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Abstract. A discrete continuous-time random walk model for non-Markov dif-

fuse processes with fractal structure is presented. On the basis of the apparatus 

of integro-differentiation of fractional order, finite-difference approximations of 

diffuse models of fractional order are obtained taking into account the effects of 

memory and self-organization A modification of the statistical modeling meth-

od (Monte Carlo method) was carried out and an algorithm for its implementa-

tion was constructed to study the diffusion process of fractional order in time. 
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1 Introduction 

Today, the fractional intero-differential apparatus is well developed and is used to 

explain and simulate complex systems in nature. The development of the idea of  using 

the fractional integro-differential apparatus to model complex systems is handled by 

many scientific schools in the world that are associated with the names: F. Mainardi 

[8], I. Podlubny [5], S. Samko, A. Kilbas [9], V. Uchajkin [1] and others. Such special 

attention and interest in using non-integer integro-differentiation is ex- plained by the 

fact that the mathematical apparatus of differentiation and fractional- order integration 

allows modeling of various processes and systems, which are char- acterized by the 

effects of memory, spatial nonlocality and self-organization. A particular advantage of 

fractional-differential models, as opposed to integer ones, is the ability to describe and 

explore more accurately real-world models with the above characteristics and effects. 

Fractal integro-differential parameters have been success- fully applied in the fields 

such as physics, biology, chemistry and biochemistry,   hydrology, medicine, 

technology, finance. Fractional-order differential equations describe the evolution of 

physical systems with residual memory, which occupy an intermediate position 

between Markov systems and systems that are characterized by total memory. In 

particular, the fractionality index indicates the proportion of states of the system that 

persist throughout the entire process of its functioning. 
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It is believed that the presence of a fractional derivative with time in equations is 

interpreted as a reflection of a special property of the process - memory (eridarity), 

and in the case of a stochastic process - non-Markovian behavior. Fractional spatial 

derivatives reflect the self-similar heterogeneity of the structure or the medium in 

which the process develops. Such structures are called fractal [5]. The use of fraction-

al order differential equation apparatus is important for studying the processes of 

anomalous diffusion in the study of anomalous properties of complex-structured in-

homogeneous structures. Such structures have significant effects on memory and 

spatial nonlocality. 

 

2 Analysis of Research 

Abnormal diffusion processes )1(2~)(
2




  KX  are characterized by a depar-

ture from the linear law  KX ~)(
2

  of mean-square displacement and the presence 

of the fractional index   depending on the time  , where KK ,1  - are the usual 

diffusion coefficients of the dimension sec
1*2 

cm  and the generalized diffusion 

coefficient sec*2 
cm , ()  is Gamma-function. 

The fractional index 1  characterizes various modes of diffusion processes: 

10    a slow diffuse process, 21    an accelerated diffuse process. The case 

2  is described by the wave equation. This approach describes the so-called non-

Gaussian processes in dynamic systems. 

They are characterized by the presence of correlation dependencies for arbitrarily 

large space-time scales. According to [10, 11], a differential apparatus based on frac-

tional-order derivatives can be used to model anomalous diffusion processes, or direct 

modeling of the dynamics of particles and their collisions in the system. 

Fractional-order differential equations are characterized by strong nonlocality and 

spatial correlation and are based on both spatial and evolutionary fractional differen-

tial operators. A characteristic feature of fractional operators of differentiation and 

integration is the absence of an explicit physical and geometric interpretation of such 

operations [1, 9, 16]. There are several approaches to solving this problem, which can 

conditionally be divided into three directions: probabilistic, geometric and physical 

[18, 19]. 

The presence of different approaches to the determination of fractional derivatives 

give rise to ambiguity regarding the correctness and physical meaningfulness of the 

formulation of initial and boundary conditions depending on the type of fractional 

derivative [5, 7, 16]. 

It is also important that the fractional derivatives and integrals included in the in-

tegro-differential equations and describe a certain process can be used in the sense of 

the Riemann-Liouville, Caputo, Wright, Weil, Grunwald-Letnikov, Marcho deriva-

tives. At present, to solve fractional-order differential equations, both analytical [20, 

21, 22] and numerical methods are used [2, 3, 6, 23, 24, 25]. 
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In the works [4, 20, 21, 22], found are analytical solutions to heat conduction prob-

lems with boundary conditions of the first kind containing derivatives of fractional 

order with time and spatial variable. In particular, one-dimensional cases of problems 

for an infinite straight line, a semi-bounded straight line, and problems without initial 

conditions are considered. Relaxation processes at the phase boundary are of complex 

nature, which leads to nonlinear and nonlocal heat-transfer processes. However, one 

of the analytical methods used to solve fractional-differential equations is the Laplace 

transformation method [19, 22].  

Analytical solutions of boundary- value problems with fractional derivatives often 

have considerable difficulties; therefore, numerical methods are more efficient and 

easier to apply. The theory of numerical methods for solving differential equations in 

fractional partial derivatives is fragmentary and far from being complete [26, 27]. 

That is why a considerable number of works is devoted to finding optimal numerical 

methods. 

3 Formulation of Problems 

The fractional-order differential equation takes the form: 

 

x

xu
K

xu


















 ),(),(    (1) 

where ),( xu  - function of diffusion in the region   TLxx   0,0:, . 

Note that the diffusion equation (1) with a fractional-order differential operator is 

associated with a random walk process with continuous time if the asymptotic behav-

ior of the )(  - density of the waiting time is determined by the relation [1, 10]: 

10,
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According to [12, 16], the Laplace transformation for 

)(1)exp()( 



 sss   is characterized by asymptotics, while for 10   , 

the function )(  in such Laplace transformation corresponds to the conditions of 

distribution density. The types of some functions )(  are given in [16]. In par-

ticular, )(  can be selected in the form of Mitag-Leffler functions for which the 

Laplace transformation has the abovegiven form. 

By applying the Laplace transformation with respect to the time variable and the 

Fourier transformation for the spatial variable, one can obtain the fractional-order 

diffusion equation with the fractional Kaputo differentiation operator [5].  

The differential fractional-order operators in equation (1) are defined by Riemann-

Liouville formulas: 
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where ()  - is Gamma function,    - is an integer part. 

It is known that analytical methods of implementing differential equations with 

fractional-order derivatives encounter great difficulties. Therefore, only for some 

cases, exact solutions of equation (1) were obtained mainly with boundary conditions 

of the first kind. 

Finite-difference methods are used to obtain the numerical solution. They are based 

on the approximation of fractional derivatives using the Grunwald-Letnikov formulas. 

Such fractional derivatives are a direct generalization in terms of finite differences 

and are determined by the dependencies for function ),( xu  on the interval ],[ ba  
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Where 
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m , the value of 0h  correspond to the left-side derivatives, and    

0h  to the right-side. Similarly, you can write for a function on R : 
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If the function )(xu   is continuous, and its derivative   )(' xu   is integrated оn the 

interval ],[ xa , then the Riemann-Liouville and Grunwald-Letnikov derivatives coin-

cide, in particular, with the Caputo derivatives as well [5, 16]. For further studies, we 

introduce a uniform grid with respect to spatial and temporal variables in the region  

  TLxx   0,0:, . 
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Then, according to (2)-(4), the fractional derivatives of equation (1) on the grid  

can be approximated by the following dependencies [9, 17]: 
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The above approximations using shifted Grunwald-Letnikov formulas allow ob-

taining conditionally stable explicit and stable implicit first-order accuracy schemes 

for fractional differential equations. 

In fractal-structured media, it was shown in [12, 28] that the fundamental solutions 

of fractional differential equations with respect to temporal and spatial variables are    

characterized by properties which are intrinsic to the distribution densities of random 

variables. 

4 Simulation of Random Walks 

Discrete models of Markov random walk for the classical Brownian motion are the 

basis for the application of statistical methods for studying conventional diffusion 

processes [10, 16]. For a one-dimensional case where displacements are possible only 

at two nearest points, it is possible to write 

),(
2

),(
1

),(  hxuphxupxu   

Where pp 2
,

1
 are the probabilities of particle displacement by one step 

),(,,,1
21

  knhup
k
n

knhxpp  - is the probability that at the n
th  step the 

process is at the k
th  point. consta
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The implementation of the statistical test method involves the use of appropriate 

difference schemes [4, 14, 16]. The diffusion equation in the region 

  TLxx   0,0:,  takes the form: 
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To use the statistical test method in order to study the model (10), we use the 

Crank-Nicholson difference scheme [4]. In this case, the algorithm for calculating the 

probability of a random variable location at a point of time  j
 takes the form: 
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where hjjhnxn ,,,)1(    - uniform splitting steps, jn,  - numbers of splitting 

nodes, 1;0 . 

According  to [13], the value u
j
n

1  can be interpreted as the probability of a ran-

dom variable location at the point xn
 at the time  j

. That is, over a period of time 

]1,[  ii
 we can consider the Markov process with corresponding probabilities: 

 u
j

knk
pku

j
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   (12) 

The coefficients pk
 are determined from the difference relation (12) and are the 

probability of uniform random walks of some particle M  around the nodes of the 

difference grid (11) of approximation of the diffusion equation (1). In particular, for a 

six-point pattern for two time j  and 1j , such probabilities take the form: 
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In particular, p 2
 in formula (13) corresponds to the value 1j . In addition, the 

transfer coefficients satisfy the condition 1


k
pk

 as well as the stability condi-

tion [17] of the difference scheme (11) for 5.0 . 

The relations (12), (13) characterize the standard random walk model for the 

Gaussian process. It is believed that a random particle location in the internal node of 

the difference scheme can move to neighboring nodes, that is, to carry out the move-

ment of a unit length or remain in the location node, namely, to perform a zero-length 

step. 

5 Simulation of Random Walks for Fractional-Diffusion Process 

To construct a discrete model of random walk for the differential equation of diffu-

sion of fractional order (1), we use [12, 13, 15]. Equally important in this respect is to 

establish the relationship of the fundamental solution of the fractional-order differen-

tial equation (1) with the time variable of the fractionally stable distributions [16]. In 

particular, the fundamental solution of the equation (*) with the fractional differentia-

tion operator Caputo: 
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is a probability density function of the fractionally stable distribution [9, 13]. 

For 5.0  we get a Gaussian solution [16]. 

Then, in the equation (11) obtained in terms of the relations in discrete form, you 

can  move from the function ),( xu  to the probability density (or relative diffusion 

concentration). This, in turn, makes it possible to move on to the probability of a par-

ticle location at a nodal point of a discrete grid. In this regard, we introduce the desig-

nation. 

Given the relation (7)-(9) according to [13, 17], we can write: 
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The relation for determining V
k
n

 can be considered as a modeling scheme for a 

random process with discrete time. The value V
k
n

 characterizes the probability of the 

particle location at the point xn
 at the time  k

 during a random walk in the differ-

ence grid. The coefficients  V
k
n

 correspond to the probability of transitions in space 

and time. We denote them by p mp i 2
,

1
. Then (15) can be written as: 

 V
mk

n
m

p m
i

V
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inp iV
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  (16) 

Using the relation (16) for each case of random walk, we can get a finite number of 

values p
i1
 and p

m2
. Іn addition, these values must satisfy the conditions of non-

negativity, normalizing, which are typical of probabilistic characteristics, that is 

1

2
21

,0
2

,0
1













m
p m

i
p ip mp i

. The conditions 











i
V i

i
V

k
iV

k
n

0,0  

must also be met. The second condition ensures the preservation of the total number 

of particles. 
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6 Numerical Experiment 

Numerical experiments were performed for materials with density 3
/460 mkg , 

5.02 K . For the equation () was specified boundary conditions   ,),( buu . 

Initial conditions: axxu )0,( , if 2/)(0 abx  , xbxu )0,( , bxab  2/)( . 

 
Fig. 1. Changing the function U over time for 7.0  with different values x . 

 
Fig. 2. Changing the function U over time for 9.0  with different values x . 

 

Quantities 1.0h , 1.0 . Figures 1 and 2 show the dependences of the function 

change ),( xu , respectively, for the fractal coefficient 7.0  and 9.0  for dif-

ferent values x , which are respectively .1;75.0;5.0;25.0;0x  
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The analysis of graphic dependences indicates the effect of the parameter   on the 

function change ),( xu . Increasing the parameter   increases the number of maxi-

mum values of the curve for different values of change of coordinates. 

Conclusions 

On the basis of discrete models of diffusion processes with fractional derivatives 

shows a modification of the method of random walk on the implementation of the 

mathematical model of a diffusion process subject to temporal nonlocality. For nu-

merical implementation of such a mathematical model, finite-difference schemes are 

proposed, an algorithm is developed and software is created. The results of numerical 

experiments for the implementation of a mathematical model of diffusion processes 

for different values of the fractional index according to time are given by the statisti-

cal method. 
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