with emphasis on qualitative description of robot’s
surrounding

• Human cognition based 1TOSM with deeper domain knowledge acquired by semantic, topological and
geometric properties of the objects for providing the robot higher degree of autonomy and intelligence.

• Bio-inspired semantic perception system combined with object and place recognition that allows the robot
to relate what it perceives using semantic descriptor

This paper is organized as follows. In Section II, we provide an extensive literature review of semantic
mapping, semantic SLAM and perception system for autonomous mobile robot. In Section III, we explain the
key features of our proposed framework with complete details of major components of TOSM and recognition
model. In Section IV, we examine the significant effects of our proposed framework in simulated environment as
an illustration of its contents. Finally, we conclude our work with future direction in Section V.

2 Related Work

We focus our review on studies of three major concepts, which we consider are the most closely related to
our work: a) semantic SLAM b) ontology c) semantic perception for object and place recognition d) semantic
descriptor.

2.1 Semantic SLAM

This section, gives the understanding of SLAM, explain semantic SLAM structure, its concepts and related work
in this area.

A. Semantic Mapping

In the last few years, embedding the map with semantic information has become an active research area with
the motivation of human-like robot interaction and understanding of the environment. High-level features in
semantic map are used to model the human concepts about the objects, places and relationship between them
[Capobianco15]. Semantic mapping has recently become the center of attraction in research community which di-
vides the semantic mapping approaches into three groups based on object, appearance and activity [Pendleton17].
Object based semantic mapping [Vasudevan08]methods depends on the occurrence of key objects to perform
object recognition and classification tasks by semantic understanding of environment. Appearance based se-
mantic mapping approaches take sensor readings and interpret them for constructing semantic information of
the environment. Some studies use geometric features [Burgard07] and vision fused with LIDAR data for world
understanding and classification [Nüchter08] task. The activity based semantic mapping [Xie13] techniques use
information of external activities (e.g. sidewalk verses roads) around the robot for semantic understanding and
contextual classification of environment. These techniques are at their formative stage compared to other two
semantic mapping methods.

B. Semantic SLAM: Concepts

The large number of concepts and relationship among them in real-world environment lead to several task-
driven decisions which depends on the level of semantic organization and context of environment in which robot
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performs its task. Literature review shows two major concepts of constructing semantic relationships [cadena16]
based on the details and organization. The detail of semantic concept significantly affects the complexity of the
problem at different levels. For example, a robot needs only coarse categories such as rooms, doors and corridors
to perform a task “going form 1st room to 2nd room” while for the other task “pick up the glass” it needs to
know finer categories such as table, glass or any other object. The semantic concepts are not limited because
a single entity or object in real-world environment has many properties or concepts. For example, “moveable”
and “sittable” are the properties of a chair while “movable” and “unsittable” are the properties of a table. Both
table and chair have same class “Furniture”. However, they share “moveable” property with different usability.
So, this multiplicity of concepts is handled by Flat or hierarchical organization of properties

Semantic SLAM: Object/ Place Recognition

Semantic to the SLAM is included by using human-spatial concepts into the maps. Humans locate themselves by
object centric concepts instead of metric information and they use reference points rather than global coordinates.
The initial research into semantic mapping uses direct approach [Lowry16] with metric map segmentation built
by traditional SLAM system into semantic concepts. An early work in [Sabourin10] develops a system for scene
understanding via semantic analysis using image segmentation techniques and the SLAM algorithm is driven by
object recognition using human spatial concepts. The work shows that semantic concepts are organized in in
coarse to finer manner for indoor environment. An online semantic mapping framework [Pronobis12] of indoor
environment combined with object observations such as shape, size, room’s appearance that is built using three
layers of reasoning to address the problem of detection and learning of novel properties and room categories
for fully self-extendable semantic mapping. Data association problem also exists in metric and semantic SLAM
when building a map of environment with large number of objects of the same or different class and scales. This
problem is addressed in [Bowman17] by coupling geometric and semantic observations and taking the advantage
of object recognition for providing meaningful scene interpretation with semantically labeled landmarks.

2.2 Ontology

In recent years, reducing the semantic gap using ontologies has been studied by many researchers. An early
study [Durand07], has introduced an object recognition approach based on ontology and assigned the semantic
meaning to objects by matching process between concepts and objects. The work in [Ji12], handles the robot task
planning issues in domestic environment at the high symbolic level by combining classical AI approaches with
semantic knowledge representation. Its framework is based on semantic knowledge ontology to represent robot
primitive actions and description of environment. A study in [Riazuelo15], described the RoboEarth project using
knowledge-based system to provide web and cloud services to multiple robots. Its semantic mapping system is
based on visual SLAM mapping and ontology to describe the concepts, relations in maps and objects. A robotic
system with advanced abilities leads to the complexity in its software development. A case study presented in
[Saigol15] addresses this issue using an ontology as the central data store to process all information and showed
that knowledge-base makes the robotic system easier to develop, modify and understand. In the last few years,
a variety of approaches have been investigated to process the sensory information in dynamic world. Among
them, OnPercept [Azevedo18] is a recent approach that is based on cognitive ontology for performing the HRI
tasks by modeling the sensory information. A study [Lee18], proposes context query-processing framework using
spatio-temporal context ontology for enabling the indoor service robots to adapt the dynamic change from the
sensors in highly complex environment.

2.3 Perception

Perception system endows the robot to perceive and reason about its environment. The autonomous mobile robot
can perform its complex tasks such as object and place recognition, collision avoidance, task planning, decision
making, mapping, dynamic interaction, localization, and intelligent reasoning with high accuracy if perception
information is carefully processed. A recent study has [Sünderhauf18] highlighted the fact that robotic perception
is different from conventional computer vision perception because in computer vision image output is taken as
information while a robotics perception system translates the image output from information into actions for
taking decisions and actions in real world environment. Therefore, perception plays vital role for the success of
goal-driven robotic system. However, despite this difference, robot perception incorporates the techniques from
computer vision, and it is particularly evolving with the recent development in deep learning networks.
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In real-world applications, endowing a robot with human like-perception for navigation is a challenging task
that enables the robot to recognize scene and object when navigating through a dynamic complex environment
and building a 3D map by observing the surrounding. Therefore, regardless of selected navigation system, object
identification and place recognition play a vital role for environment representation and modeling.

A. Object Recognition

Reliable object recognition is an important and early step for a mobile robot to achieve its goal. Real time object
recognition systems work in two stages: Offline and online. Offline stage aims at reducing the execution time
without affecting system efficiency. Image pre-processing, feature extraction, segmentation and training processes
are performed in this stage. Online stage runs the process in real time to ensure the high-level interaction between
robot and its surrounding environment. Image retrieval, classification, object detection and recognition are the
examples of few processes that are carried out at this stage.

A key issue in this context is the interaction with object of different shapes and sizes. Despite significant
achievements and advent of digital camera, accurate object detection and recognition is still a challenging task
when real-world environment is considered. The reasons for this difficulty are occlusions, complex object shapes,
variations in geometric and photometric pose, noise and illumination changes.

Early efforts [Zou19] to handle this issue are based on template matching. Later approaches include statistical
classifiers including SVM, Adaboost and neural networks. On the other hand, computationally simple and
efficient approached based on local features such as scale-invariant descripts (e.g. SURF, SIFT), haarlike features
also exist. However, the limitations of these methods include accuracy that depends on number of features that
describe an image, segmentation that becomes highly complex in real world scenarios and not robust to relatively
large affine transformations. In literature, its alternative is to use Object Action Complexes (OACs) [Petrick08]
that combines the action, object and learning process to deal with the representational difficulties in diverse
areas.

The perception-action relationship based on cognitive understanding has been explored in [Yan14] by linking
both tasks through a memory component. In these studies, perception system uses three sensor modalities:
vision, audio and touch and their data are passed to the memory module for generating the motor control
signals and action unit translate them into robot responses. This intermediate process acts as robot’s brain for
improving the recognition task when mobile robot navigates in unknown environment. The study of attention
based cognitive architecture in [Palomino16] uses the reasoning as a bound between perception and action. The
core of this work is selection of active task based on the context data and accomplishment of task depends
on the presence of specific element in the scene. However, object-based visual attention system still requires
considerable efforts to accurately detect and categorize different objects.A recent study [Ye17] presents a vision
system for object detection and recognition from a visual input in real time by computing motion, color, motion
and shape cues and combining them in a probabilistic manner for assistive robots.

However, despite the vast analysis of existing perceptual systems for autonomous mobile robots, semantic
recognition system remains to be addressed for robust object recognition in real-world scenario.

B. Place Recognition

Visual place recognition becomes very challenging when real-world scenario is concerned. Therefore, visual
place recognition algorithms must endow the autonomous mobile robot to robustly handle the variation in
visual environment that occur due to dynamic, geographical and categorical changes [Martinez17]. The visual
appearance of places varies due to illumination changes (day and night), moving the furniture or different objects
from one place to another. The same place (room or corridor) might look different in different viewpoints, despite
sharing some common visual features. Humans can recognize a room (office or kitchen) because of their ability
to build categorical models of places. However, it is difficult for the robot to recognize the rooms based on their
distinctive features and categories.

Literature review [Ullah08] shows that contextual understanding of the place is very important for autonomous
mobile robot to effectively perform its task. A mobile robot can effectively interact with its environment if it
recognized the place and have a functional understanding of area

2.4 Semantic Descriptor

There have been few empirical investigations in recognizing the objects that have semantic similarities in their
shapes. A recent study [Tasse16], address this challenge and computes the semantic similarities between shapes,
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images and depth maps using semantic based descriptors. The central idea is to combine labeled 3D shapes with
semantic information in their labels for generating semantic-based 3D shape descriptor. An early study [Zen12],
uses enhanced semantic descriptors for complex video scene understanding by embedding semantic information
in the visual words. Recent developments in robot localization and mapping approaches have heightened the
need to use semantic descriptors for robot localization and mapping. A seminal study in [Panphattarasap18],
uses 4-bit binary semantic descriptor (BSD) for robot localization in 2-D map and performs semantic matching.
The semantic features such as gap between buildings and road junctions are detected using CNN in urban
environment. The purpose of BSD is to endow the robot with ability akin to human map reading.

3 Framework

Our proposed framework adds semantic techniques to SLAM to cope with the challenges in dynamic environment
by providing the robot advanced perception that is closer to human vision and improving the world understanding
capabilities of the robot for carrying out high-level navigation task in complex unstructured environments. Our
framework provides a closer representation with global environment by defining the Triplet Ontological Semantic
Model (TOSM) in which relations between the concepts are described for explaining semantic interoperability
of environment.

3.1 TOSM: Triplet Ontological Semantic Model

We accelerate the implementation of cognitive system in autonomous mobile robot by developing Triplet Onto-
logical Semantic Model (TOSM) which is based on cognitive process of human perception and brain GPS model
from neuroscience research and physiology. The main characteristics of TOSM are:

• To endow the robot with semantic mapping of environment based on cognitive architecture modeling

• To define the relations between domain concepts (knowledge), their attributes (properties) with high-level
of abstraction and rules to reason based on the task and the environment

• To model the sensory information for performing the task planning

Our TOSM approach consisting of three major components for effective representation of domain knowledge
and information retrieval in indoor environment is shown in Fig 1. Unique characteristics of these three com-
ponents represent relationship information with different objects that have spatial and non-spatial properties
for performing a specific task in overall robotic environment. The spatial properties represent the concepts of
position, shape and size of the objects in robotic environment while the non-spatial properties determine the
object category. We describe complete domain knowledge using spatial representation of the objects. Our pro-
posed TOSM approach endows the robot to semantically map the objects and their positions in unexplored
environment by defining explicit, implicit and symbolic models, shown in Figure Figure 1

A. Explicit Model

Explicit model specifies the spatial representation of the entities such as shape of an object and its position in the
domain (global environment) by extracting all the geometrical features of that object and retrieving its physical
information from sensors.

B. Implicit Model

Implicit model describes the behavior of the robot and series of actions such as robot navigation to perform a
task. This spatial representation also defines the intrinsic relations between the entities, gives the semantic inter-
pretation of environment which cannot be obtained using sensors and processes the fuzzy information to provide
the effective interaction of the mobile robot with its surrounding along with planning capabilities. Introducing
this model in our framework also enables the robot to take high-level decision by understanding the semantic
concepts that constitute task success, such as it allows the robot to interpret the semantics of automatic door
by understanding its salient events that auto-door opens and closes automatically, on sensing the approach of a
person.
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Figure 1: Triplet Ontological Semantic Model (TOSM)

C. Symbolic Model

We use symbolic model to encode the domain knowledge for describing semantic descriptions, sequence of actions
and complex capabilities of our environment in language-oriented way. Robot uses this knowledge through
relations that are represented by the links between existing entities. Based on the integrated components of
implicit, explicit and symbolic models, the TOSM approach coexist in SLAM allows the robots to perceive,
learn, understand and interact with the surroundings based on geometric and semantic information.

3.2 TOSM on demand database

We design robot-mounted on-demand database to construct semantic model of the environment for providing the
robot a semantic mapping and perception closer to human cognitive skills using TOSM. Our TOSM on-demand
database approach has three main practical advantages:

• It eliminates the demand to store several different maps

• It generates the maps only when they are required for a robot to perform the assigned task in global dynamic
environment

• It enriches the database semantically by adding conceptual meaning to data and relationships

We store, environmental and behavioral information together with robot knowledge and map data in on-
demand database. Robot uses cloud database to plan the behavioral actions and on-demand database to builds
a dynamic driving map according Figure 1: Triplet Ontological Semantic Model (TOSM)to assigned task in
operating environment. If the robot needs additional information to download from network or cloud database
for performing a specific task, this information is also merged with the robot’s current knowledge and on-
demand database is concurrently updated. The on-demand database of environment based on TOSM describes
the semantics of the domain with the set of relations. We have developed it using the protégé tool to explicitly
represent the class hierarchy for each individual. Individuals, also called instances, are defined to represent a
specific object in a class. For instance, automatic door is an individual of ‘Door’ class, as shown in Figure 2(a).
We describe our ontological model by creating individuals (instances) in corresponding classes, connecting them
with typed literals and defining relationships between objects of different classes. TOSM for on-demand database
is composed of three main components: classes, object properties and data properties.

A. Classes

We use classes to describe the concepts using collections or types of objects that share common properties
in indoor environment. Our ontological model consists of five classes: Map, MathematicalStructure, Time,
Behavior and EnvironmentElement. Ecah class represents an abstract group of objects that belongs to the
specific class. TOSM allows the classes to have single inheritance (one parent) and multiple inheritance. For
example, subclasses of object, Occupant, Robot and Place in EvnirnmentElement class have single inheritance
while AutomaticDoor class has multiple inheritance. Thus, all the properties of parents’ classes (Door, Object
and EnvironmentElement) are inherited by child class (AutomaticDoor). TOSM uses subclasses to represent the
concepts more specifically than super classes. Figure 2(a) also shows that we have developed our class hierarchy
with the systematic top-down view of domain in which we define the most general concepts of an entity in
high-level (superclass) and more specific concepts in low-level (subclass).
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Figure 2: TOSM Properties for on demand database. (a) Class Properties; (b) Object Properties; (c) Data
Properties

B. Object Properties

These properties explain the relationship between the classes based on their instances. The category of object and
set of properties determine the type of relationship between them. Figure 3 shows the expression of 3D geometric
relation between two classes: “Room1 hasBounday Boundary1” in which an object property “hasBoundary” links
the individual “boundary1” of MathematicalStructure class to the individual “room1” of “EnvironmentElement”
class. This geometric relation is inferred from visual perception and semantic map.

We divide the object properties into describedInMap, mathemeticalProperty, spatialRelationKnowledge and
temporalK. Figure 2(b) shows that mathematicalProperty includes hasBoundary,relativeToFrame and trans-
formedBy, whereas spatialRelationKnowledge includes connectedTo and directionalRelations which is divided
into inFrontOf, insideOf and nextTo. Finally, temporalKnowledge include isAvailableAt and Timeinterval prop-
erties

C. Data Properties

These properties specify object parameters or typed literal, also called datatype (string, int, float). We retrieve
the individuals by connecting them with the specified literal values using placeSemanticKnowledge, temporalSe-
manticKnowledge, objectSemanticKnowledge , expliciitModel and symbol that are defined as data properties in
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Figure 3: Geometric Relation between Two Classes

our ontological model, as shown in Figure 2(c).

3.3 Semantic descriptor-based Learning and Recognition

Our proposed framework introduces real-time and near-perfect object detection and place recognition approaches
to mimic human visual system using semantic descriptor-based learning. The overview of our recognition model
inspired by human visual cortex and semantic descriptor is illustrated in Figure 4.

When autonomous mobile robot explores complex indoor environment to perform a task, the perception
module recognizes the objects and places by extracting data from sensors and retrieving from on-demand TOSM
database. It continuously updates symbolic state of the task based on semantic information of newly obtained
data from sensors and adds the implicit data about novel objects and places by identifying their classes in
knowledge base.

Our framework allows open-ended learning that enables the robot to adapt to new environment by acquiring
the knowledge in incremental fashion and accumulating conceptualization of new object categories. Apart from
extensive training data for learning, a robot might always be confronted with an unknown objects and places
in operating environment. Our framework handles this issue by processing visual information continuously
and performs learning and recognition simultaneously. Our recognition model performs object detection and
place recognition using convolutional neural network and semantic descriptor that is based on human perception
system. The overview of our recognition model is described in Figure 4.

Our proposed recognition model consists of two stages: Training stage and Testing stag

Figure 4: Semantic Descriptor-based Learning and Recognition Model
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A. Training Stage

At training stage, we use CNN to train the object detection and place recognition model using our own indoor
dataset for making the prediction using sensory input data and on-demand database. This stage is composed of
three major components: semantic analysis, sematic descriptor and training the recognition model.

We perform semantic analysis for explicit and implicit models to get the semantic information and character-
istics of each object. Two major operations related to preprocessing of visual data and feature extraction are
involved in this step. We perform preprocessing to improve the performance of recognition model by reducing the
noise from data for better local and global feature extraction and detection. We extract semantic object features
from processed visual data including both global features and local features. We get the overall properties of
each object by extracting the global features (edges, corners and color) while salient regions by retrieving the
local features.

For semantic analysis, we extract the geometric features such as edges, lines, corners and shape in conjunction
with metric information related to size and pose estimation of object are extracted and integrated into explicit
model of our framework as global features. We store object properties and relationship between them as sensory
input data while actions of an object such as movability as information of object’s behavior in on-demand
database.

The result of object analysis at semantic level is the extraction of semantic descriptions as per human percep-
tion. Thus, we reduce the semantic gap by combining the visual features extracted at low-level and information
at high-level using semantic descriptor. We pass features vectors containing the geometric properties of the
objects such as edges instead of the whole image to train our recognition model.

B. Testing Stage

At this stage, we run our recognition model in real world by performing the semantic analysis on the visual
data and passing the feature vector to run our trained CNN model for object and recognition. Computational
simplicity and minimum storage requirements are the major motivating factors for us to pass the extracted
feature vectors instead of whole image to the recognition model. It also endows the robot with the ability of
human-like perception and semantic understanding of the environment.

4 Experiment

We perform the real-world experiments in conventional center to evaluate the performance of our proposed
semantic SLAM framework and extract the information of the environment and objects. These evaluations are
conducted on an Intel Core i7-4712MQ 2.30 GHz CPU, NVIDIA GeForce 840M GPU, and 12GB RAM. Our
recognition module uses ZED camera to detect objects and places while we perform localization and mapping
using the data obtained from laser range finder (2D sensor).

We use TOSM to represent semantic information by establishing the concepts and linking the conceptual and
physical objects of the environment. Figure 5. Shows the model of our environment in which operating areas is
highlighted in red color.

Figure 5: Experiential Real-world Environment
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Figure 6: Experimental Result. (a) Recognized objects, (b) Semantic representation of Environment (c) Semantic
database, (d) Topological map linking semantic environment with geometric information

Figure 6 shows all the steps involved in our real-world experiment. The robot localizes itself using topolog-
ical map that endows the robot with spatial awareness. We build the semantic map by establishing semantic
relationship between a place node in a topological map and its concepts. After that, we associate the objects
that are recognized in a specific place with their topological nodes in the semantic map. Robot connects to the
database that stores semantic information and properties of objects and places in order to match the relations.
Figure 6(a) shows the objects recognized by our recognition model.

Our semantic map explains the structure of the environment at higher level that is closer to human-mapping
system. Figure 6(b) shows the semantic representation of the environment, in which places are represented
by rectangular boxes and objects are represented by circles. The blue circles indicate the columns, the orange
circles show the vending machine along with the green circles that represent tri-columns while red boxes are
places. Figure 6(c) shows the database that stores the ontology information for the robot mapping system and
properties of the physical objects that are recognized when robot navigates in the environment. Our topological
map shown in Figure 6(d) represents the environment by linking geometrical information and establishing the
relations of semantic information to edges and nodes of relation graph. The proposed relation graph is focused on
the environment mapping task and demonstrates semantic knowledge with the conceptual and spatial hierarchy.
It represents the relationships between the information of corridor-1 containing elevators and columns along with
the objects in coordidor-2 and coorid-3 that the robot knows.

We extract semantic map of our environment model based on occupancy grid as shown in Figure Figure 7
and add semantic concepts such as corridors and spatial relations like connectivity between different objects in
the environment.

5 Conclusion

In our semantic SLAM framework, we have presented the central idea to endow the mobile robot with intelligent
behavior. It has introduced the biological vision-based perception system for object and place recognition using
CNN and semantic descriptor. Furthermore, we have proposed human brain inspired semantic mapping system
to modulate the robot’s behavior when it navigates in the environment to perform a task. Moreover, our
TOSM approach represents the knowledge about the elements in the map. The experimental results indicate the
feasibly of our prof framework in real-world indoor environment. In the future we plan to investigate to build
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Figure 7: Semantic Map with Occupancy Grid Map

and updating a semantic map automatically without traditional maps and recognize objects and places using
semantic map.
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