
Fractal Distribution of Medical Data in Neural Network

Nataliya Boyko[0000-0002-6962-9363], Maxim Kuba[0000-0002-7394-5764],

Lesia Mochurad [0000-0002-4957-1512], Sergio Montenegro[0000-0002-0636-5866]

Lviv Polytechnic National University, Lviv 79013, Ukraine

Julius-Maximilians-University Würzburg, Am Hubland, D-97074 Würzburg, German

nataliya.i.boyko@lpnu.ua

maxim.kuba@gmail.com
lesiamochurad@gmail.com

sergio.montenegro@uni-wuerzburg.de

Abstract. Nowadays the topic of deep learning is becoming more and more

popular. Moreover, almost every organization want to have at least one special-

ist in this area, because artificial intelligence can help your medicine to grow

and to increase its productivity. Research of one of the types of neural network

– fractal neural network. Testing and comparing with other neural networks.

We will take one dataset and test it on our neural networks and then compare

the results. Trained and tested neural networks with graphs and comparisons of

their output. In the current paper we implemented custom neural network and

fractal neural network. Then we trained and tested them on CIFAR-10 dataset.

Custom neural network showed us worse results, but each iteration took up to 10

seconds, when 1 iteration of fractal neural network took up to 3 minutes. Moreo-

ver, our network is pretty simple, so we can say that that is suits better for da-

tasets with lower quantity of classes. Fractal neural network showed us pretty

good results, but I am sure that with more powerful computing resources and

more time it can perform much better.

Keywords: neural networks; model; medical data; keras; train; dataset; accura-

cy, loss.

1 Introduction

In the current paper we want to make a research about one part of deep learning –

fractal neural networks. A neural network is a network or circuit of neurons, or in a

modern sense, an artificial neural network, composed of artificial neurons or nodes.

Thus, a neural network is either a biological neural network, made up of real biologi-

cal neurons, or an artificial neural network, for solving artificial intelligence (AI)

problems. The connections of the biological neuron are modeled as weights. A posi-

tive weight reflects an excitatory connection, while negative values mean inhibitory

connections. All inputs are modified by a weight and summed. This activity is re-

ferred as a linear combination. Finally, an activation function controls the amplitude

of the output. For example, an acceptable range of output is usually between 0 and 1,

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0)

2019 IDDM Workshops.

mailto:nataliya.i.boyko@lpnu.ua
mailto:maxim.kuba@gmail.com
mailto:lesiamochurad@gmail.com
mailto:sergio.montenegro@uni-wuerzburg.de

2

or it could be −1 and 1. There are many types of neural networks, and residual neural

network is one of them [1, 9].

A residual neural network (ResNet) is an artificial neural network (ANN) of a

kind that builds on constructs known from pyramidal cells in the cerebral cortex. Re-

sidual neural networks do this by utilizing skip connections, or short-cuts to jump

over some layers. Typical ResNet models are implemented with double- or triple-

layer skips that contain nonlinearities (ReLu) and batch normalization in between. An

additional weight matrix may be used to learn the skip weights; these models are

known as HighwayNets. Models with several parallel skips are referred to as Dense-

Nets. In the context of residual neural networks, a non-residual network may be de-

scribed as a plain network.

One motivation for skipping over layers is to avoid the problem of vanishing gra-

dients, by reusing activations from a previous layer until the adjacent layer learns its

weights. During training, the weights adapt to mute the upstream layer, and amplify

the previously-skipped layer. In the simplest case, only the weights for the adjacent

layer's connection are adapted, with no explicit weights for the upstream layer. This

works best when a single non-linear layer is stepped over, or when the intermediate

layers are all linear. If not, then an explicit weight matrix should be learned for the

skipped connection (a HighwayNet should be used) [1-4, 6].

Fractal neural network uses non-residual network approach. Macro-architecture of

fractal neural networks is based on self-similarity. Repeated application of a simple

expansion rule generates deep networks whose structural layouts are precisely trun-

cated fractals. These networks contain interacting subpath of different lengths, but do

not include any pass-through or residual connections; every internal signal is trans-

formed by a filter and nonlinearity before being seen by subsequent layers. The key

may be the ability to transition, during training, from effectively shallow to deep.

Additionally, fractal networks exhibit an anytime property: shallow subnetworks pro-

vide a quick answer, while deeper subnetworks, with higher latency, provide a more

accurate answer [3].

2 Review of the Literature

Fractal neural networks are relatively new, that is why there are only a few articles on

this theme. Frankly speaking, there is only one brief and complex paper about Fractal

neural networks. It was published at ICLR 2017 as a conference paper by Gustav

Larsson, Michael Maire and Gregory Shakhanaovich [11]. Their paper is called

“FractalNet: Ultra-Deep Neural Networks without Residuals”. They briefly describe

fractal neural networks and how do they work. Also, they compare the results of this

network with more than 20 other networks on about 10 different datasets. They pub-

lished code for FractalNet implementation which weare going to update and use in

current paper. So, their paper is very useful, full of important information. They have

very powerful computing resources, which helps them to train and test networks on a

different data for a long time.

3

3 Materials and Methods

In order to implement and run our networks we will use Python 3 and Google Col-

laboratory as our working environment.

Colaboratory is a free Jupyter notebook environment that requires no setup and

runs entirely in the cloud. With Colaboratory you can write and execute code, save

and share your analyses, and access powerful computing resources, all for free from

your browser. Also,it provides good GPU in order to operate our networks [4, 12].

For training and testing we pick CIFAR10 dataset from Keras.

Keras is a high-level neural networks API, written in Python and capable of run-

ning on top of TensorFlow, CNTK, or Theano. It was developed with a focus on ena-

bling fast experimentation. Being able to go from idea to result with the least possible

delay is key to doing good research [5, 10].

The CIFAR-10 dataset is a collection of images that are commonly used to train

machine learning and computer vision algorithms. It is one of the most widely used

datasets for machine learning research. The CIFAR-10 dataset contains 60,000 32x32

color images in 10 different classes. The 10 different classes represent airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6,000 images of each

class [6].

Computer algorithms for recognizing objects in photos often learn by example.

CIFAR-10 is a set of images that can be used to teach computer how to recognize

objects. Since the images in CIFAR-10 are low-resolution (32x32), this dataset can

allow researchers to quickly try different algorithms to see what works. Various kinds

of convolutional neural networks tend to be the best at recognizing the images in

CIFAR-10.

In order to implement our Sequential model we will use the following layers and

functions:

1) ReLU stands for rectified linear unit, and is a type of activation function. Math-

ematically, it is defined as y = max(0, x). ReLU is linear (identity) for all positive

values, and zero for all negative values. This means that [7]:

It’s cheap to compute as there is no complicated math. The model can therefore

take less time to train or run.

It converges faster. Linearity means that the slope doesn’t plateau, or “saturate,”

when x gets large. It doesn’t have the vanishing gradient problem suffered by other

activation functions like sigmoid or tanh.

It’s sparsely activated. Since ReLU is zero for all negative inputs, it’s likely for

any given unit to not activate at all.

2) Softmax is a function that takes as input a vector of K real numbers, and nor-

malizes it into a probability distribution consisting of K probabilities. That is, prior to

applying softmax, some vector components could be negative, or greater than one;

and might not sum to 1, but after applying softmax, each component will be in inter-

val(0,1),and the components will add up to 1, so that they can be interpreted as proba-

bilities. Softmax is often used in neural networks, to map the non-normalized output

of a network to a probability distribution over predicted output classes[8, 10].

4

3) Dropout is a regularization technique for neural network models. Dropout is a

technique where randomly selected neurons are ignored during training. They are

“dropped-out” randomly. This means that their contribution to the activation of down-

stream neurons is temporally removed on the forward pass and any weight updates are

not applied to the neuron on the backward pass.

As a neural network learns, neuron weights settle into their context within the

network. Weights of neurons are tuned for specific features providing some speciali-

zation. Neighboring neurons become to rely on this specialization, which if taken too

far can result in a fragile model too specialized to the training data. This reliant on

context for a neuron during training is referred to complex co-adaptations [9, 17]

4) Max pooling is a sample-based discretization process. The objective is to down-

sample an input representation (image, hidden-layer output matrix, etc.), reducing its

dimensionality and allowing for assumptions to be made about features contained in

the sub-regions binned.

This is done to in part to help over-fitting by providing an abstracted form of the

representation. As well, it reduces the computational cost by reducing the number of

parameters to learn and provides basic translation invariance to the internal represen-

tation[10, 15].

Also,we will use the optimization algorithms described below:

1) The RMSprop optimizer is similar to the gradient descent algorithm with mo-

mentum. The RMSprop optimizer restricts the oscillations in the vertical direction.

Therefore, we can increase our learning rate and our algorithm could take larger steps

in the horizontal direction converging faster[11, 12].

2) Adaptive Moment Estimation (Adam) is a method that computes adaptive

learning rates for each parameter. It stores both the decaying average of the past gra-

dients mt, similar to momentum and also the decaying average of the past squared

gradients vt, similar to RMSprop and Adadelta. Thus, it combines the advantages of

both the methods. Adam is the default choice of the optimizer for any application in

general [11, 13].

4 Experiment

So, for training our networks, we chose CIFAR10 dataset. We will train our network

to classify 10 different objects: doctor, patient, disease, mode, ward, hospital, surgery,

tablet, syringe, prescription. The classes are completely mutually exclusive. There is

no overlapping between classes. This means that you will, not find an image with 2

different classes at the same time.

 This means, that we could apply our network to solve different medical problems.

For example, it can be helpful for predicting diagnosis relying on the cardiogram.

We will make custom sequential model for comparing with fractal one. Sequential

model is simply a linear stack of layers. So, you can just create an empty model, and

then add as many layers as you want. In this model we add few activation layers,

connection layers, regularization layers, convolutional layers, pooling layers. Here is

our final version

5

Fig. 1. Final version model.add

Now it is time to train our network. In order to do this, we will iterate over our da-

taset (which contains 50000 images) 200 times (epochs) and teach our network. We

will pass the image and regardless to prediction of our network correct the matrix of

the weight in order to get better accuracy.

On the picture below you can see a small piece of our training process, which out-

puts the result after each epoch (Fig. 2).

Epoch 57/70

50000/50000 [======]12s 232us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995

Epoch 58/70

50000/50000 [=====]12s 234us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995

Epoch 59/70

50000/50000 [=====]12s 234us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995

Epoch 60/70

50000/50000 [=====]12s 232us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995

Epoch 61/70

50000/50000 [=====]12s 233us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995

Fig. 2. Training process

6

Table 1. Training process.

Epoch Loss Accuracy Epoch Loss Accuracy

1 1.9679 0.2735 36 0.6250 0.7914

2 1.5706 0.4101 37 0.6452 0.7824

3 1.4189 0.4774 38 0.6336 0.7900

4 1.2955 0.5239 39 0.6172 0.7879

5 1.2336 0.5527 40 0.6663 0.7797

6 1.2376 0.5506 41 0.6854 0.7718

7 1.1391 0.5954 42 0.6731 0.7751

8 1.0698 0.6177 43 0.6089 0.7985

9 1.1180 0.6023 44 0.6342 0.7872

10 0.9758 0.6512 45 0.6001 0.8020

11 0.9569 0.6608 46 0.6475 0.7883

12 0.9204 0.6739 47 0.6988 0.7812

13 0.9549 0.6634 48 0.6283 0.7920

14 0.8803 0.6881 49 0.6131 0.7992

15 0.8783 0.6897 50 0.6975 0.7771

16 0.8434 0.7002 51 0.6001 0.7994

17 0.8100 0.7149 52 0.6080 0.7946

18 0.8215 0.7104 53 0.5819 0.8074

19 0.8707 0.6978 54 0.6156 0.7963

20 0.7756 0.7322 55 0.5921 0.8055

21 0.7524 0.7425 56 0.6101 0.8031

22 0.7338 0.7416 57 0.6030 0.7995

23 0.7304 0.7481 58 0.6311 0.7939

24 0.7347 0.7471 59 0.6152 0.7958

25 0.6974 0.7580 60 0.6128 0.7972

26 0.7043 0.7576 61 0.6032 0.8007

27 0.6685 0.7675 62 0.6045 0.8018

28 0.6875 0.7655 63 0.6053 0.8033

29 0.7100 0.7567 64 0.6095 0.8017

30 0.6677 0.7714 65 0.5860 0.8075

31 0.6982 0.7617 66 0.6370 0.7964

32 0.6558 0.7782 67 0.6523 0.7887

33 0.6424 0.7838 68 0.6478 0.7870

34 0.6637 0.7792 69 0.5904 0.8111

35 0.6663 0.7776 70 0.6472 0.7929

7

In the table above you can see the full training process with its accuracy and loss at
each step of the training. The best results are highlighted

Also, on the following graphs (Fig. 3, 4) you can see a dependency of accuracy

and loss according to epochs. Accuracy is calculated as the amount of right predic-

tions divided by all predictions.

So, from the graph we can see the logarithmic increase of accuracy. Also, we can

notice optimal amount of training after which the accuracy increases very slightly.

Fig. 3. Model accuracy

Fig. 4. Model loss

Model for fractal neural network is much more complicated than our custom mod-

el. It has much more layers and much more configurations. The full implementation

of the fractal neural network model could be found by the link in references [9]. It

8

was published with a paper at ICLR 2017 by Gustav Larsson, Michael Maire and

Gregory Shakhanaovich, as I mentioned in literature review section [11].
Now let us train this network the same way as we did with our custom network.

This time we will make 70 epochs, because training fractal network takes more time
and computing resources. Below you can see a piece of our training process (Fig. 5).

Epoch 37 /70

50000/50000 [=====]116s 2ms/step – loss: 0.0804 – acc: 0.9761 – val_loss: 0.5396 – val_acc: 0.8424

Epoch 38/70

50000/50000 [=====]116s 2ms/step – loss: 0.0777 – acc: 0.9761 – val_loss: 0.5090 – val_acc: 0.8492

Epoch 39/70

50000/50000 [=====]116s 2ms/step – loss: 0.0820 – acc: 0.9750 – val_loss: 0.4709 – val_acc: 0.8541

Epoch 40/70

50000/50000 [=====]116s 2ms/step – loss: 0.0735 – acc: 0.9777 – val_loss: 0.4540 – val_acc: 0.8630

Epoch 41/70

50000/50000 [=====]116s 2ms/step – loss: 0.0728 – acc: 0.9783 – val_loss: 0.4439 – val_acc: 0.8691

Fig. 5. Training proccess

In the table 2 you can see the full training process with its accuracy and loss at each
step of the training. Best results are highlighted.

Table 2. Training process.

Epoch Loss Accuracy Epoch Loss Accuracy

1 2.3521 0.1087 36 0.4375 0.8663

2 2.0765 0.1944 37 0.5396 0.8424

3 2.2318 0.2154 38 0.5090 0.8492

4 1.8486 0.3299 39 0.4709 0.8541

5 1.8550 0.3061 40 0.4540 0.8630

6 1.1768 0.6020 41 0.4439 0.8691

7 1.1903 0.6307 42 0.4675 0.8657

8 0.9979 0.7036 43 0.4817 0.8542

9 0.9514 0.6841 44 0.4516 0.8664

10 1.0341 0.6793 45 0.4493 0.8693

11 0.7769 0.7512 46 0.4520 0.8593

12 0.7874 0.7646 47 0.4981 0.8587

13 0.8565 0.7197 48 0.4356 0.8733

14 0.6864 0.7828 49 0.5158 0.8460

15 0.6245 0.8135 50 0.4157 0.8776

16 0.7089 0.7909 51 0.4671 0.8626

17 0.6684 0.7949 52 0.4642 0.8597

18 0.5995 0.8228 53 0.4100 0.8788

19 0.7498 0.7592 54 0.6282 0.8223

9

20 0.5802 0.8037 55 0.4664 0.8606

21 0.6381 0.7965 56 0.5437 0.8354

22 0.5384 0.8351 57 0.4502 0.8721

23 0.5344 0.8379 58 0.4535 0.8651

24 0.4795 0.8506 59 0.5082 0.8502

25 0.6395 0.7895 60 0.4246 0.8735

26 0.6320 0.8028 61 0.4654 0.8576

27 0.5624 0.8226 62 0.3877 0.8834

28 0.5276 0.8393 63 0.4217 0.8680

29 0.5183 0.8395 64 0.4337 0.8758

30 0.6432 0.7951 65 0.4299 0.8717

31 0.5376 0.8188 66 0.4545 0.8721

32 0.4631 0.8612 67 0.4193 0.8697

33 0.5345 0.8393 68 0.4392 0.8680

34 0.4406 0.8676 69 0.4547 0.8690

35 0.4629 0.8556 70 0.3922 0.8864

Best results are marked with green color.

Also, on the following graphs (Fig.6, 7) you can see a dependency of accuracy and

loss according to epochs. As with our custom network accuracy is calculated as the

amount of right predictions divided by all predictions. So, from the graph we can see

the logarithmic increase of accuracy. Also, we can notice optimal amount of training

after which the accuracy in сreases very slightly. So, it looks similar to our custom

neural network graph, but as we see, that the accuracy here is better.

Fig. 6. Model accuracy

10

Fig. 7. Model loss

5 Results

Now it is time to test our trained models on a test dataset. It is the set of images which

haven’t been used during training process. The process is similar, but we iterate

through our dataset only once, and output the results immediately. The results for our

custom network are the following (Fig. 8).

Fig. 8. Test results

This test showed us 0.7929 accuracy, which means that from 10000 labeled imag-

es with 10 different object classes our network predicted 7929 images right and 2071

images wrong. Our test accuracy become lower than the training one (8.111), which

means that we overfit our model on a train dataset a little bit. It means that our weight

fits a bit better for our train dataset. Lowering the training time may improve our ac-

curacy a little bit.

Now let us head back to our fractal network. Our best accuracy was achieved at

the very the end of epochs, which means, that further training may lead to better re-

sults. But it will take more time and more computing resources. Our accuracy is pretty

good, but first let us test in on test data set and check if we didn’t overfit our network

(Fig. 9).

Fig. 9. Test results

This test showed us 0.8864 accuracy,which means that from 10000 labeled images

with 10 different object classes our network predicted 8864 images right and 1136

11

images wrong.Our test accuracy is the same as train one(0.8864),which means that we

didn’t overfit our model on a train dataset.

In the table below you can see the final comparison of our models. All trainings

and testing were made inside Google Collaboratory with its own GPU.

Table 3. The final comparison of models.

Net-

work

Training

time (1

epoch)

Ram

usage

Training

accuracy

Training

loss

Test

time

Test

accuracy

Test

loss

Custom 12s 2.9GB 0.8111 0.5819 1s 0.7929 0.6472

Fractal 116s 5.5GB 0.8864 0.3877 6s 0.8864 0.3922

6 Conclusions

In the current paper we run custom neural network and fractal neural network inside

Google Collaboratory using given GPU. Then we trained and tested them on CIFAR-

10 dataset. Custom neural network showed us worse results than fractal one, but each

iteration took up to 10 seconds, when 1iteration of fractal neural network took up to 3

minutes. Moreover, our network is pretty simple, so we can say that that is suits better

for datasets with lower quantity of classes. Fractal neural network showed us pretty

good results, but we are sure that with more powerful computing resources and more

time it can perform much better.

As we mentioned before, we can apply this technology on a different medical data

to solve various kinds of medical problems. This can help to decrease the amount of

human mistakes.

References

[1] Estivill-Castro, V., Lee, I.: Amoeba: Hierarchical clustering based on spatial proximity using
Delaunay diagram, 9th Intern. Symp. on spatial data handling, pp. 26–41 Beijing, China (2000).

[2] Kang, H.-Y., Lim, B.-J., Li, K.-J.: P2P Spatial query processing by Delaunay triangulation, Lecture
notes in computer science, vol. 3428, pp. 136–150, Springer/Heidelberg (2005).

[3] Boehm, C., Kailing, K., Kriegel, H., Kroeger, P.: Density connected clus-tering with local subspace
preferences, IEEE Computer Society, Proc. of the 4th IEEE Intern. conf. on data mining, pp. 27–34,
Los Alamitos (2004).

[4] Boyko, N., Shakhovska, N., Basystiuk, O.: Performance evaluation and comparison of software for
face recognition, based on dlib and opencv library, Second International Conference on Data Stream
Mining and Processing, pp. 478-482, DSMP (2018).

[5] Boehm, C., Kailing, K., Kriegel, H., Kroeger, P. : Density connected clus-tering with local subspace
preferences” IEEE Computer Society, Proc. of the 4th IEEE Intern. conf. on data mining, pp. 27–34,
Los Alamitos (2004).

[6] Harel, D., Koren, Y. :Clustering spatial data using random walks, Proc. of the 7th ACM SIGKDD
Intern. conf. on knowledge discovery and data mining, pp. 281–286, San Francisco, California (2000).

[7] Tung, A.K., Hou, J., Han, J. :Spatial clustering in the presence of obstacles, The 17th Intern. conf. on
data engineering (ICDE’01), pp. 359–367, Heidelberg (2001).

[8] Veres, O., Shakhovska, N.: Elements of the formal model big date, The 11th Intern. conf. Perspective
Technologies and Methods in MEMS Design (MEMSTEH), pp. 81-83, Polyana (2015).

12

[9] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic sub-space clustering of high
dimensional data, vol. 11(1), pp. 5–33, Data mining knowledge discovery (2005).

[10] Ankerst, M., Ester, M., Kriegel, H.-P.: Towards an effective cooperation of the user and the computer
for classification, Proc. of the 6th ACM SIGKDD Intern. conf. on knowledge discovery and data
mining, pp. 179–188, Boston, Massachusetts, USA (2000).

[11] Guo, D., Peuquet, D.J., Gahegan, M.: ICEAGE: Interactive clustering and exploration of large and
high-dimensional geodata, vol. 3, N. 7, pp. 229–253, Geoinfor-matica (2003).

[12] Boyko, N., Shakhovska, N., Sviridova, N.: Use of machine learning in the forecast of clinical
consequences of cancer diseases, In 7th Mediterranean Conference on Embedded Computing, pp.
531-536, IEEE MECO'2018 (2018).

[13] Boyko, N.: Advanced technologies of big data research in distributed information systems, Radio
Electronics, Computer Science, Control. № 4, pp. 66-77, Zaporizhzhya: Zaporizhzhya National
Technical University (2016).

[14] Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: Ultra-Deep Neural Networks without
Residuals, http://people.cs.uchicago.edu/~larsson/fractalnet/

[15] Mochurad, L., Solomiia, A.: Optimizing the Computational Modeling of Modern Electronic Optical
Systems. In: Lytvynenko V., Babichev S., Wójcik W., Vynokurova O., Vyshemyrskaya S.,
Radetskaya S. (eds) Lecture Notes in Computational Intelligence and Decision Making, pp 597-608,
ISDMCI 2019. Advances in Intelligent Systems and Computing, vol 1020. Springer, Cham. (2019)

https://arxiv.org/search/cs?searchtype=author&query=Larsson%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Maire%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Shakhnarovich%2C+G
https://arxiv.org/pdf/1605.07648.pdf
https://arxiv.org/pdf/1605.07648.pdf
http://people.cs.uchicago.edu/~larsson/fractalnet/

