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Abstract. Nowadays the topic of deep learning is becoming more and more 

popular. Moreover, almost every organization want to have at least one special-

ist in this area, because artificial intelligence can help your medicine to grow 

and to increase its productivity. Research of one of the types of neural network 

– fractal neural network. Testing and comparing with other neural networks. 

We will take one dataset and test it on our neural networks and then compare 

the results. Trained and tested neural networks with graphs and comparisons of 

their output. In the current paper we implemented custom neural network and 

fractal neural network. Then we trained and tested them on CIFAR-10 dataset. 

Custom neural network showed us worse results, but each iteration took up to 10 

seconds, when 1 iteration of fractal neural network took up to 3 minutes. Moreo-

ver, our network is pretty simple, so we can say that that is suits better for da-

tasets with lower quantity of classes. Fractal neural network showed us pretty 

good results, but I am sure that with more powerful computing resources and 

more time it can perform much better. 

Keywords: neural networks; model; medical data; keras; train; dataset; accura-

cy, loss. 

1 Introduction 

In the current paper we want to make a research about one part of deep learning – 

fractal neural networks. A neural network is a network or circuit of neurons, or in a 

modern sense, an artificial neural network, composed of artificial neurons or nodes. 

Thus, a neural network is either a biological neural network, made up of real biologi-

cal neurons, or an artificial neural network, for solving artificial intelligence (AI) 

problems. The connections of the biological neuron are modeled as weights. A posi-

tive weight reflects an excitatory connection, while negative values mean inhibitory 

connections. All inputs are modified by a weight and summed. This activity is re-

ferred as a linear combination. Finally, an activation function controls the amplitude 

of the output. For example, an acceptable range of output is usually between 0 and 1, 
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or it could be −1 and 1. There are many types of neural networks, and residual neural 

network is one of them [1, 9]. 

A residual neural network (ResNet) is an artificial neural network (ANN) of a 

kind that builds on constructs known from pyramidal cells in the cerebral cortex. Re-

sidual neural networks do this by utilizing skip connections, or short-cuts to jump 

over some layers. Typical ResNet models are implemented with double- or triple- 

layer skips that contain nonlinearities (ReLu) and batch normalization in between. An 

additional weight matrix may be used to learn the skip weights; these models are 

known as HighwayNets. Models with several parallel skips are referred to as Dense-

Nets. In the context of residual neural networks, a non-residual network may be de-

scribed as a plain network. 

One motivation for skipping over layers is to avoid the problem of vanishing gra-

dients, by reusing activations from a previous layer until the adjacent layer learns its 

weights. During training, the weights adapt to mute the upstream layer, and amplify 

the previously-skipped layer. In the simplest case, only the weights for the adjacent 

layer's connection are adapted, with no explicit weights for the upstream layer. This 

works best when a single non-linear layer is stepped over, or when the intermediate 

layers are all linear. If not, then an explicit weight matrix should be learned for the 

skipped connection (a HighwayNet should be used) [1-4, 6]. 

Fractal neural network uses non-residual network approach. Macro-architecture of 

fractal neural networks is based on self-similarity. Repeated application of a simple 

expansion rule generates deep networks whose structural layouts are precisely trun-

cated fractals. These networks contain interacting subpath of different lengths, but do 

not include any pass-through or residual connections; every internal signal is trans-

formed by a filter and nonlinearity before being seen by subsequent layers. The key 

may be the ability to transition, during training, from effectively shallow to deep. 

Additionally, fractal networks exhibit an anytime property: shallow subnetworks pro-

vide a quick answer, while deeper subnetworks, with higher latency, provide a more 

accurate answer [3]. 

2 Review of the Literature 

Fractal neural networks are relatively new, that is why there are only a few articles on 

this theme. Frankly speaking, there is only one brief and complex paper about Fractal 

neural networks. It was published at ICLR 2017 as a conference paper by Gustav 

Larsson, Michael Maire and Gregory Shakhanaovich [11]. Their paper is called 

“FractalNet: Ultra-Deep Neural Networks without Residuals”. They briefly describe 

fractal neural networks and how do they work. Also, they compare the results of this 

network with more than 20 other networks on about 10 different datasets. They pub-

lished code for FractalNet implementation which weare going to update and use in 

current paper. So, their paper is very useful, full of important information. They have 

very powerful computing resources, which helps them to train and test networks on a 

different data for a long time. 
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3 Materials and Methods 

In order to implement and run our networks we will use Python 3 and Google Col-

laboratory as our working environment. 

Colaboratory is a free Jupyter notebook environment that requires no setup and 

runs entirely in the cloud. With Colaboratory you can write and execute code, save 

and share your analyses, and access powerful computing resources, all for free from 

your browser. Also,it provides good GPU in order to operate our networks [4, 12]. 

For training and testing we pick CIFAR10 dataset from Keras. 

Keras is a high-level neural networks API, written in Python and capable of run-

ning on top of TensorFlow, CNTK, or Theano. It was developed with a focus on ena-

bling fast experimentation. Being able to go from idea to result with the least possible 

delay is key to doing good research [5, 10]. 

The CIFAR-10 dataset is a collection of images that are commonly used to train 

machine learning and computer vision algorithms. It is one of the most widely used 

datasets for machine learning research. The CIFAR-10 dataset contains 60,000 32x32 

color images in 10 different classes. The 10 different classes represent airplanes, cars, 

birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6,000 images of each 

class [6]. 

Computer algorithms for recognizing objects in photos often learn by example. 

CIFAR-10 is a set of images that can be used to teach computer how to recognize 

objects. Since the images in CIFAR-10 are low-resolution (32x32), this dataset can 

allow researchers to quickly try different algorithms to see what works. Various kinds 

of convolutional neural networks tend to be the best at recognizing the images in 

CIFAR-10. 

In order to implement our Sequential model we will use the following layers and 

functions: 

1) ReLU stands for rectified linear unit, and is a type of activation function. Math-

ematically, it is defined as y = max(0, x). ReLU is linear (identity) for all positive 

values, and zero for all negative values. This means that [7]: 

It’s cheap to compute as there is no complicated math. The model can therefore 

take less time to train or run. 

It converges faster. Linearity means that the slope doesn’t plateau, or “saturate,” 

when x gets large. It doesn’t have the vanishing gradient problem suffered by other 

activation functions like sigmoid or tanh. 

It’s sparsely activated. Since ReLU is zero for all negative inputs, it’s likely for 

any given unit to not activate at all.  

2) Softmax is a function that takes as input a vector of K real numbers, and nor-

malizes it into a probability distribution consisting of K probabilities. That is, prior to 

applying softmax, some vector components could be negative, or greater than one; 

and might not sum to 1, but after applying softmax, each component will be in inter-

val(0,1),and the components will add up to 1, so that they can be interpreted as proba-

bilities. Softmax is often used in neural networks, to map the non-normalized output 

of a network to a probability distribution over predicted output classes[8, 10]. 
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3) Dropout is a regularization technique for neural network models. Dropout is a 

technique where randomly selected neurons are ignored during training. They are 

“dropped-out” randomly. This means that their contribution to the activation of down-

stream neurons is temporally removed on the forward pass and any weight updates are 

not applied to the neuron on the backward pass. 

As a neural network learns, neuron weights settle into their context within the 

network. Weights of neurons are tuned for specific features providing some speciali-

zation. Neighboring neurons become to rely on this specialization, which if taken too 

far can result in a fragile model too specialized to the training data. This reliant on 

context for a neuron during training is referred to complex co-adaptations [9, 17] 

4) Max pooling is a sample-based discretization process. The objective is to down-

sample an input representation (image, hidden-layer output matrix, etc.), reducing its 

dimensionality and allowing for assumptions to be made about features contained in 

the sub-regions binned. 

This is done to in part to help over-fitting by providing an abstracted form of the 

representation. As well, it reduces the computational cost by reducing the number of 

parameters to learn and provides basic translation invariance to the internal represen-

tation[10, 15]. 

Also,we will use the optimization algorithms described below: 

1) The RMSprop optimizer is similar to the gradient descent algorithm with mo-

mentum. The RMSprop optimizer restricts the oscillations in the vertical direction. 

Therefore, we can increase our learning rate and our algorithm could take larger steps 

in the horizontal direction converging faster[11, 12].  

2) Adaptive Moment Estimation (Adam) is a method that computes adaptive 

learning rates for each parameter. It stores both the decaying average of the past gra-

dients mt, similar to momentum and also the decaying average of the past squared 

gradients vt, similar to RMSprop and Adadelta. Thus, it combines the advantages of 

both the methods. Adam is the default choice of the optimizer for any application in 

general [11, 13]. 

4 Experiment 

So, for training our networks, we chose CIFAR10 dataset. We will train our network 

to classify 10 different objects: doctor, patient, disease, mode, ward, hospital, surgery, 

tablet, syringe, prescription. The classes are completely mutually exclusive. There is 

no overlapping between classes. This means that you will, not find an image with 2 

different classes at the same time. 

 This means, that we could apply our network to solve different medical problems. 

For example, it can be helpful for predicting  diagnosis  relying on the cardiogram. 

We will make custom sequential model for comparing with fractal one. Sequential 

model is simply a linear stack of layers. So, you can just create an empty model, and 

then add as many layers as you want. In this model we add few activation layers, 

connection layers, regularization layers, convolutional layers, pooling layers. Here is 

our final version 
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Fig. 1. Final version model.add 

Now it is time to train our network. In order to do this, we will iterate over our da-

taset (which contains 50000 images) 200 times (epochs) and teach our network. We 

will pass the image and regardless to prediction of our network correct the matrix of 

the weight in order to get better accuracy. 

On the picture below you can see a small piece of our training process, which out-

puts the result after each epoch (Fig. 2). 

Epoch 57/70  

50000/50000 [======]12s 232us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995 

Epoch 58/70  

50000/50000 [=====]12s 234us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995 

Epoch 59/70  

50000/50000 [=====]12s 234us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995 

Epoch 60/70  

50000/50000 [=====]12s 232us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995 

Epoch 61/70  

50000/50000 [=====]12s 233us/step – loss: 0.5535 – acc: 0.8144 – val_loss: 0.6030 – val_acc: 0.7995 

Fig. 2. Training process 
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Table 1. Training process. 

Epoch Loss Accuracy Epoch Loss Accuracy 

1 1.9679 0.2735 36 0.6250 0.7914 

2 1.5706 0.4101 37 0.6452 0.7824 

3 1.4189 0.4774 38 0.6336 0.7900 

4 1.2955 0.5239 39 0.6172 0.7879 

5 1.2336 0.5527 40 0.6663 0.7797 

6 1.2376 0.5506 41 0.6854 0.7718 

7 1.1391 0.5954 42 0.6731 0.7751 

8 1.0698 0.6177 43 0.6089 0.7985 

9 1.1180 0.6023 44 0.6342 0.7872 

10 0.9758 0.6512 45 0.6001 0.8020 

11 0.9569 0.6608 46 0.6475 0.7883 

12 0.9204 0.6739 47 0.6988 0.7812 

13 0.9549 0.6634 48 0.6283 0.7920 

14 0.8803 0.6881 49 0.6131 0.7992 

15 0.8783 0.6897 50 0.6975 0.7771 

16 0.8434 0.7002 51 0.6001 0.7994 

17 0.8100 0.7149 52 0.6080 0.7946 

18 0.8215 0.7104 53 0.5819 0.8074 

19 0.8707 0.6978 54 0.6156 0.7963 

20 0.7756 0.7322 55 0.5921 0.8055 

21 0.7524 0.7425 56 0.6101 0.8031 

22 0.7338 0.7416 57 0.6030 0.7995 

23 0.7304 0.7481 58 0.6311 0.7939 

24 0.7347 0.7471 59 0.6152 0.7958 

25 0.6974 0.7580 60 0.6128 0.7972 

26 0.7043 0.7576 61 0.6032 0.8007 

27 0.6685 0.7675 62 0.6045 0.8018 

28 0.6875 0.7655 63 0.6053 0.8033 

29 0.7100 0.7567 64 0.6095 0.8017 

30 0.6677 0.7714 65 0.5860 0.8075 

31 0.6982 0.7617 66 0.6370 0.7964 

32 0.6558 0.7782 67 0.6523 0.7887 

33 0.6424 0.7838 68 0.6478 0.7870 

34 0.6637 0.7792 69 0.5904 0.8111 

35 0.6663 0.7776 70 0.6472 0.7929 
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In the table above you can see the full training process with its accuracy and loss at 
each step of the training. The best results are highlighted 

Also, on the following graphs (Fig. 3, 4) you can see a dependency of accuracy 

and loss according to epochs. Accuracy is calculated as the amount of right predic-

tions divided by all predictions. 

So, from the graph we can see the logarithmic increase of accuracy. Also, we can 

notice optimal amount of training after which the accuracy increases very slightly. 

 

Fig. 3. Model accuracy 

 

Fig. 4. Model loss 

Model for fractal neural network is much more complicated than our custom mod-

el. It has much more layers and much more configurations. The full implementation 

of the fractal neural network model could be found by the link in references [9]. It 
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was published with a paper at ICLR 2017 by Gustav Larsson, Michael Maire and 

Gregory Shakhanaovich, as I mentioned in literature review section [11]. 
Now let us train this network the same way as we did with our custom network. 

This time we will make 70 epochs, because training fractal network takes more time 
and computing resources. Below you can see a piece of our training process (Fig. 5). 

Epoch 37 /70  

50000/50000 [=====]116s 2ms/step – loss: 0.0804 – acc: 0.9761 – val_loss: 0.5396 – val_acc: 0.8424 

Epoch 38/70  

50000/50000 [=====]116s 2ms/step – loss: 0.0777 – acc: 0.9761 – val_loss: 0.5090 – val_acc: 0.8492 

Epoch 39/70 

50000/50000 [=====]116s 2ms/step – loss: 0.0820 – acc: 0.9750 – val_loss: 0.4709 – val_acc: 0.8541 

Epoch 40/70  

50000/50000 [=====]116s 2ms/step – loss: 0.0735 – acc: 0.9777 – val_loss: 0.4540 – val_acc: 0.8630 

Epoch 41/70  

50000/50000 [=====]116s 2ms/step – loss: 0.0728 – acc: 0.9783 – val_loss: 0.4439 – val_acc: 0.8691 

Fig. 5. Training proccess 

In the table 2 you can see the full training process with its accuracy and loss at each 
step of the training. Best results are highlighted. 

Table 2. Training process. 

Epoch Loss Accuracy Epoch Loss Accuracy 

1 2.3521 0.1087 36 0.4375 0.8663 

2 2.0765 0.1944 37 0.5396 0.8424 

3 2.2318 0.2154 38 0.5090 0.8492 

4 1.8486 0.3299 39 0.4709 0.8541 

5 1.8550 0.3061 40 0.4540 0.8630 

6 1.1768 0.6020 41 0.4439 0.8691 

7 1.1903 0.6307 42 0.4675 0.8657 

8 0.9979 0.7036 43 0.4817 0.8542 

9 0.9514 0.6841 44 0.4516 0.8664 

10 1.0341 0.6793 45 0.4493 0.8693 

11 0.7769 0.7512 46 0.4520 0.8593 

12 0.7874 0.7646 47 0.4981 0.8587 

13 0.8565 0.7197 48 0.4356 0.8733 

14 0.6864 0.7828 49 0.5158 0.8460 

15 0.6245 0.8135 50 0.4157 0.8776 

16 0.7089 0.7909 51 0.4671 0.8626 

17 0.6684 0.7949 52 0.4642 0.8597 

18 0.5995 0.8228 53 0.4100 0.8788 

19 0.7498 0.7592 54 0.6282 0.8223 
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20 0.5802 0.8037 55 0.4664 0.8606 

21 0.6381 0.7965 56 0.5437 0.8354 

22 0.5384 0.8351 57 0.4502 0.8721 

23 0.5344 0.8379 58 0.4535 0.8651 

24 0.4795 0.8506 59 0.5082 0.8502 

25 0.6395 0.7895 60 0.4246 0.8735 

26 0.6320 0.8028 61 0.4654 0.8576 

27 0.5624 0.8226 62 0.3877 0.8834 

28 0.5276 0.8393 63 0.4217 0.8680 

29 0.5183 0.8395 64 0.4337 0.8758 

30 0.6432 0.7951 65 0.4299 0.8717 

31 0.5376 0.8188 66 0.4545 0.8721 

32 0.4631 0.8612 67 0.4193 0.8697 

33 0.5345 0.8393 68 0.4392 0.8680 

34 0.4406 0.8676 69 0.4547 0.8690 

35 0.4629 0.8556 70 0.3922 0.8864 

 

Best results are marked with green color. 

Also, on the following graphs (Fig.6, 7) you can see a dependency of accuracy and 

loss according to epochs. As with our custom network accuracy is calculated as the 

amount of right predictions divided by all predictions. So, from the graph we can see 

the logarithmic increase of accuracy. Also, we can notice optimal amount of training 

after which the accuracy in сreases very slightly. So, it looks similar to our custom 

neural network graph, but as we see, that the accuracy here is better. 

 

 

Fig. 6. Model accuracy 
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Fig. 7. Model loss 

5 Results 

Now it is time to test our trained models on a test dataset. It is the set of images which 

haven’t been used during training process. The process is similar, but we iterate 

through our dataset only once, and output the results immediately. The results for our 

custom network are the following (Fig. 8). 

 

 

Fig. 8. Test results 

This test showed us 0.7929 accuracy, which means that from 10000 labeled imag-

es with 10 different object classes our network predicted 7929 images right and 2071 

images wrong. Our test accuracy become lower than the training one (8.111), which 

means that we overfit our model on a train dataset a little bit. It means that our weight 

fits a bit better for our train dataset. Lowering the training time may improve our ac-

curacy a little bit. 

Now let us head back to our fractal network. Our best accuracy was achieved at 

the very the end of epochs, which means, that further training may lead to better re-

sults. But it will take more time and more computing resources. Our accuracy is pretty 

good, but first let us test in on test data set and check if we didn’t overfit our network 

(Fig. 9). 

 

Fig. 9. Test results 

This test showed us 0.8864 accuracy,which means that from 10000 labeled images 

with 10 different object classes our network predicted 8864 images right and 1136 
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images wrong.Our test accuracy is the same as train one(0.8864),which means that we 

didn’t  overfit our model on a train dataset. 

In the table below you can see the final comparison of our models. All trainings 

and testing were made inside Google Collaboratory with its own GPU. 

Table 3. The final comparison of models. 

Net-

work 

Training 

time (1 

epoch) 

Ram 

usage 

Training 

accuracy 

Training 

loss 

Test 

time 

Test 

accuracy 

Test 

loss 

Custom 12s 2.9GB 0.8111 0.5819 1s 0.7929 0.6472 

Fractal 116s 5.5GB 0.8864 0.3877 6s 0.8864 0.3922 

6 Conclusions 

In the current paper we run custom neural network and fractal neural network inside 

Google Collaboratory using given GPU. Then we trained and tested them on CIFAR-

10 dataset. Custom neural network showed us worse results than fractal one, but each 

iteration took up to 10 seconds, when 1iteration of fractal neural network took up to 3 

minutes. Moreover, our network is pretty simple, so we can say that that is suits better 

for datasets with lower quantity of classes. Fractal neural network showed us pretty 

good results, but we are sure that with more powerful computing resources and more 

time it can perform much better. 

As we mentioned before, we can apply this technology on a different medical data 

to solve various kinds of medical problems. This can help to decrease the amount of 

human mistakes. 
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