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1 Introduction

Service robots that are employed in human-centered environments with a high degree
of complexity, unpredictability, and dynamicity must be able to learn new tasks au-
tonomously, i.e. when only the goal of the task is given. Furthermore, robots must be
able to understand natural language instructions to accurately identify the requested
tasks, which requires connections between symbols, i.e. words, and their meanings, i.e.
percepts. There exist many studies in the literature that investigate action learning or
grounding, but few consider both simultaneously. Additionally, action learning studies
have been limited to learn a single action while only varying the initial position of the
gripper [3,4]. Furthermore, grounding studies were mostly conducted offline and pri-
marily focused on grounding of object characteristics or spatial concepts [2,1], while
conducted action grounding employed simple feature vectors, which cannot be directly
translated into motor commands [5].
In this paper, we investigate the possibility of simultaneous action learning and ground-
ing through the combination of reinforcement and cross-situational learning. More specif-
ically, we simulate human-robot interactions during which a human tutor provides in-
structions and illustrations of the goal states of the corresponding actions. The robot
then learns to reach the desired goals taking into account different manipulation be-
haviors for different object shapes and grounds the words and detected phrases of the
instructions, including synonyms, through obtained percepts.

2 System Overview

The employed grounding and action learning system consists of three parts: (1) Human-
robot interaction simulation, which generates different situations consisting of the initial
gripper and object positions, relative goal positions of the manipulation objects, object
colors, object shapes, and natural language instructions, (2) Reinforcement learning al-
gorithm, which employs Q-learning to learn optimal micro-action patterns for encoun-
tered situations taking into account initial gripper and object positions as well as the
relative goal position of the manipulation object, (3) Cross-situational learning compo-
nent, which identifies auxiliary words and phrases, and maps percepts to non-auxiliary
words and phrases in an unsupervised manner by analysing co-occurrences.
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3 Results

After about 60,000 situations the reinforcement learner required 1 episode to converge
to the optimal policy, when using a continuously decreasing exploration rate that is
shared across situations. In contrast, when the exploration rate was reset for each sit-
uation, the reinforcement learner required after about 9,000 situations on average 28
episodes. That the agent did not execute the optimal policy immediately in the latter
case, is due to the high exploration rate at the beginning of each situation because it
was reset. Thus, a continuously decreasing exploration rate that is shared across situa-
tions works best for the investigated scenario. The employed CSL algorithm is able to
successfully ground all 39 words used in this study through their corresponding percepts
after about 800 situations. Afterwards the number of correct mappings is constantly 39,
while the number of false mappings oscillates between 0 and 2 because the algorithm
allows a word to be grounded through several percepts to be able to learn homonyms.
The two additional incorrect mappings are for different word combinations, depending
on the most recently encountered situations.

4 Conclusion

The proposed framework allowed learning of actions through reinforcement learning
as well as identification of auxiliary words and phrases, and grounding of words and
phrases, including synonyms, through cross-situational learning during simulated human-
robot interactions. In future work, the framework will be extended to handle real shape,
color and preposition percepts obtained with a stereo camera.
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6. Roesler, O., Nowé, A.: Action learning and grounding in simulated human robot interactions.
The Knowledge Engineering Review. (In Press)

http://arxiv.org/abs/1709.06977
http://arxiv.org/abs/1704.03073

	Action Learning and Grounding in Simulated Human-Robot Interactions (Extended Abstract)

