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Abstract

Loop closure detection (LCD) is an important part in SLAM for the
autonomous mobile robot. A recent trend is to employ off-the-shelf
networks’ features to address LCD problem, which outperform tradi-
tional hand-crafted features. However, what kind of network is more
suitable in LCD and how to use their CNN features have not been well-
studied. In this paper, we compare many popular networks and intro-
duce DenseNet in this field. The features extracted by DenseNet, which
preserve both semantic information and structure details, outweigh
other popular CNN features signicantly. Then a DenseNet feature-
based framework (Dense-Loop) is proposed to address the LCD prob-
lem. We use the Weighted Vector of Locally Aggregated Descriptor
(WVLAD) method to encode the local descriptors as the final global de-
scriptor, which could resist geometry structure and viewpoint changes.
Furthermore, 4 max-pooling by channel and locality-sensitive hashing
(LSH) are adopted to ensure the real-time search. Extensive experi-
ments are conducted on public datasets using Precision-Recall Curve
evaluation method. The results demonstrate Dense-Loop could achieve
state-of-the-art performance.

1 Introduction

In recent years, the combination of semantics and SLAM has become a research hotspot, and many related works
have appeared, such as DS-SLAM[YLL+18], DA-RNN[XF17] and so on. Most of these SLAM systems utilize
semantics in Visual Odometry (VO) and Mapping, while introducing semantic information into loop closure
detection (LCD) is indispensable and requires further research.

Visual place recognition is a basic part in re-localization and loop closure detection for mobile robots[LSN+16].
If the robot could determine whether an image of a place has been visited before, then this information could
help the robot re-localize itself, or correct the error and drift accumulated in the simultaneous localization and
mapping (SLAM) process[LM13, MAT17].
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However, this problem is very challenging. On the one hand, the same place may have different appearances
at different time due to the illumination or viewpoint changes. On the other hand, two different places may have
the similar texture and appearance. A false positive recognition of a place may corrupt the global optimization
process and cause severer unrecoverable localization and mapping failure[Cum08].

Many effective methods have been proposed to solve loop closure detection problem in robotics field. One of
the most prevalent methods is visual bag-of-words (BoWs)[MAT17, Cum08], which treats descriptors of local
features as visual words. This kind of method can achieve good performance on place recognition, and it is robust
against viewpoint changes. However, the hand-crafted features can hardly deal with environment changes, such
as the illumination changes and similar textured regions[Cum08, UMCM14, GSM18].

Recently, many researchers have found the features extracted from off-the-shelf convolutional neural networks
(CNN) have better performance than hand-crafted features[KSH12] and began to investigate how to use CNN
features in LCD[CLJM14, SSD+15, AGT+18, SSJ+15, BWZ+16]. Even so, the research in this field is preliminary
and incomplete, partially because of the weak interpretability of neural networks.

Before delving into the paper, we first see some frequently asked questions when people want to employ CNN
in LCD. First of all, there are numerous outstanding neural network architectures, which one is more suitable for
LCD and what is the reason? Secondly, CNN features vary from hand-crafted features in respect of the quantity
and dimension. Is traditional loop closure detection framework (such as BoWs) suitable for CNN features? If
not, do we have better solutions?

In this paper, we try to explore these problems in depth and give corresponding explanations. The main
contributions include:

1. We compare many off-the-shelf networks and find DenseNet outweighs other popular networks in loop
closure detection, because this dense-connected network could preserve both semantic information and structure
details of the input image.

2. A loop closure detection framework (Dense-Loop) using DenseNet features is proposed in this paper.
Decoupling by feature-maps (DBF) and Weighted Vector of Locally Aggregated Descriptor (WVLAD) method
is utilized to make full use of DenseNet features according to its own distinctions.

3. Extensive experimental results show Dense-Loop approach could achieve state-of-the-art performance on
public datasets.

In the rest of the paper, the structure is as follows. Section 2 briefly introduces some current accomplishments
of loop closure detection. Section 3 presents the proposed framework in detail. Subsequently, extensive compar-
ative experiments and evaluation are presented in Section 4. Finally, a brief conclusion and the future work are
summarized in Section 5.

2 Related works

We categorize current accomplishments on loop closure detection into three groups: traditional hand-crafted
feature-based approaches, end-to-end training approaches, and approaches based on the CNN features extracted
from off-the-shelf networks.

Many well-designed local features are widely used in place recognition and loop closure detection tasks because
their ability to resist scale changes or orientation changes. One of the most successful use is FAB-MAP, which
employs SUFT[BETG08] and BoWs for place recognition and demonstrates robust performance against viewpoint
changes[Cum08].[MAT17] integrate ORB[RRKB11] and BoWs in SLAM. This kind of method becomes the most
popular framework to detect loop closure in real-time visual SLAM systems. However, these hand-crafted
features only care about low-level information of the image and can hardly deal with environment changes,
such as illumination changes. Furthermore, these statistics based methods’ performance depends heavily on the
quality of the features and may be easily deceived by the textured dynamic objects in the environment.

Considering the shortcomings of the hand-crafted features, a recent trend in loop closure detection is to train
a CNN network in an end-to-end manner. NetVLAD[AGT+18] is a novel architecture which aims to minimize
the distance of two image representations of the same place. The training images are categorized into many
tuples, where each training query image has corresponding potential positive samples and definite negative
samples.[LAGOPGJ17] adopt the similar triplet training scheme and could produce a 128 dimension descriptor
vector for each image. However, all of these supervised learning approaches require a large amount of labeled
datasets to train. It is also a bottleneck for others to use the network for their own needs.

Another trend is to exploit the learned features of the off-the-shelf networks with pre-trained weights.
[CLJM14] employ CNN features based on OverFeat for place recognition. The performance of feature-maps
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Figure 1: The pipeline of Dense-Loop

of different layers is explored. [HZZ15] focus on using AlexNet to generate an image representation appropriate
for visual loop closure detection in SLAM. They find CNN features outperform hand-crafted features when illu-
mination changes signicantly.[SSD+15] deploy pre-trained AlexNet as CNN features and using locality-sensitive
hashing and semantic search space partitioning optimization techniques to ensure real-time search. These kind
of methods do not require specific end-to-end training and thus are more convenient. The feature could be
extracted without interference to the pre-trained networks that designed for other tasks. However, since there
are numerous outstanding network architectures in recent years, which one is better and how to make good use
of its inner features have not been fully explored.

In this paper, we will explore what kind of network is more suitable in LCD and how to use them to achieve
better performance without specific supervised training.

3 Framework of Dense-Loop

In the proposed framework, the output of ReLu layer in the last dense block of DenseNet is adopted as the initial
features and decoupling by feature-maps (DBF) is utilized to decompose the global feature into local descriptors.
Then, 4 max-pooling by channel is adopted to reduce the computational complexity. Finally, Weighted Vector
of Locally Aggregated Descriptor (WVLAD) method is proposed to improve the ability of resisting scale or
viewpoint changes. To accelerate the searching process, locality-sensitive hashing (LSH)[RPH05] is employed
according to the characteristic of Dense-Loop descriptors. The pipeline of Dense-Loop is shown in Figure 1,
where C,H,W represent the dimension of the channel, the height and weight of feature-maps. K is the number
of cluster centers and D represents the dimension of one cluster center.

3.1 Image descriptors extraction

In the traditional BoWs, a lot of disordered local descriptors with low dimensions are extracted and they are
designed to resist scale or viewpoint changes. However, CNN features are ordered and 3-dimension. Therefore,
the first thing is to exact good features from CNN and map them to 2-dimension.

3.1.1 DenseNet features

DenseNet is a compact network and made up of dense blocks. All layers in one dense block are directly connected
to ensure maximum information flow between feature-maps. The input of each layer is all the preceding layers’
output, and thus, the block’s final classifier could obtain all the information of the previous feature-maps. This
kind of compact internal representation could reduce feature redundancy and help to solve vanishing-gradient
problem. The architecture of a 5-layer block in DenseNet is shown in Figure 2(a). DenseNet adopted in Dense-
Loop is made up of 5 dense blocks. The output of ReLu layer in the last dense block is used as the raw features
of the input image, where 7× 7 is the size of feature-maps and 1024 is the number of channels. The reason for
choosing the ReLu layer is that it is cleaner and contains less noise.
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The reason of using DenseNet is its reuse of feature-maps. The features of low layers contain more structural
information and measure fine-grained similarity, which is similar to hand-crafted features. While the features of
higher layers care more about semantic information and measure semantic similarity. A natural idea is to utilize
the complementary of high-layer and low-layer features. The outputs of last few layers preserve all extracted
features of preceding layers, which means, the low-level features and high-level features are merged together in
an efficient way. It is helpful for more fine-grained features expression of an image. The superiority of DenseNet
will be illustrated in the experiment section in detail.

3.1.2 DBF and 4 max-pooling by channel

Here are two ways to map these features to 2-dimension, as shown in Figure 2(b). One is decomposing the global
feature into 49 local descriptors with 1024 dimensions, called decoupling by feature-maps (DBF). Anther way is
to decompose 1024 local descriptors with 49 dimensions, called decoupling by channel (DBC). The former plan
is chosen because it is of physical meaning, and it has better performance than DBC. Each pixel in the feature-
map is corresponding to a receptive field in the input image, and all the channels of the pixel could describe the
distinctions of the corresponding receptive field. As for DBC, it’s more like using many global descriptors to
describe an image. But image’s viewpoint change may cause a shift in the feature-maps and thus the ability to
resist geometry structure or viewpoint changes will be weaken.

In order to ensure the real-time search, a method called 4 max-pooling by channel is proposed to reduce the
descriptors’ dimensions with minimal accuracy reduction. 1024-dimension descriptors are divided into 256 groups
and the maximum value of each group is used as the final descriptor. Compared with PCA, which is widely used
to reduce dimensions, 4 max-pooling by channel has less computational complexity but similar performance.
More results can be found in the experimental part.

3.2 WVLAD method

In the traditional BoWs, BoW encoding method is used to measure the similarity of two images. BoWs is
a statistical method and usually needs a large number of visual words (e.g. 106) in the dictionary. A lot of
local descriptors with low dimensions are more suitable in this situation, while the CNN descriptors, which are
decoupled by feature-maps, often have small quantity but large dimensions. Besides, it is hard to train such a
huge BoW dictionary. Instead, Weighted Vector of Locally Aggregated Descriptor (WVLAD) is proposed in this
paper to encode the 49× 256 local descriptors of an image.

WVLAD could ignore the geometric structure of the image via clustering and care more about the dis-
tinctions via weight. Therefore, it’s more resistant to viewpoint and scale changes than calculating euclidean
distance of CNN features. It is an improved method of famous Vector of Locally Aggregated Descriptor
(VLAD)[JDSP10] method and inspired by Cross-dimensional Weighting for Aggregated Deep Convolutional
Features (CROW)[KMO16] method.

Usually we want the descriptors care more about the distinctions of the image and reduce the importance
of the plain areas (e.g. sky). It’s similar to the human perception system, which is conducive to improving
resistance to environment changes. One way is to use region proposal methods and compute regions’ descriptors
respectively. Another way is to adopt the self-adaptive weight methods to adjust the importance of the textured
regions and ordinary areas. The first way is computational expensive. Considering the need for real time, the
second way is integrated in Dense-Loop. Figure 3 shows the detailed process of calculating the feature-maps
weight (FW) and the channel weight (CW).

The strong response of convolution is usually corrsponding to the region of objects. FW can force features
to focus on the textured regions and help solving scale changes. Let F ∈ R(C×H×W ) denotes the 3-dimension
features of the inner layer. X ∈ R(H×W ) represents one feature-map. c, h, w is the location of the feature
vector. FW ∈ R(H×W ) can be calculated by summing feature-maps of all channels. Then L2-norm and a power
normalization with power 0.5 are utilized to get aggregated feature-maps weight.

S =
∑

c

Xc (1)

S′ =

√∑

h,w

S2
h,w (2)

FW =
√
S/S′ (3)
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Figure 2: (a) A 5-layer dense block with a growth rate of k = 4. The figure is reproduced from[HLvMW17]. (b)
The description of DBF and DBC.

CW ∈ R(1×C) is similar to the idea of inverse documentary frequency (IDF) in BoWs, that is, reducing the
importance of high-frequent features.

Tc =

∑
Xh,w>0 1

H ×W
(4)

CWc =

{
log(

∑C
c=1 Tc

Tc
), Tc > 0

0, Tc = 0
(5)

Then, we can calculate the weighted feature-maps Fweight ∈ R(C×H×W ). And decompose it into weighted local
descriptors L, which means 49 local features with 256 dimensions.

F ′c = Fc × FW (6)

Fweight = F ′c,h,w × CWc (7)

In order to improve the ability of resisting geometry structure or viewpoint changes, VLAD is used to encode
weighted local descriptors as a global descriptor. Firstly K-means is used to cluster all the weighted local
descriptors of the datasets and get the codebook {u1, ..., uK}, where K is the number of cluster centers. Each
local descriptor Li has its corresponding cluster center uj : NN(Li) = argminj‖Li − uj‖, where NN represents
nearest neighbor. VLAD is denoted as a set of vector V = [vT1 , ..., v

T
K ], where each vi is associated with a cluster

center ui and has the same size. Then V is calculated by the concatenation of the residual of each Li and
NN(Li):

vi =
∑

Lt:NN(Lt)=i

Lt − ui (8)

Finally, a power normalization with power 0.5 and L2-norm is utilized to normalize V .
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3.3 Locality-Sensitive Hashing

An important feature of loop closure detection for robotic application (e.g. SLAM) is real-time. In the traditional
BoWs, K-D tree is adopted as the nearest neighbor search. However, the spatial dimension of Dense-Loop
descriptors is far more than the number of words in the codebook, K-D tree will be unsuitable in such case.
Instead, locality-sensitive hashing (LSH) is employed to speed-up the search with minimal accuracy degradation.
The detailed process is shown in Figure 1. The Hamming distance between the respective hashed bit vectors,
which is a cheap operation, is used to evaluate the similarity. According to our test, using 1024 bits retains
approximately 99% performance but much more quick than brute search.

4 Experimental Results and Explanations

4.1 Datasets and evaluation method

City Center dataset[Cum08] and New College dataset[Cum08] are widely used in visual SLAM research and loop
closure detection evaluation in particular. The former dataset has many dynamic objects like pedestrians and
vehicles. Besides, the sunlight, wind and viewpoint change may cause the features like shadow unstable. The
latter New College dataset has many dynamic elements and repeated elements, such as similar walls and bushes.
Ground truth are given in two datasets. Figure 4 shows the ground truth and the results of Dense-Loop.

(a) Ground truth (b) Results of Dense-Loop

Figure 4: The ground truth and the results of Dense-Loop on New College Dataset. Pixel (i, j) represents the
relationships of image i and image j.

However, the provided ground truth can’t be used directly. It’s inconsistent with the goal of loop closure
detection because we only need to identify one loop in the same place. Therefore, new definition of the true loop
are made based on the original ground truth. The images in one dataset are divided into two groups, named left
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and right, and so is the ground truth. If a loop is detected, we will stop searching loop in 10 images (according
to GPS) to avoid getting the same loop. When we vary the threshold if a loop closure is accepted, the precision
and recall value will change and the PR-Curve can be gained.

4.2 Experiments and evaluation

Some comparative experiments are conducted to explore the validity of Dense-Loop. Dense-Loop could achieve
state-of-the-art performance on public datasets, The reason can be summarized as two points. One is excellent
features from DenseNet, which take high-level semantic information and fine-grained information into account.
Another is WVLAD method, which could ignore the geometric structure of the image via clustering and care
more about the distinctions via weight.

4.2.1 Why DenseNet

In recent years, there are many prevalent and excellent convolutional networks showing up, such
as ResNet50[HZRS16], VGG[SZ14], DPN[CLX+17], SENet[HSS17], ResNeXt[XGD+17], NasNet[ZVSL17],
SqueezeNet[IMA+16], Xception[Cho17], Inceptionv3[SVI+15], Inceptionv4 and Inception-ResNet[SIV17]. To ver-
ify the excellent features of DenseNet, extensive comparative experiments were conducted. Figure 5 exhibits the
PR-Curves of different networks on New College dataset. Curves are named by the following formats: network
name layer name. For example, DenseNet relu5 blk represents the features extracted from relu5 blk layer of
DenseNet. All the networks are pre-trained on the ImageNet2012 dataset and euclidean distance is adopted as
the similarity score. The layer with best performance in each network is chosen to draw in the figure and it is
apparent that DenseNet outweighs other popular network architectures.
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Figure 5: The PR-Curves of different networks on New College dataset.

Figure 6 shows the euclidean distance of images on New College dataset when employing DenseNet and
Xception respectively. The high-level features of Xception, which care more about semantic information, have a
poorer discrimination on images than those of DenseNet. A common method to combine various levels’ features
is to concatenate them directly, but DenseNet aleady did this during the forward processing. The output of the
last few layers integrate both low-level and high-level features naturally.

4.2.2 Why DBF and 4 max-pooling

Figure 7(a) shows the PR-Curves of DBF and DBC on City Center dataset. In order to make a quick comparison,
euclidean distance is adopted as the similarity score. It is obvious that DBF far outweighs DBC and similar
results can be gained on New College dataset. Figure 7(b) illustrates the PR-Curves of different dimensionality
reduction methods on City Center dataset. The label named relu5 blk means the original features without
dimensionality reduction. The label named 4 max-pooling by channel represents applying 4 max-pooling to the
feature’s channel dimension. The label named 256 PCA means reducing the channel dimension to 256 through
PCA method. We can observe that utilizing 4 max-pooling by channel can maintain 99% accuracy and have
alomost the same performance as PCA. Considering the processing time, 4 max-pooling by channel is adopted
finally.
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(a) DenseNet (b) Xception

Figure 6: The euclidean distance of images on New College Dataset.
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Figure 7: The PR-Curves of DBF V.S. DBC and different dimensionality reduction methods on City Center
dataset.

4.2.3 Why WVLAD

In order to compare the performance with traditional methods, two hand-crafted features (ORB and SIFT) and
two encoding methods (BoW and VLAD) are adopted. The VLAD codebooks have 512 cluster centers, just the
same as Dense-Loop, while BoW codebooks have 10000 visual words. The results on two datasets are shown in
Figure 8.

It’s clear that WVLAD could achieve better performance than BoW and VLAD encoding method based on
DenseNet. And we can notice Dense-Loop far outweighs hand-crafted features. Here are two typical examples.
In Figure 9(a) and 9(b), high similarity score is obtained based on hand-crafted features because of similar
textured regions on the trees and sky, while score of Dense-Loop is close to zero in this case. This is because
Dense-Loop could utilize high-level semantic and global information to judge the similarity. In Figure 9(c) and
9(d), Dense-Loop can recognize the two images as the same place with high score but hand-crafted features
can’t achieve that due to illumination changes. Besides, in this case, we can also find Dense-Loop can resist the
viewpoint changes. As for WVLAD and VLAD, WVLAD can reduce channel redundancy by CW and focus on
the distinguished and unique parts of the image by FW. Therefore, better performance can be obtained in some
cases by solving the problem of scale and viewpoint changes.

5 Conclusion

Loop closure detection is used to detect if the robot has passed through the same place. It’s crucial for the robot
to establish a globally consistent map, especially for large and long-term scenes. A framework of loop closure
detection based on CNN features is proposed in this paper. We find that features extracted from DenseNet
outweigh hand-crafted features and other popular networks’ features. The reason is DenseNet can preserve
both semantic information and structure details of the input image via dense connection. In order to improve
the ability of resisting scale or viewpoint changes, decoupling by feature-maps (DBF) and Weighted Vector of
Locally Aggregated Descriptor (WVLAD) method is utilized to make full use of DenseNet features according to
its own distinctions. Locality-sensitive hashing (LSH) and 4 max-pooling by channel are adopted to ensure the
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Figure 8: The PR-Curves of DenseNet V.S. (ORB, SIFT) and Dense-Loop V.S. (BoW, VLAD)

(a) (b) (c) (d)

Figure 9: Picture (a) and (b) with ORB features come from different scenes, but they share similar textured
regions (e.g. trees and sky). Picture (c) and (d) with ORB features come from the same place, but they have
different apparences, such as illumination changes.

real-time search for robotic application. Extensive experiments illustrate Dense-Loop approach could achieve
state-of-the-art performance on public datasets.

However, the impact of the training datasets on the network’s performance has not been investigated. In the
future, we will conduct more extensive experiments to explore the generalization ability of Dense-Loop, which
is important in real-world robot applications. Besides, we would consider to utilize semantic information of the
network’s prediction results and establish a multi-level semantic knowledge base to speed up the search and
improve the loop closure detection performance.
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