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Abstract. In this paper, we propose an efficient method for learning
local image descriptors suitable for the use in image inpainting algo-
rithms. We learn the descriptors using a convolutional autoencoder net-
work that we design such that the network produces a computationally
efficient extraction of patch descriptors through an intermediate image
representation. This approach saves computational memory and time in
comparison to existing methods when used with algorithms that require
patch search and matching within a single image. We show these benefits
by integrating our descriptor into an inpainting algorithm and compar-
ing it to the existing autoencoder-based descriptor. We also show results
indicating that our descriptor improves the robustness to missing areas
of the patches.

Keywords. Local image descriptors, patch descriptors, autoencoders,
unsupervised deep learning, inpainting.

1 Introduction

Local image descriptors are a crucial component of many image processing tasks
– image denoising, inpainting, stitching, object tracking, to name a few. In recent
years, the approach to designing these patch descriptors has shifted from using
hand-crafted features to the (deep) learning approach. Learned descriptors have
been shown to outperform some hand-crafted ones on benchmarks [1, 7]. How-
ever, despite many advancements in the learning approach and their superior
performance on benchmarks, hand-crafted descriptors still perform comparably
or better than the learned descriptors in a practical context [16]. He et al. argue
that descriptor learning should not be approached as a standalone problem, but
rather as a component of a broader image processing task, which must also be
taken into consideration [8].
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In this paper, we present a descriptor whose learning process is specifically
tailored for use in an image inpainting algorithm. The descriptor is based on our
previous work [19] and has been extended so that it can be applied to image
inpainting tasks. We show that our descriptor improves the inpainting result
and makes the task computationally feasible in cases where it was previously
not. The computational time of the inpainting is reduced by leveraging our spe-
cific autoencoder architecture that allows for the calculation of the intermediate
representation of the image [19]. From the intermediate representation, we can
obtain the descriptors using a simple operation. We hypothesise that the im-
proved inpainting results are the result of (i) high robustness to missing parts
of patches in comparison to the other descriptors (shown in section 4), and
(ii) the fine-tuning of the descriptor on data similar to what will be used for the
inpainting. This fine-tuning is possible since our descriptor is trained in an unsu-
pervised fashion. To achieve such fine-tuning with other (supervised) descriptors,
it would be necessary to have a labeled set for the type of images that need to
be inpainted, which is not feasible in most cases. Furthermore, and in contrast
to other local feature descriptors, our descriptor is intentionally designed to be
translation and rotation sensitive. This property is not always desirable and
many descriptors are designed to be translation invariant. However, translation
invariant descriptors do not achieve good results in inpainting since they tend
to retrieve patches that are rotated or scaled, and introduce irregularities in the
inpainted edges.

In the next section we discuss the current state of local image descriptors
and, in particular, descriptor learning. We also include a brief introduction to
autoencoders. We describe our method in Section 3. Section 4 contains the ex-
perimental results on robustness to missing data and application to inpainting.
We conclude our work in Section 5.

2 Related work

The classical approach uses hand-crafted features to design local image descrip-
tors. The most well-known descriptors include SIFT [12], SURF [3], BRIEF [4],
ORB [14], which continue to be relevant to modern approaches. In recent years,
the development of deep learning techniques has resulted in numerous learned
descriptors [21, 17, 2, 8]. These descriptors are mostly learned in a supervised
fashion, with the labels on pairs of patches, indicating their similarity or dissim-
ilarity.

While a few learned descriptors show high performance on benchmarks [1,
7], the established hand-crafted descriptors such as SIFT are consistently chosen
over the learned ones in practical applications [16]. He et al. argue that this is
due to the fact that the descriptors were trained too generally and that training
a descriptor for an image processing task in mind can lead to the descriptor per-
forming better than the general descriptors [8]. This effect is partially explained
by the fact that different image processing tasks value different properties in
descriptors. For example, in object tracking it is desirable that the descriptor is
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translation invariant. However, this property is not desirable in descriptors for
inpainting.

Since supervised methods are dependent on labeled data, it is often unfeasible
to create a supervised descriptor for a specific image processing task. Further-
more, since most labeled data for patch descriptors is designed for object tracking
and hence is translation invariant, there are very few labelled datasets suitable
for inpainting.

On the other hand, unsupervised learning methods such as autoencoders do
not suffer from the problem of depending on labeled data. Chen et al. were the
first authors to propose using autoencoders to the general problem of descrip-
tor learning [5]. Their autoencoder-learned descriptor showed promising results,
however, the computational time and memory usage make their method infeasi-
ble for high resolution image processing tasks. Their fully-connected network has
more parameters to be trained and requires longer training times than convolu-
tional autoencoder designs. Moreover, their descriptor does not allow different
input sizes and therefore a separate autoencoder needs to be trained for every
patch size, which renders the framework unusable in practical scenarios.

In our previous work [19], we proposed an autoencoder-based patch descriptor
designed for applications with many patch comparisons within a single image.
Our specific network architecture yielded a special image representation that we
refer to as the intermediate representation (IR). The IR is a compact way of
storing the descriptors of all the patches of an image because the descriptors
of overlapping patches overlap themselves. Extracting a descriptor from the IR
is done fast using a max-pooling operation. Moreover, the use of convolutional
layers ensures a more efficient learning process and usability of the descriptor
for all patch sizes.

In this paper, we build on our previous work to show that a descriptor de-
signed specifically for an image processing task can outperform the general de-
scriptors and can improve the performance of the task, both in terms of compu-
tational time and in terms of visual inspection. Furthermore, the unsupervised
nature of our descriptor facilitates fine-tuning on the specific type of data to be
used in the image processing task in order to further improve its performance.

2.1 Autoencoders

An autoencoder is a type of artificial neural network used to learn efficient
data representations in an unsupervised fashion. An autoencoder consist of two
parts: the encoder, which maps the input into an efficient representation, and
the decoder, which maps the efficient representation back to the output (where,
ideally, the output matches the input). Autoencoders are trained by minimis-
ing the reconstruction error between the input and output, while imposing
some constraints on the representation layer. Formally, an autoencoder with
encoder E and decoder D is trained to minimise the loss function J(X, E ,D) =∑

x∈X L(x,D(E(x))) + Ω(E(x)), where x ∈ X is a data sample, L is some re-
construction loss metric and Ω(E(x)) is an optional sparsity regularisation term
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Fig. 1. The proposed autoencoder architecture. Max-pooling layers after the
first two convolutional layers have been omitted in order to obtain an intermediate
representation (IR) of the image that preserves the spatial information.
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Fig. 2. Exploiting the proposed intermediate representation of an image in
algorithms that require many patch comparisons. The intermediate representa-
tion is calculated once from the original image through the convolutional layers of the
encoder. In algorithms that need to compare patches (e.g. inpainting), the descriptors
are extracted from the IR using the fast max-pooling operation, and then compared.

imposed on the hidden (representation) layer. Autoencoders designed for work-
ing on image data are usually built by alternating convolutional and max-pooling
layers. In the l-th convolutional layer, the output neuron at location (i, j) of the
k-th channel is expressed as follows:

x
(l,k)
ij =

∑
c∈C

f(l)−1∑
u=0

f(l)−1∑
v=0

w(l,k,c)
uv x

(l−1,c)
(i+u)(j+v) + b(l,k), (1)

where C is the set of input channel indices, w(l,k,c) is the convolutional kernel
for the l-th layer and k-th channel applied on the c-th input channel, b(l,k) is the
bias for the l-th layer of the k-th channel, and f (l) is the size of the convolutional
kernel (filter) for the l-th layer.

3 Proposed method

The core contribution of this paper is a local image descriptor suitable for inte-
gration with image inpainting. This integration is possible due to (i) the specific
autoencoder architecture that provides the intermediate representation (IR) of
an image and (ii) the translation-sensitive design of our descriptor.
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The introduction of the IR yields two main benefits: it is less memory inten-
sive than storing the descriptors of all patches within an image and it allows a
descriptor of a single patch to be extracted from the IR with minimal computa-
tion.

We accomplish this by proposing a novel convolutional neural network (CNN)
architecture. While traditional CNNs consist of alternating convolutional and
max-pooling layers, we introduce an architecture in which we remove all the
max-pooling layers in the encoder except for the last one. This decision was
encouraged by a recent study which showed that max-pooling layers are not
necessary for a successful neural network [18]. Max-pooling is usually applied
since it adds extra non-linearity and introduces dimensionality reduction. We
omit max-pooling after the first two convolutions and instead employ non-linear
activation functions. We leave only one max-pooling layer with a large spatial
extent at the end of the encoder to reduce the dimensionality of the code layer.

Unlike the fully-connected architecture used in [5], the convolutional layers
that we use in our network are able to exploit the self-similarity property of nat-
ural images and reduce the computational complexity and time, while achieving
better results than fully connected-layers. Moreover, the use of convolutional
layers is critical for the ability to extract patch descriptors from the IR, since
convolutional layers preserve spatial information.

The reduction of computational time and memory usage follows from the IR
in our network. The IR is obtained by propagating the complete image (contain-
ing patches of interest) through the convolutional layers in the encoder, but not
the max-pooling layer. Figure 1 shows the architecture of our network and the
IR, and Figure 2 shows how they can be used within an image processing task.

Mathematically, we define our intermediate representation as follows. Let
x := x(0,:) be the input image. The intermediate representation is obtained as
IR(x) = x(L,:), with

x(L,k) = A(CL(A . . . (C1(x(0,:))))), (2)

where L is the number of convolutional layers in the encoder E , x(l,k) is the k-th
channel of the output of the l-th layer, x(l,:) denotes all channels of the output
of the l-th layer, A is some activation function, and Cl is the l-th convolutional
layer. From the intermediate representation of an image IR(x), we obtain the
descriptor for a patch x(i,j), whose upper left corner is positioned at (i, j), by
performing the max-pooling on the patch of the IR, as follows

E(x(i,j)) =MP(IR(x)(i,j)). (3)

The activation function A from (2) is the rectified linear unit, A(x) = x+ =
max(0, x). We trained the network with the Adadelta optimizer [22] and used
binary cross entropy as the loss function, and scaling the pixel values to be in
the range [0, 1]):

J(X, E ,D) =
∑
x∈X
L(x, x̂) =

∑
x∈X

(x log(x̂) + (1− x) log(1− x̂)), (4)
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Fig. 3. A comparison of the memory requirements (expressed in the number of 32 bit
floating points) as a function of image size in pixels, for the two versions of the proposed
descriptor (v32 and v128) compared to Chen et al. [5].

where x̂ := D(E(x)) is the output of the autoencoder. We trained the autoen-
coder in two different ways, creating two versions of the descriptor, v32 and v128
(named after the dimensionality of the descriptor for 16× 16 patches).

Image inpainting calls for sensitivity of the deployed patch descriptor to
translation, rotation, and scaling. Although convolutional layers are known to
be translation invariant, Kauderer-Abrams claimed that this invariance is due to
the use of data augmentation, a large number of layers in the network, and the
use of large filters in convolutional layers [9]. We have designed our autoencoder
to avoid these sources of translation invariance.

Our autoencoder is implemented using the Keras library for neural networks.
We initially trained our network on a total of 200k 16×16 patches cropped from
images from the datasets ImageNet [6], KonIQ [20], and VisualGenome [11].

For the case of inpainting, descriptors play a crucial role in the performance
of the algorithm, since retrieving similar patches is the most prevalent operation
in the inpainting. The unsupervised nature of our descriptor makes it possible
to fine-tune the descriptor to the type of data which will be used in the inpaint-
ing. For the fine-tuning, we use around 50k patches cropped from the images
of interest. In our case, the images of interest were macro-photographs of the
paintings from the Ghent Altarpiece painted by the Van Eyck brothers [10]. We
describe the inpainting experiment in further detail in the following section.

In Figure 3 we compare the effective memory usage required by different
descriptors with respect to the image size. The results indicate potential for a
tremendous decrease in memory usage for applications on a single image. This
decrease could make some algorithms, which use many patch comparisons, fea-
sible in high resolution images.
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Fig. 4. Comparison of the descriptors’ robustness to missing data. A – pro-
posed descriptor v32, B – proposed descriptor v128, C – Chen et al. [5], D – exhaustive
search on pixel intensity values. The plots are showing the sum of squared differences
(SSD) of ground truth pixel values of patches found by the descriptors (in A-C) and
exhaustive search (D), based on the percentage of missing area in a patch.

4 Experimental evaluation

The original motivation for implementing a local image descriptor was to improve
the inpainting and to make it accessible for high-resolution images. In the first
part of this section, we asses our descriptor’s robustness to missing areas in the
patch, a property important for inpainting application. In the second part, we
describe the integration of our descriptor with the inpainting algorithm.

4.1 Robustness to missing areas in the patch

Robustness to missing regions is a desirable property of descriptors used for
applications such as inpainting and scene reconstruction from multiview data.
We compare our descriptor with the descriptor from [5] and the exhaustive search
on pixel intensity values. We trained all the descriptor networks on the same set
of colour patches.

The setup of the experiment is as follows. We select a set of query patches,
which we edit in order to introduce missing areas. For each query patch, we
retrieve the k most similar patches either by comparing their descriptors or by
using exhaustive search over the pixel values. The quality of the patch retrieval
(and thus the robustness to missing data) is evaluated based on the sum of
squared differences (SSD) between the complete (undamaged) query patches
and the retrieved ones.

The results are presented in Figure 4, comparing our two descriptor networks,
descriptor from [5], and the exhaustive search over pixel intensity values. Visual
examples of retrieved patches are shown in Figure 5.

When the missing area in a patch is small, the exhaustive search retrieves
the patches that are the most similar to the (original) query patch. However, as
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Fig. 5. Patch retrieval where the query has missing parts. For each query, the first row
corresponds to the proposed v128 descriptors; the second row: the descriptors from [5],
and the third row: exhaustive search. The missing parts of the query patches on the
right are shown in cyan.

the missing area increases in size, our descriptor v128 begins to outperform the
exhaustive search, showing more robustness to missing data.

Our descriptors also show superior performance compared to the existing
descriptor learned with autoencoders. Our method v128 shows significantly bet-
ter performance than the method implemented by Chen et al. [5], while having
the same patch descriptor dimensionality. Moreover, our method v32 that shows
similar results to [5] has an order of magnitude lower dimensionality of the de-
scriptor when encoding a single patch. The dimensionality comparison changes
even more in the favour of our method when encoding the whole image due to
the usage of the IR (Figure 3).

4.2 Inpainting

We put our descriptor to a real-world test in the application of digital painting
analysis, more specifically, digital inpainting of paint-loss areas. As a case study,
we use images from the panels of Ghent Altarpiece [10]. The paint-loss areas to
be inpainted are determined by the detection algorithm from [13].

We have modified the inpainting algorithm from [15] to use patch descriptors
instead of their pixel values for comparisons. We fine-tuned the descriptor on the
data from the patches extracted from the images of the paintings.

The inpainting results are presented in Figure 6, showing the inpainting of
one panels, the Prophet Zachary, from the altarpiece. On this particular panel,
the paint-loss areas are showing as light brown. Figure 7 shows the zoomed
details of the panel. We have also used the inpainting algorithm without the de-
scriptors, however, we were not able to obtain the inpainting results on the whole
panel without using the descriptor due to the memory error on our computer.
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Fig. 6. Image inpainting results. Left: original; Right: Inpainted with a patch-based
method using the proposed patch descriptors. Image copyright: Ghent, Kathedrale
Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA, Brussels.

Moreover, we were not able to test the inpainting with the descriptor from [5]
as it would require the retraining of their network to suit the needed patch size.

The inpainting results are very promising and show that our descriptor was
not only able to visually improve the inpainted images, but also to improve on
the computational aspect of the inpainting.

5 Conclusion

We propose a novel method for learning patch descriptors using autoencoders,
for the use in image inpainting. Our approach saves computational memory and
time in comparison to existing methods when used with algorithms such as those
for inpainting that require patch search and matching within a single image. The
proposed descriptor shows higher robustness to missing data when compared
with an existing descriptor learned with autoencoders from [5] and exhaustive
search over pixel intensity values. Furthermore, integrating our descriptor into
an inpainting algorithm results in visual improvements over the inpainted images
and the ability of the inpainting algorithm to handle higher resolution images.
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Fig. 7. Image inpainting results. Left column: original images containing paint-loss
(showing as light brown); Middle column: Inpainted with a patch-based method using
the proposed patch descriptor; Right column: Inpainted without using the descriptors.
Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-
IRPA, Brussels.
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paint loss detection with a multiscale, translation invariant network. In: Proceed-
ings of the 11th International Symposium on Image and Signal Processing and
Analysis (ISPA 2019). p. 5 (2019)

14. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: An efficient alternative
to SIFT or SURF. In: ICCV. pp. 2564–2571. IEEE (2011)
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