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Figure 1: RGB observation, object detection, depth estimation, top-down map reconstruction.

1 Introduction

This work describes our extended solution [MARb] for the MARLÖ (Multi-Agent Reinforcement Learning in
MalmÖ) Minecraft competition [MARa, PLHM+19, JHHM, GCH+19], and provides insights about how a se-
mantic model of abstract representations of rich sensory data in an environment influence learning and perfor-
mance in a task. Reinforcement learning can achieve state-of-the-art performance on a broad range of tasks
[KMO+18, SM18], however, facing limitations in generalization and sample efficiency. Abstract latent repre-
sentations and different levels of control can substantially increase sample efficiency [MFSR19]. Learning of a
semantic model requires a structured representation of an environment. For that, a preprocessing pipeline can
translate rich sensory information into useful abstractions and an object-based representation. A trained model
can be utilized to provide navigational goals to the lower-level controller trained with Hindsight Experience
Replay (HER) [AWR+17]. Universal value function approximators (UVFAs) and HER [AWR+17] allow efficient
learning when a goal is provided.

2 Methods

To facilitate semantic inference we borrow from methods successfully employed in robotics and autonomous
driving, namely U-Net [RPB15], SLAM, OctoMap [HWB+13] and an object detection module [Goo19]. This
allows the agent to consider the locations and spatial relationships of all elements of the environment based
solely on RGB-image data and the agent’s actions. In the MARLÖ environment, any action is elementary and
performed in exclusion of any other action (move one cell forward, turn left or right 90 degrees). We trained an
open-source Keras implementation of U-Net [RPB15] on 841322 pairs of RGB and ground-truth depth images
collected from the Minecraft simulator. We used Tensorflow Object Detection Library [Goo19] for tracking the
second player, pet and exits in the challenge. Training data was collected in different game sessions by manually
labeling 10000 frames. Combined with our action-based SLAM approach, continuous integration of new distance
data from the depth estimator results in robust scene reconstructions as 3D Octomap [HWB+13] voxel volumes.
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Table 1: Predefined concepts.
Entity Relation Entity

Object B is attached (adjacent) to Object A
Object B is on the left side of Object A
Object B is on the right side of Object A
Object B is above Object A
Object B is below Object A
Object B is on the same vertical line as Object A
Object B is on the same horizontal line as Object A

The Octomap is queried every step in the game environment to update the abstract top-down map representation
(Fig. 1).

We consider a mixed reinforcement learning and semantic learning framework with a pre-processing pipeline.
The pipeline translates RGB-images st ∈ S into an abstract representation zt ∈ Z of a top-down map suitable
for navigation (Fig.1), and tracks objects o ∈ O with the object recognition module. We translate the abstract
representations zt ∈ Z into a Boolean space of concepts ct ∈ C and determine causality of rewarding events in
C ∈ Bc (c is the number of concepts). A concept checks for a set of relationships of objects in the environment
and provides a boolean test result. Along with the test result, each concept collects a relative position of
the tested object. We predefined a set of object-related spatial concepts which are computed for each pair of
objects in the “CatchTheMob” environment at each time step (Table 1). We used human-players demonstrations
(20 episodes) to collect trajectories (st ∈ S), actions, and rewards. The objective is to leverage human-player
demonstrations to acquire a semantic model of rewarding states that enables the agent to select navigational goals
in the environment. When a set of rewarding concepts is selected, their superposition determines a distribution
of positions related to the reward. We feed a sample from this distribution as a goal for the policy that controls
the agent. The policy is trained with HER [AWR+17] to navigate the agent to a goal position in the top-down
map (zt ∈ Z).

3 Untangling causality

Here we provide experimental results which highlight the structure of the problem in the ”CatchTheMob”
environment [MARa]. We trained a DQN using the Rainbow implementation [HMVH+18] to catch the pet with
two agents (black curve in Fig. 2) in the ”CatchTheMob” environment [MARa] on the reconstructed top-down
map representations (Fig. 1). The reward function returns +1 when the two agents are at adjacent positions to
the pet but from two opposite sides. The rewarding condition of being at two opposite sides of the pet can be
learned end-to-end or resolved by a higher-level planning model. To measure the potential benefit of the model
we trained the same DQN [HMVH+18] in a simplified single-agent ”CatchTheMob” environment. The reward
function returns +1 when a single agent is at a position adjacent to the pet (blue curve in Fig. 2). We got more
than 50 times faster convergence than in the two-agent case. The red curve shows training of a single player with

Figure 2: Convergence curves of agents trained on a 10x10 grid map. OY: cumulative reward (median of three
seeds). The black curve shows training with two players, blue and red - with one player. In all experiments the
episode runs until the reward +1 or the maximum of 50 steps is reached, the reward function gives -0.02 for each
non-terminal action.
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HER [AWR+17] to navigate to a given position. We got similar results to the single-agent case. These results
highlight the benefit of higher-level planning through learning causality in the environment.

To learn the rewarding causality we select concepts activated at the rewarding events (ct → ct+1, r == 1) as
candidates for the necessary (but not sufficient) condition. Necessary concepts are encapsulated into a context
and therefore not sufficient to fully determine the rewarding causality. To determine the sufficient set of concepts
we optimize search by prioritizing concepts with a difference in rewarding / not rewarding samples and y a
localization loss (1).

Loss = aP(Cx) + bMSE(D) (1)

P(C) - reward prediction error of the selected set x of concepts C.
MSE(D) - mean square error of distribution of possible rewarding positions D. a, b - coefficients.
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