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Abstract

Autonomous navigation in a city-scale environment brings several tech-
nical challenges that are difficult to solve by traditional approaches. In
this paper, we briefly discuss the limitations of the conventional naviga-
tion methods based on robot-centered environment modeling and un-
derstanding, and present recent an ongoing developments of the Deep-
Guider Project. The DeepGuider Project aims to develop a navigation
guidance system that enables robots to navigate in urban environment
without pre-mapping of the environment. In the paper, the main con-
cepts and overall system architecture is briefly presented.

1 Introduction

Autonomous navigation in the unconstrained environments is one of the most important functions in realizing
robot services. In particular, there has been increasing demand on service robots in urban and everyday living
environments such as courier robots and food delivery robots. In order to enable such robot services, a robot
navigation technology capable of navigating to an arbitrary destination in the urban environment is required.

Autonomous navigation in a city-scale environment brings several technical challenges that are difficult to solve
by traditional methods. First, traditional robot navigation requires a precise robot-centered map which is usually
built in advance through SLAM(simultaneous localization and mapping) algorithm. However, robot-centered
modeling or mapping of city-scale space including every streets and buildings is very costly and sometimes
impractical. Second, even after initial mapping is successful, detecting changes (static changes like new buildings,
shops, trees) and keeping the map up to date for consistency is another challenging issue. The environment is not
fixed and the dynamic and static changes cause significant problems for existing map-based approaches. Third,
the success of map-based navigation relies on accurate localization. However, in a complex and dynamic urban
environment, accurate and reliable localization is easy to fail, leading to a navigation failure.

These problems are difficult to avoid with current approaches of robot-centric environment modeling and
understanding. On the other hand, unlike robots, we humans have the ability to navigate even in unvisited cities
and places. It is mainly because human is able to understand and utilize semantics of the surroundings (roads,
buildings, the connection of roads, landmarks) with an optional aid of abstracted map information (paths and
landmarks from electronic maps such as Google Map, Naver Map).

In this paper, we introduce main concepts of the DeepGuider Project which started recently as a national re-
search project in Korea, and describe the technical issues and the proposed system architecture. The DeepGuider
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Project aims to develop a navigation guidance system that enables robots to navigate in indoor and outdoor
urban environments without pre-mapping of the environment nor any pre-built robot-centered map. Instead of
robot-centered map, the guidance system utilizes existing human-centered digital maps such as Google Map or
Naver Map (hereinafter, they are called cloud map) to get abstracted navigation information of the environment.
The abstract navigation information includes road topology, path to destination, and POIs1 along the path.
Street-view or road-view images provided by the cloud map services and GPS information can also be optionally
utilized.

Main advantages of the DeepGuider approach is as follows. Since the proposed system uses existing human-
centered navigation maps, there is no need for additional mapping and it is possible to apply a robot navigation
service instantly to any places and areas. Therefore, if the proposed system is realized, nationwide navigation
service is possible, and various indoor and outdoor robot services such as delivering goods and guiding people
to places can be realized. The DeepGuider Project is an open source software project, and its all results are
released in public via a GitHub repository (https://github.com/deepguider).

2 Related Works

There have been many studies on minimizing mapping efforts or mapless navigation to overcome the limits of
traditional SLAM-based navigation. Brubaker et al. [1] proposed a self-localization method which utilizes visual
odometry and online road maps as the inputs. It localizes by matching the shape of trajectory of the vehicle
obtained from visual odometry with the ones from free online OpenStreetMap. They adopt a probabilistic
approach to cope with inherent ambiguities in the map (e.g., in a Manhattan world). Recently, Mirowski et
al. [2] presented an end-to-end deep reinforcement learning approach that can be applied on a city scale. They
show that it is possible to learn navigation directions by using only Google StreetView without pre-given map.
It demonstrates large-scale learning from real-world imagery, but training and testing is done on the same
environment. Google also recently announced concept of experimental research of global localization, which
combines Visual Positioning Service (VPS), StreetView, and machine learning to accurately identify position
and orientation in urban environment[4]. It uses the smartphone camera as a sensor and Google StreetView
images as references to match. The problem is that the imagery from the phone at the time of localization may
differ from what the scene looked like when the Street View imagery was collected. As one way, they suggest
to filter out temporary parts of the scene and focus on permanent structure that doesn’t change over time by
machine learning automatically.

Another branch of approach is topological representation of the space and localization. Milford et al. [3]
proposed the RatSLAM method based on the rat’s navigation mechanism. RatSLAM builds a local graph map
of the nodes of spaces in online and localizes based on the topological connectivity of the spaces and feature
matching of each space. Badino et al. [5] proposed a hybrid topometric localization method that combines
topological localization using spatial connectivity of the places and metric localization method by Bayesian
filtering. Recently, Bruce et al. [6] presented a reinforcement learning method that learns navigation controls to
reach destination based on a topological representation of the space with omnidirectional images as nodes of the
navigation graph.

Road structure or topology provide an important clue for a semantic understanding of the environment and
localization. However, there have been only a limited number of studies on this branch. Brubaker et al. [1], as
described already, utilizes shape of road for self-localization. Kumar et al. [7] presented a method to classify road
types on street images into intersection and non-intersection based on deep network ensembles. They reported
72.1% accuracy on Mapillary images which consists of 300,000 street images. Amini et al. [8] suggested a deep
learning method to output vehicle control from raw sensor data and high level of route map using a variational
network. Researches on extracting or recognizing road topology have been conducted mainly on aerial photos
[9] and research on frontal images on the ground is very rare.

3 System Architecture

Figure 1 shows overall architecture of the proposed guidance system. The overall system flow is as follows. Once
a user requests a robot service through the DeepGuider system with a destination information, the guidance
system retrieves paths and map information from the cloud map service. Then the guidance system tries to
recognize road structure, POIs, and other semantic information from the raw sensory inputs from the robot.

1Points of Interest: a specific point location that someone may find useful or interesting.
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Figure 1: System architecture

The extracted information then is matched with the map information to locate robot position on the path. If
the localization is successful, an online navigation guidance is generated and sent to robot. On the other hand,
if the localization fails or it gets lost, the guidance system invokes an exploration module, which find ways until
location is recovered.

4 Implementation

The DeepGuider system is currently in development. Therefore, only the guidance scenarios in normal and lost
situation are described here.

4.1 Guidance Scenario in Normal Conditions

After a user orders a product for delivery via web, mobile or other means, the service provider checks the ordered
goods, loads them on the robot, and specifies the destination of the delivery. After confirming that the delivery
destination has been specified, the guidance system accesses the cloud map service and retrieves a routing path
from the current position of the robot to the destination. Since the routing path obtained from the cloud map
service is composed of a vehicle-centric or a pedestrian-centric path, it is difficult to directly use it for the
robot navigation. The guidance system converts the routing path as a sequence of predefined robot guidance
commands. The robot guidance commands consist of nodes and actions. The nodes are the important way
points in the map that the robot have to pass through and the actions are the semantic motion commands to
direct the robot to the next node. After that, the start command is transmitted to the robot. And during the
navigation, a guidance command in every step is selected according to the position of the robot and is sent to
the robot.

The robot captures the front, rear and side images and other sensor data such as GPS and odometer while
navigating and send them to the guidance system. The robot also automatically avoids collisions by recognizing
local obstacles. The guidance system localizes the robot on the map by comparing the image and sensor data
transmitted by the robot with the map information such as street view images and POIs(Point of Interests)
extracted from the cloud map service. The POIs here includes the store names and logos on the path.

Based on the estimated location of the robot, the guidance system selects and provides a guide command to
transmit to the robot. If the robot’s final destination is located indoor, the system guides the robot to find and
access the building entrance, navigate the doorway, and reach the final destination such as a specified room or
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shop. If an indoor map is provided, the map information is used. If not, the destination location is estimated
and searched through POI recognition and active exploration. In this case, the guidance system generates a
exploring guidance command which is described in Subsection 4.2. When the destination is reached, the delivery
is finished and the robot calls the user to pick up the goods.

4.2 Fail Recovery Scenario

When the robot passes a congested area or a point where it is difficult to extract feature points, the guidance
system is easy to lost. For example, the robot can enter wrong alley in a complex city environments. In such
cases, the guidance system recognizes that failures when a measure of reliability on the currently recognized
location falls below a predefined threshold. The guidance system then propagates the context information to
the internal active exploration module, and the active exploration module first attempts to return to the last
successfully localized node, using the internal visual memory stored in the robot.

To return to the last successfully localized node, a guidance command utilizing visual memory is generated
from the active exploration module and transferred to the robot. After the robot successfully returns to the
recent node, the guidance system changes back its status to normal and resumes the normal guidance that
was originally performed. If it is difficult to return to the previous node based on visual memory due to sensor
uncertainty or changes in surrounding conditions, the active exploration module executes a full exploration mode.
In this case, the robot tries to search in new surrounding environment until it recognizes a particular POI or
node.

Even in the above two situations, the robot continuously transmits information to help the guidance system
to locate the robot. And if the reliability of the current robot’s position returns back to be high, the guidance
system determines that the failure situation has been overcome, terminates the exploration mode, and proceeds
with the normal guidance.

5 Conclusion

In this paper, we presented a new navigation framework to enable robots to navigate in urban environment
without pre-mapping of the environment. The key idea is to make the robots to understand and utilize the
human-centered maps or models of the environments. As the project has just started, only the concept and
overall system architecture is presented in the paper. Its implementation and validation in real environment will
be presented in future work.
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