
ASP and Ontologies for Reasoning on Business
Processes

Laura Giordano1 and Daniele Theseider Dupré1

DISIT - Università del Piemonte Orientale, Alessandria, Italy
laura.giordano@uniupo.it, dtd@di.unipmn.it

Abstract. In this paper we show that Answer Set Programming (ASP) can ac-
commodate for domain ontologies in modeling and reasoning about Business
Processes, especially for process verification. In this work, knowledge on the pro-
cess domain is expressed in a low-complexity description logic (DL), and terms
from the ontology can be used in embedding business rules in the model as well
as in expressing constraints that should be verified to achieve compliance by de-
sign. Causal rules for reasoning on side-effects of activities in the process domain
can be derived, based on knowledge expressed in the DL. We show how ASP can
accommodate them, relying on reasoning about actions and change, for process
analysis, and, in particular, for verifying formulas in temporal logic.

1 Introduction

In this paper (an abridged version of [11]) we consider the case of process models
expressed in a standard business process modeling language, enriched with domain
knowledge, in particular, ontological knowledge describing terms used in conditions
on sequence flow and in semantic constraints on the process, i.e., constraints that ex-
press “dependencies such as ordering and temporal relations between activities, incom-
patibilities, and existence dependencies” [17]. As [17] points out, semantic constraints
abstract from the way some fact about the case at hand may be actually represented,
or computed from stored data, in the process implementation. This is consistent with
the idea of sharing terminological knowledge about a domain and reusing it in several
applications (consider, e.g., the well-known SNOMED-CT medical terminology [15]).
In this work we incorporate contributions from:

– logic-based Knowledge Representation and Reasoning: modeling and reasoning
based on Description Logics (DLs) and Reasoning about actions and change;

– Formal Verification based on Temporal Logics.

For the purposes of this work, all of them (limiting to a low-complexity description
logic) can be integrated in Answer Set Programming (ASP) [7]. In fact, in our previous
work we showed the following:

1. ASP (which has been used for reasoning about actions already in [3, 12]) can be
used for verification (with Bounded Model Checking) of properties, expressed in
an extension of Linear Temporal Logic, of an action domain modeled in terms of
fluents, action laws providing direct effects of actions, and causal laws [10].

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



46 L. Giordano, D. Theseider Dupré

2. The previous framework can be used for reasoning on business processes, in par-
ticular, for verifying process properties in temporal logic [8].

3. Reasoning about actions performed in ASP can rely on domain knowledge in a
low-complexity DL [9]. Axioms in the DL describe static knowledge on a domain;
causal laws should be associated with such knowledge to control which fluents may
change as side effects of other changes, in order for the axiom to still hold, after an
action whose direct effects are explicitly stated.

Building on these contributions, we describe an approach to process modeling and
semantic analysis that is able to exploit terminological knowledge in relying process
activities to semantic constraints, via the definition of effects and preconditions of ac-
tivities, and domain knowledge that relates such effects to the terms used in semantic
constraints. This enriches process modeling and analysis, given that it provides expres-
sive modeling at the semantic level and relies on ASP solvers for efficient inference.

2 Sources of knowledge

As sources of knowledge we consider the following ones.

– A domain knowledge base formalized as a set of description logic axioms and
causal rules, detailed in sections 2.1 and 2.2. Some of the class predicates and prop-
erties are fluents, i.e., may change their truth values as effect of process activities.

– A model for the sequence flow of the process, using conventional gateways. We
refer to the BPMN standard, limiting our consideration to models using activities,
exclusive and parallel gateways (XOR splits and joins, AND split and joins). Con-
ditions on data can be attached to the sequence flow, out of gateways, in particular,
exclusive gateways, thus providing data-based exclusive gateways. We consider
data-based condition expressions that may use terms from the domain knowledge.

– Data objects in the process and their states. The domain knowledge base may
mention such data objects and relate them to other entities in the process domain.

– Pre- and postconditions for activities. Postconditions are used to model the di-
rect effects of activities in terms of the process domain, while side effects can be
obtained relying on the domain knowledge base.

2.1 Terminological domain knowledge

We consider, as in [9], terminological domain knowledge expressed in the fragment
EL⊥ of the description logic EL++ [1]. The choice is motivated by the fact that rea-
soning about action and change with domain knowledge in EL⊥ can be performed in
ASP, with no need for a DL reasoner [9]. In EL⊥, concepts can be constructed from
class names, nominals {a} (i.e., the concept of “being a”), > and ⊥, using intersection
(u) of concepts and existential restriction ∃r.C (the individuals which are in relation r
with some member of the concept C).

Examples of concepts are:

– ∃Teaches.Course , the domain elements who teach a course;



ASP and Ontologies for Reasoning on Business Processes 47

– ∃Teaches.{cs101}, the ones who teach the individual course cs101 ;
– UndergraduateCourseuComputerScienceCourse, the concept of undergraduate

courses in computer science, expressed as the intersection of undergraduate courses
and computer science courses.

A knowledge base contains concept inclusions C1 v C2. Examples are:

– ∃Teaches.Course v Lecturer : the ones who teach some course are lecturers;
– Course u ∃HasSubject .ComputerScienceSubject v ComputerScienceCourse,

which states that a course, which has as subject a computer science subject, is a
computer science course. Adding the inverse inclusion would provide a definition
of ComputerScienceCourse.

2.2 Reasoning about actions with terminological knowledge

Reasoning about such actions and changes can be defined [9] to take into account back-
ground knowledge about the domain expressed as concept inclusions in EL⊥, regarded
as state constraints, i.e., conditions that must hold in all states. We consider an action
theory including action laws describing the direct effects of actions, such as:

retire(john) causes −Lecturer(john)

(this can be an instance of a parametric action with x in place of john). Such laws can
be used to define postconditions of activities in a business process. Non-deterministic
effects of actions can be defined using default negation in the body of action laws.

Causal laws describe dependencies and can be used to derive indirect effects of
actions. An example causal law, that, as we shall see, could be associated with the
concept inclusion ∃Teaches.Course v Lecturer , is:

caused Lecturer(x ) if Teaches(x , y) ∧ Course(y)

Precondition laws describe the executability conditions of actions. An example is:
retire(x) executable if aged(x).

Most fluents are intended to be frame fluents, i.e., their truth value persists across
action occurrences. For all such fluents p, the following causal laws, said persistency
laws, are introduced:

caused p if not− p after p
caused −p if not p after −p

meaning that, if p holds in a state, then p will hold in the next state, unless its negation
−p is caused to hold (and similarly for −p). Persistency of a fluent is blocked by the
execution of an action which causes the value of the fluent to change, or by a nondeter-
ministic action which may cause it to change.

In [9] a semantics is defined for action execution. Given a state (a set of literals) S
which is consistent and complete (i.e., it contains either l or −l for all fluent literals),
such a semantics, based on the answer set semantics [7], defines which are the possible
resulting states if an action α is executed in S.

Suitable causal laws can be associated with concept inclusions in order to guarantee
that if an action is applied to a state satisfying such inclusions, the resulting state will



48 L. Giordano, D. Theseider Dupré

still satisfy them; as a consequence, there is no need to exploit a DL reasoner, as each
state is guaranteed to satisfy concept inclusions [9]. Here we describe part of such causal
laws. For inclusions A v B, two causal laws are needed:

caused B(x) if A(x) caused −A(x) if −B(x)

For an axiom ∃r.B v A, the laws:

caused A(x) if (∃r.B)(x);
caused −(∃r.B)(x) if −A(x);

and at least one of:
caused −r(x, y) if −A(x) ∧B(y)
caused −B(y) if −A(x) ∧ r(x, y)

should be introduced. For example, an axiom ∃approved by.examiner v approved
relative to insurance claim processing, has the associated causal law:

caused approved(x) if (∃approved by.examiner)(x)

where (∃approved by.examiner)(x) is in turn caused, if approved by(x, y) and
examiner(y)). If we admit that the claim, after being approved by an examiner, can be
made −approved by a manager, the causal law:

caused −approved by(x, y) if −approved(x) ∧ examiner(y)

is introduced, while the other possible causal law is not, because we do not expect
examiner(y) to become false as a side effect of approved by(x, y) becoming false.

There is an option also for the case of an axiomAuB v D; besides the law caused
D(x) if A(x) ∧B(x), at least one of the following should be introduced:

caused −A(x) if −D(x) ∧B(x)
caused −B(x) if −D(x) ∧A(x)

3 Process models as action domains

Consider a simple process model for insurance claim processing whose control flow is
described in Figure 1 (additional knowledge is not shown since only part of it can be
represented in BPMN). In this model, a claim is assigned to a claims examiner, who
provides a (preliminar) acceptance or rejection, and then possibly reviewed by a claims
manager. We do not detail the accept/reject final part in terms of sending letters or
performing payment.

All activities refer to a data object Claim, which is output of the start event Receive
claim and is both input and output of all the other activities.

The activity Assign claim also has as output the examiner who had the claim as-
signed and the manager who should possibly review the claim. Examiner and manager
are input to the activities executed by them (alternatively, swim lanes could be used to
represent actors in the process).



ASP and Ontologies for Reasoning on Business Processes 49

Fig. 1. Example process model

In general, in the representation of activities as actions in the action domain, a choice
should be made on the parameters introduced for the action, and the possible values for
data objects in the process. As a default, if an activity a has a data object as input or
output, it will have it as a parameter. Therefore, all activities in the process have as
parameters a claim identifier, and the person executing the activity.

As regards values for data objects (here, a claim identifier, the examiner and man-
ager), when reasoning about the process, considering all possible values that a data
object can assume could be unnecessary. In the example model, the actual value of the
claim identifier and the actual names of the examiner and manager do not influence
process execution (as we shall see, they do not occur in the data-based conditions), and
are therefore irrelevant.

Then, when an object is output of an activity, we represent its value with an individ-
ual name with the only constraint that it should be different from other names. In the
example we will use as values the names claim, examiner, manager of the data objects
themselves. To avoid redundancy, we remove “claim” from the name of the activity. The
action instances that are considered in the action domain corresponding to the process
model are then:

assign(claim)
examine(examiner , claim)
review(manager , claim)
reject(examiner , claim)
accept(examiner , claim)

The control flow of the process model can be represented with action laws and
precondition laws resulting from an automated translation, based on the enabling of ac-
tivites, similar to the one described in [8] (appendix A) for a subset of YAWL, analogous
to the subset of BPMN used in this paper.

Data-based conditions for exclusive splits are the most interesting case for this
paper, since they are the place in the model where terms from the domain knowl-
edge can be conveniently used. For the model in figure 1, we suppose that the con-
dition for reviewing a claim is that it is approved by the examiner and the customer
is suspect of being a fraudster (in a variation of the example, another sufficient con-
dition could be that the examiner is in training). The condition can be expressed as
PossiblyFraudolentClaim(claim) where the concept is defined in the domain knowl-
edge base as Claim u ∃HasCustomer .SuspectFraudster . How a customer is actually



50 L. Giordano, D. Theseider Dupré

suspected to be a fraudster (also due to previous claim history) could be a case where
in the model we abstract from the way this is explicitly stored or computed: this is one
of the reasons for introducing a semantic layer in the model.

Further action laws state that:

– examine(examiner , claim) has an effect examined(claim) and a nondeterminis-
tic effect approved by(examiner , claim) or −approved by(examiner , claim)

– review(manager , claim) has a nondeterministic effect approved(claim) or
−approved(claim).

The causal laws in section 2.2, associated with the domain knowledge axiom
∃approved by.examiner v approved, imply that if the claim is approved by the ex-
aminer and does not undergo review, it will remain approved; while if it is made not
approved by the manager’s review, it will no longer be considered as approved by the
examiner.

The second exclusive split is (obviously) conditioned on approved(claim).

4 Process representation and reasoning in ASP

An action domain, including the one derived from a process model as described in the
previous section, can be represented in ASP [9].

States are represented as integers, starting with the initial state 0; occurs(Action,
State) represents the fact that Action occurs in State; occurrence of exactly one action
in each state is imposed. A predicate holds inst(Concept ,Name,State) is used to rep-
resent that an assertion of the form C(a) holds in a state, holds triple(Role,NameA,
NameB ,State) is used for role assertions r(a, b), and holds(Fluent ,State) is used for
other fluents (used to model control flow in a process model).

Action and causal laws can be translated to ASP rules. As an example, the action
law examine(examiner , claim) causes examined(claim) is translated to:

holds inst(examined , claim,S1 )←
S1 = S + 1 , occurs(examine(examiner , claim),S )

while the causal law caused −approved by(x , y) if −approved(x)∧ examiner(y) is
translated to

−holds triple(approved by ,X ,Y ,S )←
state(S ),−holds inst(approved ,X ,S ), holds inst(examiner ,Y ,S )

In [10] we showed (for a variant of the action language used in this paper, which
can be similarly encoded in ASP) that, given an action domain, temporal properties of
the domain, expressed in Dynamic Linear Time Temporal Logic [13], an extension of
Linear Time Temporal Logic [2], can be verified in ASP in a Bounded Model Checking
(BMC [4]) approach.

In [8] we showed how the approach can be adapted to the verification of properties
of finite executions of a business process model, and, in Appendix B therein, that pro-
cesses with up to 200 activities and run length of more than 100 activities can be dealt
with.



ASP and Ontologies for Reasoning on Business Processes 51

The same approach can be used for verifying LTL properties of action domains in
this paper, where LTL formulae can be built from fluents, including assertions in the
language of domain knowledge. The analysis is performed on the finite domain repre-
sented by the set of constants in the ASP encoding. This is without loss of generality
as regards the domain knowledge, given that it is expressed in EL⊥; but it relies on the
assumption that the domains for data objects are assumed to be finite. As an example,
the formula:

2(examined(claim) ∧ ¬approved(claim)→ ¬3approved(claim))

corresponds to the property that an examined claim which is not approved cannot be-
come approved. In the model described in section 3, it indeed holds, because the claim
is reviewed only if it was approved by the examiner (and the customer is suspected to
be fraudolent), while if was not approved by the examiner, it does not undergo review
and its approval is not modified. The formula can be verified to hold using the approach
described above.

5 Conclusion and related work

In the paper, building on contributions in our previous work [10, 8, 9], we described
how domain knowledge in the form of ontologies can be accommodated in modeling
and reasoning about business processes in Answer Set Programming.

Our contribution is related to several ones in the literature.
Ly et al. in [17] provide thorough motivations for the use of semantic constraints

– represented in first-order logic – in BPM, but the paper does not describe the use of
automated reasoning based on such constraints.

An early approach using logic-based reasoning about actions and change for mod-
eling and verification of business processes is presented in [16], based on the ConGolog
language. The work is in the line of declarative modeling of processes, while our work
is aimed at enhancing BPMN-like models with semantic knowledge and reasoning.

The idea of adding semantic annotations to a process model was proposed already
in [14]. In that paper, domain knowledge is in the form of clauses, rather than relying
on DLs, which are now commonly used for semantic layers; side effects of actions are
obtained based on the PMA approach [18], while we rely on causal rules, which were
introduced for that purpose in reasoning about action and change.

De Masellis et al. in [5] describe a framework for business process verification com-
bining a control flow model based on Petri Nets with a data model à la Data Centric
Dynamic systems. In particular, they prove the decidability of reachability (which in
general is undecidable) under three notions of state boundedness. The framework is
encoded in a C-based action language. Finiteness of the domain is guaranteed by the
fact that the model is state-bounded. In our approach we can consider the domain to be
finite (for each fixed bound in the BMC), by assuming that the data type of objects in
the business process is finite. We uniformly model in ASP the business process, the ac-
tion language (including the constraints extracted from ontological domain knowledge,
which is not considered in [5]) and the bounded model checking verification for general
formulas, which subsumes reachability analysis.



52 L. Giordano, D. Theseider Dupré

In a related paper [6] the authors rely on the formulation of a business process in
terms of an action language in order to take advantage of automated planners in order
to solve reachability problems, in particular, in order for repairing incomplete traces of
execution.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A.
(eds.) Proc. IJCAI 2005. pp. 364–369. Edinburgh, Scotland, UK (August 2005)

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
3. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-Based Artificial

Intelligence, pp. 257–279 (2000)
4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-

vances in Computers 58, 118–149 (2003)
5. De Masellis, R., Di Francescomarino, C., Ghidini, C., Montali, M., Tessaris, S.: Add data into

business process verification: Bridging the gap between theory and practice. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence. pp. 1091–1099 (2017)

6. De Masellis, R., Francescomarino, C.D., Ghidini, C., Tessaris, S.: Enhancing workflow-nets
with data for trace completion. In: Business Process Management Workshops - BPM 2017
International Workshops. pp. 89–106 (2017)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan & Claypool Publishers (2012)

8. Giordano, L., Martelli, A., Spiotta, M., Theseider Dupré, D.: Business process verification
with constraint temporal answer set programming. Theory and Practice of Logic Program-
ming 13, 641–655 (2013)

9. Giordano, L., Martelli, A., Spiotta, M., Theseider Dupré, D.: ASP for reasoning about ac-
tions with an EL-bot knowledge base. In: Proceedings of the 31st Italian Conference on
Computational Logic. pp. 214–229 (2016)

10. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal
answer sets. Theory and Practice of Logic Programming 13, 201–225 (2013)

11. Giordano, L., Theseider Dupré, D.: Enriched modeling and reasoning on business processes
with ontologies and answer set programming. In: Business Process Management Forum -
BPM Forum 2018, Sydney. pp. 71–88 (2018)

12. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proc. AAAI/IAAI 1998. pp. 623–630 (1998)

13. Henriksen, J., Thiagarajan, P.: Dynamic linear time temporal logic. Annals of Pure and Ap-
plied logic 96(1-3), 187–207 (1999)

14. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal constraints in
annotated process models. Information Systems Frontiers (2009)

15. International Health Terminology Standards Development Organization: SNOMED CT.
http://www.ihtsdo.org/snomed-ct/

16. Koubarakis, M., Plexousakis, D.: A formal framework for business process modelling and
design. Inf. Syst. 27(5), 299–319 (2002)

17. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process compli-
ance with semantic constraints in process management systems - requirements, challenges,
solutions. Information Systems Frontiers 14(2), 195–219 (2012)

18. Winslett, M.: Reasoning about action using a possible models approach. In: Proc. AAAI, St.
Paul, MN, August 21-26, 1988. pp. 89–93 (1988)


