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Abstract. Captured from ecological or natural systems, high-dimensional
scientific data span a large spectrum ranging from physical to bio-chemical
processes. Though machine learning plays nowadays a role in automating
various related data analysis and mining tasks such as pattern recogni-
tion, feature extraction (detection, identification, etc.) and dimensional-
ity reduction tasks, data alone are not sufficient to understand phenom-
ena. If the aim is actually to understand underlying mechanisms and
processes, then models are needed. The question becomes thus which
models to build and how to build these models ? This paper addresses
these questions and related challenges from the perspective of neural-
based learning principles and techniques.
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1 Introduction

Scientific disciplines mainly focus on exact mathematical models obtained by
combining first principles (natural laws, interactions, etc.) with experimental
data although approximate models (of lower complexity) could be obtained from
measurement data that allow to tune complexity vs. accuracy. Measurement
data being imprecise due to measurement errors, often noisy and possibly gen-
erated by complex phenomena, are not exactly representable by a model in the
considered hypothesis class. Thus, both statistical estimation and deterministic
approximation aspects should be present in data modeling related tasks though
often dominated by the former (as further detailed in Section 2) [17].

The involvement of machine learning in explanatory but also predictive mod-
eling remains mainly driven by pre-existing physical model knowledge: hypothe-
sis are drawn from function spaces/model classes derived from and delimited by
knowledge acquired by external means. Indeed, application of machine learning
to scientific disciplines, focuses so far primarily on forward problems (predict the
response u of the system from model parameters m) and inverse problems (iden-
tify/estimate the model parameters m from observations of its response u). Both
problems are often formulated by assuming that the underlying phenomenon Φ is
a dynamical (data generating) system characterized by sets of partial differential
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equations (PDEs), that are typically non-linear and non-homogeneous. In both
cases the (non)linear differential operator is assumed to be known but the PDEs
parameters (coefficients, source terms, etc.) have to be identified. However, these
parameters are often hardly or even not at all accessible to direct measurements:
they have to be fitted from indirect measurements. In turn, the involvement of
machine learning focuses on solving inverse problems of parameter identification
[25] that are mathematically challenging since often not well-posed in the sense
of Hadamard [11] 1.

Hypothesis generation and model identification, i.e., automatically finding
the explicit formulation of the (nonlinear) operator F mapping the model pa-
rameters m to the system’s response/solution u = F(m), stays outside the main
application scope of machine learning. This is the case when the dynamics of the
underlying phenomenon Φ is assumed to be characterized by sets of PDEs; espe-
cially when their explicit formulation is unknown, i.e., the available data doesn’t
follow a given or known physical model. Indeed, identifying from high dimen-
sional spatio-temporal data the mathematical expression of the nonlinear PDEs
that governs the dynamics/evolution of the data is even less attainable with cur-
rent machine learning methods and techniques. As we will show throughout this
paper, operating in closed and adaptive loop to learn the physical laws, models
and structures underlying the data remains to be accomplished. Hence, for sci-
entific disciplines, machine learning is (still) not used to build a mathematical
model of the underlying phenomenon but mainly as a pre-existing model fitting
or statistical inference tool.

On the other hand, machine learning and neural learning techniques in par-
ticular don’t look so far at scientific disciplines with a specific lens. Compared to
computer vision for instance, where neural learning has both adapted its models
(e.g., convolutional neural networks, Cayley neural networks) and specialized
training algorithms (e.g., pooling, iterative total variation methods), nothing
similar can be recorded for scientific disciplines. To bring machine learning at
the level of a mathematical modeling tool for scientific disciplines, referred to
as Scientific Machine Learning (SML), a broader set of techniques ranging from
mathematical model building until their validation and verification shall be in-
volved.

Few trials to fill this significant gap have been recently initiated, e.g., [7]. They
often start by considering a broad set of statistical learning challenges and hope
that their potential solving could find some traction or applicability. However,
SML is not about overcoming the well-known fundamental limits of statistical
learning or generic machine learning techniques but about understanding and
solving scientific problems by involving specific/customized machine learning
techniques when generic ones fail to address them or are simply unavailable
(thus, requiring new techniques).

The remainder of this paper is structured as follows. Section 2 positions and
details the proposed modeling method together with the possible role and cur-

1 Note also that parameter identification problems are often nonlinear even if the PDE
itself is linear
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rently identified limits of statistical machine learning. Related and prior research
work are documented in Section 3 and contrasted against already identified fun-
damental tradeoffs. Section 4 documents the essential techniques involved in the
scientific machine learning context. Finally, Section 5 draws some concluding
remarks and perspectives for this nascent research domain.

2 Predictive Closed-Form Modeling

For bringing machine learning as a mathematical modeling tool for scientific dis-
ciplines, its primary goal shall move beyond solving inverse problems and focus
on discovering hidden or even new physical models and laws underlying the dy-
namics of, e.g., natural/ecological systems and its various bio-physical processes.
The overall method consists of automatically transforming the high-dimensional
spatio-temporal data obtained from observation into predictive mathematical
models without assuming that the available data follows a given or known phys-
ical law/model described by a system of partial differential equations.

2.1 Positioning

As outlined in the Introduction, this problem –and related challenges– contrasts
to the current application scope of statistical machine learning and related meth-
ods in the context of physical and more generally natural sciences. This scope
is still mainly focused on the solving of domain-informed/explicit inverse prob-
lems by means of data modeling methods [5]. They rely on the assumption that
the data (representing the response u of the system to independent input vari-
ables x) are generated by a given stochastic model. These methods enable to
formulate hypothesis and estimate the model that best explains the data (fitting
pre-existing physics-based models to the data) but also perform various inference
tasks (such as density estimation) from data samples (x, u).

As data obtained from observations of dynamical systems involving unknown
physical, bio-chemical or ecological mechanisms show increasing complexity, data
models specification would also become more complex up to losing the advantage
of providing a (relatively) simple explanation of the underlying natural phenom-
ena (if ever explainable by parametric models). Hence, in addition to statis-
tical/quantitative methods, solving such problems may also involve –but to a
lesser extent– qualitative methods. Involving the latter enables to approximate
high-dimensional process by a small number of free parameters by extracting
local and global intrinsic features and structures as well as their relations that
are invariant under various transformations or embeddings.

Heavily influenced by data models due to their explanatory power (with the
assumption that models with high explanatory power possess inherently high
predictive power), physical/natural sciences have not widely exploited algorith-
mic models so far. Algorithmic modeling methods include among others deep
neural networks. They aim at finding a transformation function of the input
x, i.e., an algorithm that operates on the input data to produce/predict the
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response u while treating the data mechanism as unknown. Though often lack-
ing interpretability, algorithmic methods are a priori suitable for the automated
learning of predictive models capable to forecast with high accuracy the evolu-
tion of physical systems.

Nevertheless, discovering the mathematical expression of predictive models
even with algorithmic methods remains highly challenging. Especially, when the
high-dimensional spatio-temporal data that is available doesn’t follow a pre-
existing/known physical law or model. In this case, searching for an (approx-
imate) model of the physical process Φ involves the generation of hypothe-
sis from a function space that isn’t necessarily limited anymore by these pre-
existing/known physical models. Hence, some constraints have to be considered
to guide the search process. For instance, fixing the highest derivatives order
(instead of considering it as a free parameter) would limit the dimensionality of
the search space.

Compared to classical physics- or more general domain-informed inverse
problems, such class of problems can be referred to as domain-uninformed 2.
Although inverse problems span nowadays implicit variants when data cannot
be formulated explicitly as a function of the unknown model parameters, prob-
abilistic methods through Monte Carlo sampling of feasible solutions of implicit
inverse problems or local search matheuristics yield numerical procedures.

2.2 PD(A)E Modeling

To uncover/extract the physical laws from high dimensional spatio-temporal
data obtained from potentially noisy observations, the learning task consists
of identifying the mathematical expression of the nonlinear partial differential
equations (PDE) that governs the dynamics/evolution of the observed data.
Nonlinear dynamics implies that the system is not assumed a priori to satisfy
the superposition principle. For this purpose, we assume throughout this paper
that the underlying physical system is governed by coupled equations of the
form:

{
ut = F (x, y, u, v, ux, uy, vx, vy, uxx, uyy, vxx, vyy, . . .)

vt = G(x, y, u, v, ux, uy, vx, vy, uxx, uyy, vxx, vyy, . . .)
(1)

In this system, the nonlinear functionals F and G depend on

– the solutions u = u(x, y, t) and v = v(x, y, t) function of time t and multi-
dimensional vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ Ω ⊂ Rm

– their first-order time derivatives ut = ∂u
∂t and vt defined similarly

– their element-wise first-order partial derivatives ux = ∂u
∂x1

, . . . , ∂u
∂xm

, uy, vx,
and vy defined similarly

2 This class of problems could also be referred to as model- or physics-free though this
terminology is avoided for trivial reasons
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– their element-wise second-order partial derivatives uxx = ∂2u
∂x2

1
, . . . , ∂2u

∂xi∂xj
, . . . , ∂2u

∂x2
m

,

uyy, vxx, and vyy defined similarly
– etc.

Note that the solutions u and/or v can also be multi-dimensional, i.e., u =
(u1, . . . , up) and v = (v1, . . . , vq). In this case, ux denotes the component-wise

elements of the Jacobian
∂(u1,...,up)
∂(x1,...,xm) and uxx the components of the divergence

of the Jacobian (a.k.a. vector Laplacian), and similarly for vx and vxx. This
system of equations could be further generalized by involving, e.g., external
force field, bifurcation parameters. As in general the system of PDEs is often
incomplete, including a set of algebraic equations closes the system to form a
partial differential algebraic equation (PDAE) set. Hence, throughout this paper,
such models are referred to as closed-form.

This system of equations is quite general and can be used for modeling many
physical processes in various domains and environments including ecology, cli-
matology, geophysics, hydrology, fluid dynamics, etc. but also neuro-physiology.
Observe that the Fitzhugh-Nagumo neuron model (simplified version of the
Hodgkin-Huxley model) is governed by a system of equations of this form.

2.3 Role of Machine Learning

Common statistical machine learning techniques applied to finite data samples
find limited applicability in the context of predictive modeling. The main reason
being that physical processes often verify at least one if not all of the following
properties that violate their key working assumptions:

1) non-linear, sometimes even the type of nonlinearity is unknown, i.e., their dy-
namics cannot be modeled linearly due to, e.g., phase transitions, saturation
effects, asymmetric cycles, chaotic behavior, etc.; although some (covariance-
stationary) processes admit a Wold representation (sum of a deterministic
component and an infinite sum of noise terms) that looks linear;

2) non-stationary their statistical properties are time-dependent including but
not limited to, e.g., non-constant mean, variance as well as possible trends,
periodicity or seasonality (sequential data over long time periods);

3) non-mixing, i.e., the statistical dependence between events does not reach 0
as time increases.

Neural networks, thanks to their nonlinear function approximation capacity
have the potential to address -at least partially- the former. When handling tem-
poral data that show different variation at different levels, their transformation
(e.g., Box-Cox, Fisher transform) can help stabilizing the variance. First- and
second-order differences at lag 1 and seasonal differences can help stabilizing
the mean; thus, reducing trend and seasonality. These operations are commonly
applied in the analysis and modeling of time series, particular case of difference
equations. In comparison, fitting continuous time models (i.e., time-dependent
PDEs) to the data observed from non-stationary non-mixing processes remains
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challenging, especially when distributional assumptions can’t be formulated. The
predictive capacity of the model renders this task even more difficult. For in-
stance, with neural networks the target model would be approximated globally
since training data (observations) are generalized during the learning phase.
Instead, one might consider a learning method that produces different local ap-
proximations in the target model and generalization beyond observation data
delayed until a prediction request is made.

On the other hand, empirical data samples do not necessarily verify the
i.i.d. assumption at the root of statistical learning techniques, in particular,
when training/calibration dataset and testing/running dataset do not follow
the same distribution. Related measurement (variables) are affected by random
errors that violate key assumptions of OLS fitting since often non-Gaussian
and heteroskedastic (their variance is not constant instead of being unrelated
to any of the explanatory/independent variables). Last but not least, accuracy
(closeness of agreement between measured value and true value -when known)
and precision level at which predictions have to be realized play an essential role
in the selection/investigation of the appropriate (class of) technique(s).

Consequently, although the availability of often large sets of labeled data
pairs {(x, t;m), u} would imply the straightforward execution of existing model
selection and identification techniques to find F such that u = F(x, t;m), their
criteria of applicability may not be verified for the classes of problems under
consideration. Although neural networks can be trained to obtain the numeric
approximation of the relationship between the independent variables x and the
various parameters m of the underlying process, determining the mathematical
expression that would translate such relationships remains to be addressed.

2.4 Example

In this section, we present an example of how physics-based and measurement-
based modeling would model fluxes of greenhouse gas (GHG) that play an es-
sential role in climate change [13]. In atmospheric transport, air motion can
be modeled as an horizontal flow of numerous rotating swirls (called Eddies)
of various sizes. Each Eddy has 3-D components including vertical air move-
ment/vertical wind. The modeling of molecular and turbulent mass transport
starts from the advection-diffusion equation describing how the concentration
c = c(x, y, z, t) varies with time:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=
∂c

∂x
(Dx

∂c

∂x
) +

∂c

∂y
(Dy

∂c

∂y
) +

∂c

∂z
(Dz

∂c

∂z
) (2)

Following the Reynolds decomposition (averaging rule), the instantaneous
velocity ui along axis i can be decomposed as ui = 〈ui〉 + u′i (a) where 〈ui〉 is
the time averaged velocity and u′i the instantaneous fluctuation component (de-
viation from mean value) and the instantaneous concentration as c = 〈c〉+ c′ (b)
where 〈c〉 is time averaged concentration and c′ the instantaneous fluctuation
component (deviation from mean value), with 〈c′〉 = 0.
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Substituting (a) and (b) in Eq.2 with incompressible flow assumption ∂〈ui〉
∂xi

=
0, homogeneous diffusion coefficients, yields the time averaged equation:

∂〈c〉
∂t

+ ui
∂〈c〉
∂xi

= D
∂2〈c〉
∂x2i

− ∂〈u′ic′〉
∂xi

=
∂

∂xi

(
D
∂〈c〉
∂xi
− 〈u′ic′〉

)
(3)

The second term in the RHS of Eq.3 corresponds to the turbulent flux aris-
ing from the correlation between u′i and c′ : 〈u′ic′〉 = 〈uic〉–〈ui〉〈c〉. Since the
coefficient D is usually a very small quantity, the molecular transport term can
be neglected compared to the turbulent transport. Hence, we obtain:

∂〈c〉
∂t

+ 〈u〉∂〈c〉
∂x

+ 〈v〉∂〈c〉
∂y

+ 〈w〉∂〈c〉
∂z

= −∂〈u
′c′〉

∂x
− ∂〈v′c′〉

∂y
− ∂〈w′c′〉

∂z
(4)

This PDE cannot be solved exactly because the time averaged equation com-
prises 3 new unknown quantities (leading to more unknowns than number of
equations). Three methods can be considered to overcome this problem:

– Physics model method: approximates the turbulent fluxes 〈u′c′〉, 〈v′c′〉
and 〈w′c′〉 by their mean concentration gradient (following the Ficks law):

〈u′c′〉 = −εx
∂〈c〉
∂x

, 〈v′c′〉 = −εy
∂〈c〉
∂y

, 〈w′c′〉 = −εz
∂〈c〉
∂z

(5)

The coefficients εx, εy and εz (assumed� D) are determined by, e.g., numer-
ical simulation and the modeling equation retrieves the form of a canonical
advection-diffusion equation (with c denoting 〈c〉 and ui denoting 〈ui〉):

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=

∂

∂x

(
εx
∂c

∂x

)
+

∂

∂y

(
εy
∂c

∂y

)
+

∂

∂z

(
εz
∂c

∂z

)
(6)

– Measurement-based method: estimates the turbulent fluxes from mea-
surement. From the observation of the measurement variables w′ and c′ com-
pute the vertical flux Fz along the z−axis as the mean covariance product
〈w′c′〉 between the deviation (from time averaged value) of the instantaneous
vertical wind speed w′ and the deviation (from time averaged value) of the
instantaneous concentration c′. Thus, model unknowns appear as (composi-
tion of) measurement variables.

– Machine learning-based method: approximates the solution by means
of a multi-layer neural network (trained with a pre-defined range of coef-
ficient values obtained, e.g., from simulation). Then, use the (numeric) so-
lution ĉ as input for the solving of an inverse problem to determine the
diffusivity coefficients ε, i.e., ĉ = F(ε). Since the operator is nonlinear, solv-
ing the inverse problem relies on an iterative method based, e.g., on the
Levenberg-Marquardt algorithm. This combined forward-inverse loop may
also be repeated iteratively or tuned until obtaining a solution satisfying
quality criteria. This method extends to the case where the PDE model it-
self is unknown and only its numerical approximation by the neural network
is of interest. However, extracting the mathematical expression of the PDE
model itself remains to be tackled as explained in Sections 3 and 4.
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3 Related Work: Main Approaches and Tradeoffs

The first method proposed by [23] to uncover the mathematical expression of
the PDE model consists of constructing a dictionary containing a large collection
of candidate atomic terms (partial derivatives) that are likely to appear in the
unknown functions F and G. Then, by taking advantage of sparsity-promoting
techniques such as sparse nonlinear regression, one can determine the coeffi-
cients of the terms appearing in the expansion of the unknown functions F and
G. Thus, determine the most informative/significantly contributing terms in the
RHS of the partial differential equations that most accurately represent the time
dynamics of the data. This method leverages the fact that most physical systems
have only a few relevant terms that define the dynamics, making the governing
equations sparse in a high-dimensional nonlinear function space. However, dictio-
nary learning is typically limited to small-scale representation problems whereas
the required number of terms to include a priori (i.e., at training time) in the
library increases exponentially with the dimensionality of the input data, the
output/solution as well as the derivatives order. Observe also that in compar-
ison symbolic differentiation suffers from expression swell as it can easily pro-
duce exponentially large symbolic expressions which take correspondingly long
to evaluate. Hence, the main challenge becomes to avoid the computational lim-
its of numerical differentiation while preserving interpretability of the learned
dynamics (that is unknown beforehand) through its mathematical expression.
Changing the dictionary such that the system of equations is expressed in a sin-
gle multi-vector equation using geometric algebra could be a viable alternative
at the condition that the resulting model remains interpretable.

The main alternative exploits the nonlinear function approximation prop-
erty of (feedfoward) multi-layer neural networks. The straightforward method
as proposed in [22] would proceed by representing the unknown solutions u
and v as well as the nonlinear functions F and G each by a multi-layer neural
network. However, exploiting the expressivity of neural networks comes at the
cost of completely losing the interpretability of the learned functions F and G
defined by Eq.1, since their functional form remains unrevealed. Thus, this ap-
proach keeps the physical laws underlying the dynamics of the data generating
system/physical process hidden. Hence, such method introduces a fundamental
tradeoff between expressivity and interpretability in addition to the usual trade-
off between expressivity and trainability of neural networks (i.e., learnability of
their parameters). Obviously, one could fall back onto physics-informed meth-
ods to inverse problems but then one should relax model assumptions, otherwise
uncovering new physical laws from observation data would remain unaddressed.

Next to direct methods, an indirect method has been recently proposed in [18]
that develops a lifting technique for nonlinear system identification/parameter
estimation based on the framework of the Koopman operator theory [15]. In
general, indirect methods solve an initial value problem and do not require the
estimation of time derivatives [4]; they provide an alternative to direct methods
at the expense of solving a (nonconvex) nonlinear least squares problem. Instead
of identifying the nonlinear system in the state space, the key idea developed is
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to identify the linear infinite-dimensional (linear) Koopman operator in the lifted
space of observables, a process which results in a linear method for nonlinear
systems identification. Hence, this indirect method not only circumvents the
estimation of time derivatives but also relies on linear least squares optimization.
It provides a parametric identification technique that can accurately reconstruct
linear/polynomial vector field of a broad class of systems (including unstable,
chaotic, and system with inputs). Its dual provides estimates of the vector field
at the data points and is well-suited to identify high-dimensional systems with
small datasets. Extension of this lifting method for identifying nonlinear PDEs
though potentially attractive for low-sampling rate datasets remain centered on
identification / nonlinear parameter estimation; hence, subject to the same limits
experienced by direct parametric methods using library functions in addition to
its inability in identifying general vector fields.

Consequently, a workable and provable technique to uncover the closed-form
expression of predictive PD(A)E-based models remains clearly beyond reach of
existing machine learning methods including neural networks.

4 Neural Network-based PDE Learning

New insights are required to bring machine learning at the level of a data-
driven mathematical modeling tool capable to automatically discover the closed-
form expression of the PD(A)Es that govern the dynamics of various natu-
ral/ecological systems (as observed from the data). For this purpose, this section
focuses on how the main learning task could be realized by means of advances
in neural networks for the reason explained in Section 2.3.

4.1 Neural Networks as PDE Solvers

Though approximating solution of nonlinear PDEs by (deep-)neural networks is
not the final objective when learning the closed-form expression of PD(A)E mod-
els, such class of solvers constitute an essential part of the proposed modeling
method. The theoretical foundation for approximating a function and higher-
order derivatives with a neural network relies on a variant of the universal ap-
proximation theorem by Hornik [12]. Theorem 4 in [12] establishes that if the
activation function is k−times continuously differentiable, bounded and non-
constant, then any k−times continuously differentiable function and its deriva-
tives up to order k can be uniformly approximated by two-hidden layer neural
networks on compact subsets. Even if rather restrictive, most recent papers show
the existence of neural networks approximating solutions of the PDEs by (some-
times implicitly) referring to this Theorem.

In [24], authors propose a learning algorithm, referred to as Deep Galerkin
Method (DGM), for approximating solutions of high-dimensional quasi-linear
parabolic PDE. The DGM algorithm is similar in spirit to Galerkin methods,
with the solution approximated by a neural network instead of a linear combi-
nation of basis functions. To satisfy the differential operator, initial conditions,
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and boundary conditions, the training algorithm performs, instead of forming a
mesh, on sequences of randomly sampled space and time points. This technique
yields a meshfree method, which is essential for high-dimensional PDEs.

Despite these promising results and their potential extension to hyperbolic,
elliptic, and partial-integral differential equations, several open research ques-
tions remain to be addressed:

– PDEs with highly non-monotonic or oscillatory solutions may be more chal-
lenging to solve and further developments in terms of neural network archi-
tecture are necessary. Indeed, neural model selection, including its depth,
layer width and activation function requires to account for nonlinear func-
tions of the input that rapidly change in certain time and space regions.
Moreover, only under certain growth and smoothness assumptions on the
nonlinear terms, the convergence proof follows by the smoothness of the
neural networks together with compactness arguments.

– Solving the corresponding initial and boundary value problem (iBVP) re-
lies on the penalty method which converts the constrained error minimiza-
tion to an unconstrained problem using a first-order iterative method. The
main drawback being that this method yields ill-conditioned problems when
naively selecting penalty coefficients. The training algorithm appears thus
as a main bottleneck for the solving of nonlinear PDEs. Instead, one should
consider iteratively solving this error minimization problem using the aug-
mented Lagrangian method. The latter adds a term corresponding to an
estimate of the Lagrange multiplier in the objective of the unconstrained
problem. Although, this method avoids ill-conditioning as the accuracy of
the Lagrange multiplier estimation improves at every step, it not yet es-
tablished if this algorithm will scale to more three-dimensional problems
(domain Ω ∈ R3).

– Neural network trained following this algorithm converge in Lp (p ≤ 2) to
the solution of the PDE as the number of hidden neuron units tends to
infinity; hence, deep neural networks do not circumvent/avoid the curse of
dimensionality problem though they can avoid forming a mesh. Moreover,
upper bounds for the number of weights/neuron units and layers increase
exponentially with the dimension d of the input space. Such bounds have
been obtained when approximating, e.g., Sobolev-regular functions with re-
spect to (fractional) Sobolev norms and Besov-regular functions, by deep
neural networks; even if for these classes of functions deep neural models
can achieve an optimal rate of approximation error.

On the positive side, the solving of nonlinear PDEs using neural networks
with rectified linear units (ReLU) has been recently proven to achieve for both
univariate and multivariate real-valued functions3, the approximation error with
respect to Sobolev norms (compared to the usual Lp norms, p ∈ [1,∞]) and the
approximation rate bounds fidelity achievable with hp-FEM. The latter is a

3 Note: at the time of writing only the demonstration for the univariate case has been
published in [21]
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general version of the finite element method (FEM) developed by Babuska in
the early 90’s [2]. In this seminal paper, Babuska et al. discovered that FEM
converges exponentially fast when the mesh is refined using a suitable combi-
nation of h-refinements (dividing elements into smaller ones) and p-refinements
(increasing their polynomial degree). Although, from the approximation theo-
retical perspective, deep neural networks perform as well as the best available
FEM method, the (uninformed) modeling/identification of nonlinear PDEs by
means of neural networks still remains highly challenging.

4.2 Polynomial Neural Networks

For recognition/identification tasks, neural networks identify patterns accord-
ing to their relationship, responding to related patterns with a similar out-
put by transforming the weighted sum of inputs to describe overall similar-
ity relationships of input patterns. Their main shortcoming in pattern recogni-
tion/identification is the disability of input pattern generalization: in case of rota-
tion or translation of the input matrix of variables, the recognition/identification
will fail. Polynomial Neural Network (PNN) [16] [27] for identification of de-
pendence of variables describe a functional dependence of input variables –not
entire patterns. A neural network can thus be seen as a simplified form of PNN
[27] for which combinations of variables are missing. Polynomial functions ap-
ply these combinations to preserve partial dependencies of variables compared
to conventional neural networks which can’t utilize data relations for recogni-
tion/identification tasks.

Further, sum fraction terms can approximate multi-variable functions on the
basis of discrete observations enables replacing a general PDE definition with
polynomial elementary data relation descriptions. Differential polynomial neural
networks (D-PNN) introduced by Zvajka in 2011 [28] form a class of neural
networks, which construct and solve an unknown general PDE of a function of
interest with selected substitution relative terms using non-linear multi-variable
composite polynomials. The layers of the network generate simple and composite
relative substitution terms whose convergent series combinations can describe
partial dependent derivative changes of the input variables.

The starting point of the D-PNN development relies on the Group Method
of Data Handling (GMDH) developed by Ivakhnenko [14].

– Group Method of Data Handling (GMDH): iterative method intro-
duced by [14] which decomposes the complexity of a system or process into
many simpler relationships each described by a processing function of a sin-
gle neuron. This method identifies general non-linear relations between in-
put and output variables by means of support functions. Most GMDH algo-
rithms use polynomial support functions expressed in the form of a functional
Volterra series whose discrete analogue is known as the Kolmogorov-Gabor
(K-G) polynomial
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y = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

n∑
j=1

n∑
k=1

aijkxixjxk + . . . (7)

where (x1, x2, . . . , xn) denotes the vector of input variables and (a1, a2, . . . , an)
the vector of coefficients. Each relationship is described by a low order two-
variable polynomial processing function of a single neuron node.

y = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j (8)

– Polynomial Neural Network (PNN): enable the identification of vari-
ables dependence by describing a functional dependence of input variables
(not entire patterns as DNN does). This could be regarded as a pattern ab-
straction in which identification is not based on values of variables but only
on their relations. Multi-layer neural networks (including deep neural net-
works) can thus regarded as a simplified form of PNN where combinations
of variables are missing and thus can’t utilize data relations for recogni-
tion/identification tasks. Instead, polynomial functions apply those to pre-
serve partial dependencies of variables. The GMDH algorithm builds up a
polynomial (actually a multinomial) combination of the input components
by forming in successive steps a PNN: adding one layer at a time, calculating
its polynomial coefficients and selecting the best-output polynomial neurons,
entered the next layer, so far as possible improvements in the last added out-
put layer. The PNN structure is developed through learning: the number of
layers of the PNN is not fixed in advance but becomes dynamically meaning
as this self-organizing network grows over the trained period [19].

– Differential PNN (D-PNN) uses a complete multi-layer PNN structure
to form (decompose) and solve an unknown general PDE of a searched func-
tion u = f(x1, . . . , xn) with selected combination of substitution terms us-
ing non-linear/factional multi-variable composite polynomials. The layers of
the network generate composite substitution terms whose convergent series
combinations can describe partial dependent derivative changes of the input
variables. The substitution relative derivative terms are selected and com-
bined according to the similarity dimensional analysis, which forms system
characteristics from dimensionless ratio groups of variables [20].
Although, D-PNN extends the complete GMDH network structure to pro-
duce convergent sum series of relative derivative terms, which can define and
substitute for an unknown general PDE of a searched multi-variable func-
tion model, the D-PNN’s operating and design principles are different from
those of GMDH. D-PNN decomposes the general PDE analogously to GMDH
performs the general input–output connection polynomial (7). It applies the
complete PNN skeleton to generate convergent sum series of selected sub-
stitution derivative terms using the principles of similarity analysis to solve
the general PDE. Similarity analysis facilitates substitutions for differential
equations or can form dimensional units from data samples to describe real-
world problems. K-G polynomials (8) are suitable for modeling polynomials
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with PNN. Instead, for a polynomial approximation of complicated multi-
variable periodic functions or time-series functions, the PNN approximation
ability has to be improved by modifying some GMDH polynomial (7) items
with the use of the sigmoidal function. The sigmoidal function may trans-
form some polynomial items together with the parameters to improve the
polynomial derivative term series ability to approximate complicated peri-
odic functions. The simple reason stems because low order polynomials are
not able to fully make up for the complete cycles.

Though at first glance attractive, the main drawback of D-PNN in model-
ing complexity is their direct proportionality to the increasing number of input
variables, as further hidden layers are required to define all the possible com-
bination PDE terms. Compared to conventional neural networks, Though such
structures can form, more complex and versatile model types of systems de-
scribed by a large number of data variables, the D-PNN complexity becomes
overwhelming due to combinatorial nature of the compositions. Hence, progress-
ing such techniques involves the progressive/iterative construction of the search
space, thus the dynamic construction of the neural network itself.

4.3 General-purpose Automatic Differentiation (GAD)

Classical algorithmic data modeling methods, such as neural networks, consider
F and G as black box functions. However, one could also model them as dif-
ferentiable directed graphs that are dynamically composed by functional blocks
and rely on general-purpose Automatic Differentiation (AD) [3]. AD enables to
compute derivatives through accumulation of numerical values during code ex-
ecution to generate numerical derivative evaluations as opposed to derivative
expressions. This class of techniques performs these operations by using sym-
bolic rules of differentiation but keeps track of derivative values as opposed
to the resulting expressions. By extending the arithmetic of AD to higher or-
der derivatives of multivariate functions, all numerical computations appear as
compositions of a finite set of elementary operations for which derivatives are
known (instead of involving numerical differentiation). Next, by combining the
derivatives of the constituent operations through the higher order chain rule one
obtains the derivative of the overall composition. Observe that fixing the highest
derivatives order (instead of considering it as a free parameter) limits the dimen-
sionality of the search space. It remains an open question whether imposing such
constraint could improve the computation time vs. prediction accuracy tradeoff.

A second neural network can then be associated that i) controls the dynamic
composition of the differentiable graph and ii) is trained to predict the numerical
values corresponding to the functions F and G defined by (1). For this purpose:

– Multi-dimensional neural networks also referred to as Clifford Neural Net-
works (CNN) [1] [6] can be considered for training each (group of) vertex to
identify the operation each of them performs on input features/activations.
This class of networks can model multi-level interactions: within data points
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(between vector components) and between data points (between vectors)
while interactions themselves take a vectorial form (instead of a scalar as in
real-valued neural networks).

– Combining both group- and exclusivity- sparsity methods shall be enforced
during the training phase to exploit positive and negative correlations be-
tween features.

– Techniques to interrogate the model to determine why and what has been
learned shall then be elaborated in order to i) enable interpreting the learned
model and its associated features and ii) translate this information into com-
position primitives.

Further, the predictive power of the learned model shall provide capability
beyond single-step prediction, i.e., given the value of a variable/quantity at time
t, predict its value at time t + 1, but instead enable for multi-step predictions
over longer time horizon t+ k, k � 1. Involving multiple steps allows in turn to
incorporate memory effects in learning the temporal dynamics and cover prob-
lems with a non-Markovian dynamical structure. As available training data may
not be invariant to time shifts, this non-stationarity property would be better
captured by the modeling capacity of recurrent neural networks (RNN).

– In the discrete time domain, we could consider the training of multi-directional
recurrent neural networks (MD-RNN) [10] for this purpose since training
data are often characterized by more than one spatio-temporal dimension.
Instead of pre-processing the data to one dimension and involving a single
recurrent connection, MD-RNNs uses as many recurrent connections as there
are dimensions in the data.

– In the continuous time domain, their combination with continuous time RNN
(CT-RNN) [9] would enable handling training over continuous timescales
while increasing the computational efficiency compared to standard discrete-
time RNNs. The latter induce dependence of the resulting models on the
sampling period used in the learning process when no information is given
about the model trajectories between the sampling instants.

5 Discussion

Extracting physical laws and models from data involves to a broad set of learn-
ing tasks with increasing level of complexity. When the domain is known, the
task can be seen as a PDE model fitting combining a neural network that ap-
proximates the PDE solution and another that checks the concordance between
the approximated solution and the fitted/trialed model. The latter differentiates
the numerical solution following the known analytic form of the PDE. One ap-
proximates a physical model from a relatively well delimited hypothesis space
and in the simplest case only parameters needs to be identified. Unfortunately,
this brings us back to the main observation that neural-based learning is (still)
not an essential modeling tool but mainly a pre-existing model fitting tool.
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When the domain is unknown, discovering the closed-form expression of the
PD(A)E model even with algorithmic methods remains highly challenging. This
paper by detailing the two main machine learning-based approaches (dictionary-
based learning and a particular variant of the previous model) shows that cur-
rent neural network training algorithms but also neural network model selection
are not (yet) at the level required to perform such tasks. Of course, we could
still decompose this case into situations where the physical model can’t be ap-
propriately identified (hidden) but is known and the case where the physical
process itself has never been identified. However, the main problem remains:
the hypothesis/pattern search and matching process implemented in the neural
learning paradigm is still too limited to cope with the exploration a large spaces
in particular when multi-scale interactions among input variables are involved.
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