
Analysis of the Effect of Query Shapes on
Performance over LDF Interfaces

Gabriela Montoya, Ilkcan Keles, and Katja Hose

Aalborg University, Aalborg, Denmark
{gmontoya,ilkcan,khose}@cs.aau.dk

Abstract. The adoption of Semantic Web technologies, and in partic-
ular the Open Data initiative, has contributed to the steady growth of
the number of datasets and triples accessible on the Web. Most com-
monly, queries over RDF data are evaluated over SPARQL endpoints.
Recently, however, alternatives such as TPF have been proposed with
the goal of shifting query processing load from the server running the
SPARQL endpoint towards the client that issued the query. Although
these interfaces have been evaluated against standard benchmarks and
testbeds that showed their benefits over previous work in general, an
evaluation of the effects of the query shapes on query performance of
the different available interfaces has never been done. In this paper, we
present the results of our in-depth evaluation of query shapes impact
on the performance of existing LDF interfaces. Using representative and
diverse query loads that are designed to include relevant query shapes
and are based on the query log of a public SPARQL endpoint, we stress
test the different interfaces and identify their strengths and weaknesses.

1 Introduction

With the adoption of the Open Data initiative by many institutions and compa-
nies, the amount of data offered on the Web in RDF is growing on a daily basis.
While some of these datasets, such as DBpedia [10], offer information extracted
from unstructured sources, such as Wikipedia, other datasets focus on factual
information from a specific domain, such as life science, geography, government,
publications, etc.

The simplest way to make such datasets available to others is publishing
them on the Web as downloadable data dumps, typically encoding information
in RDF formats such as N-triples or Turtle. The dump can then be downloaded
through HTTP and the user can process the data according to his/her needs.
Whereas this is very low effort for the data provider, the problem is that the
user cannot simply query the information he/she is looking for directly at the
data provider but instead has to download the entire dataset and process the
query locally.

On the other hand, a data provider can choose to run a SPARQL endpoint
(server) to provide access to the data. In this way, a user (client) can send a
SPARQL query to the endpoint, which processes it and returns the answer to

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)



the query. The advantage for the user in this setting is that it requires very little
effort from the user. The price, however, is a relatively high load at the server
running the endpoint as it has to process the entire query. If too many clients
send queries concurrently or if the server is processing complex queries, query
response time increases and/or the endpoint might even become unavailable for
some time.

To address this bottleneck, the Triple Pattern Fragments (TPF) interface [18]
was proposed. To achieve the goal of better sharing the query load between clients
and servers, the server is stripped from any higher-level query functionality and
is only able to process single triple pattern requests. Any other query processing
tasks, in particular processing joins, filters, grouping, are exclusively handled by
the client. In doing so, the TPF interface increases availability and throughput
at the server side. brTPF [8] then extends TPF by allowing the client to not
only send a single triple pattern to the server but also include a sequence of
bindings for the variables in the triple pattern. This makes it possible to send
bindings obtained from intermediate results of a SPARQL query at the client
and to reduce the number of HTTP requests that need to be sent to the server.

The trade-offs of using different LDF interfaces have been explored within the
Linked Data Fragment (LDF) framework [18]. LDF interfaces are interfaces that
provide access to RDF data, such as data dumps, SPARQL endpoints, TPF and
brTPF. Even if a formal framework for comparing LDF interfaces in terms of
their expressiveness and complexity is proposed by Hartig et al. [9], there are only
very few empirical evaluations that compare LDF interfaces, and they are not
extensive enough. Although the literature [8, 9, 13, 18] provides some analysis of
the general behavior of available interfaces for RDF data, in particular SPARQL
endpoints, TPF, and brTPF, none of them provides a detailed analysis that tries
to find out which interface performs best for a specific query shape and what
the advantages of an interface over another interface are for processing a specific
query shape.

In this paper, we therefore provide an extensive empirical evaluation of avail-
able LDF interfaces (SPARQL endpoint, TPF, and brTPF) using a real query
load sent to the DBpedia SPARQL endpoint [11]. In contrast to existing analy-
ses, we decided to use a real query log instead of a synthetic benchmark to reflect
real user behavior. In summary, this paper makes the following contributions:
(i) A survey of coverage and shortcomings of existing evaluations of LDF in-
terfaces, (ii) Definition of representative and diverse query loads that facilitates
an in-depth analysis of the effect of query shapes on LDF interfaces, and (iii)
Extensive evaluation of LDF interfaces analyzing how much the query shapes
influence the performance of available LDF interfaces.

This paper is organized as follows. Section 2 summarizes existing evaluations
of LDF interfaces and highlights their shortcomings. Section 3 defines the exper-
imental setup, including the characterization of representative queries from logs
of public endpoints. Section 4 presents our experimental results and an extensive
discussion, and finally Section 5 concludes the paper with a summarization of
our most important findings.

2



2 Existing Interfaces and Evaluations

In this paper, we focus on the most popular interfaces proposed for querying
RDF datasets: SPARQL endpoints, Triple Pattern Fragments (TPF) [18], and
bindings-restricted Triple Pattern Fragments (brTPF) [8]. SPARQL endpoints
are most convenient for clients as they can submit complete SPARQL queries
and simply receive the answer to the query – the complete query load is on the
server side (SPARQL endpoint). Furthermore, SPARQL endpoints support the
complete SPARQL specification [5]. On the other hand, allowing clients to issue
complex SPARQL queries might require considerable resources in terms of CPU
and main memory at the server. Processing multiple such queries concurrently
might result in considerable delays or in the worst case non-availability of the
server. A survey of public SPARQL endpoints [2] shows that only 32.2% of
endpoints are capable of providing 99% to 100% availability during the 27-month
long monitoring.

The TPF interface [18] was proposed to address the availability issue of
SPARQL endpoints by better sharing the query processing load between server
and clients. A TPF server is only capable of handling triple pattern requests.
In other words, it receives a triple pattern from a client and returns the triples
of the hosted knowledge graph matching the input triple pattern. The client
then takes care of all other query processing tasks, such as joining, filtering,
grouping, query optimization and decomposition, and sending triple pattern re-
quests to the servers. The TPF interface has been evaluated against SPARQL
endpoints based on Jena Fuseki and Virtuoso [6] using an instance of the Berlin
SPARQL Benchmark (BSBM) dataset [3] that contains 100 millions triples [18].
The experiments show that the CPU load on the server is lower and the CPU
load on the client is higher for TPF interfaces compared to SPARQL endpoints.
Moreover, the network load between the server and the client increases since the
client has to issue several HTTP requests to process a single SPARQL query.
Verborgh et al. [18] also provide an experiment to assess the performance of TPF
on a real-world knowledge graph by executing different queries obtained from the
DBpedia SPARQL benchmark (DBSB) [14] on three knowledge bases containing
14 million triples, 52 million triples, and 377 million triples, respectively. In this
last experiment, TPF was the only interface assessed and no results regarding
the execution of these queries against SPARQL endpoints were provided. This
experiment shows that the query processing time of TPF has a high variance
between queries with different keywords. Queries with keywords like UNION,
FILTER, and OPTIONAL are quite expensive using TPF since the TPF client
implementation used does not provide a good query plan for such queries. More-
over, the experiments presented do not pay any particular attention to the shape
of the issued query. For this reason, the effect of the shape of the issued query
on TPF remains unknown.

brTPF [8] extends TPF by adding a sequence of bindings to the triple pat-
tern requests to reduce the overall number of HTTP requests necessary to an-
swer a query. brTPF was evaluated against TPF using the WatDiv dataset and
queries generated by the associated stress testing tools [1]. Specifically, a syn-

3



thetic knowledge graph with 10 million triples (published also on the project
website) is used for evaluation. A total of 145 BGP queries and a total of 12, 400
queries are used for single-client experiments and multi-client experiments, re-
spectively. Up to 64 clients are used for multi-client experiments. The experi-
mental evaluation demonstrates that brTPF has a better query throughput and
less network overhead compared to TPF in both settings.

Aside from proposing WatDiv dataset and stress testing tools, Aluc et al. [1]
also present an experimental evaluation of SPARQL endpoints including Vir-
tuoso and 4store. The experimental evaluation shows that the query processing
performance of the endpoints differs a lot with respect to the queries. In order to
see the effect of query characteristics on the performance of the endpoints, they
group queries with respect to their selectivity and their structure. They only
consider linear and star/snowflake structures. Selectivity-based characterization
of queries requires a dynamic analysis and it is quite expensive. Moreover, a sys-
tematical evaluation of the effect of shapes on the query processing performance
is missing in the literature. For these reasons, we choose to consider query shapes
that can be determined via static analysis in this work.

Existing evaluations between TPF and brTPF are limited to WatDiv and do
not analyze the influence of particular query shapes. Instead, only average times
over sets of queries are reported. However, a solution that works well on average
does not necessarily work best on all types of queries.

3 Evaluation Setup

In this section, we present our experimental setup covering datasets and queries,
query loads, interfaces, hardware setup, and evaluation metrics.

Dataset and Queries. For our study, we use the USEWOD 2016 re-
search dataset [11] 1 that contains query logs from the public DBpedia inter-
faces: SPARQL endpoint and TPF server. We use SPARQL queries sent to the
DBpedia SPARQL endpoint. The USEWOD dataset covers the query logs of
20 randomly selected days between July, 2015 and November, 2015 (43 GBs)
containing nearly 10 million unique select queries. We do not use existing bench-
marks that generate synthetic queries such as [1, 3] since the generated queries
do not sufficiently reflect the characteristics of queries executed by actual users
of the SPARQL endpoints. This can be observed for instance in a recent fine-
grained evaluation done by Saleem et al. [16]. Moreover, we also do not use
existing benchmarks based on user query logs such as [14,15] since they focus on
generating query loads that cover all queries and SPARQL keywords present in
the query log, while our focus is studying the different query shapes found in the
query logs. Moreover, some of the studied systems (e.g., current implementation
of TPF) do not support all the SPARQL keywords present in the query loads

1 As indicated in the USEWOD 2016 dataset, we use the DBpedia 3.9 dataset. It
is available at http://downloads.dbpedia.org/3.9/en/. We loaded DBpedia 3.9
dataset to all of the endpoints and removed the triples that created problems in any
of the endpoints we use. At the end, our dataset contains 351, 590, 668 triples.

4

http://downloads.dbpedia.org/3.9/en/


generated by these benchmarks. Therefore, we target BGPs, OPTIONALs and
FILTERs in order to compare all three interfaces (SPARQL, TPF, and brTPF).

Table 1: Description of the Query Shapes
Query Shape Description Example

EDGE single triple pattern ?x p ?y

CHAIN triple patterns are chained together with
object-subject joins

?x p1 ?y . ?y p2 ?z

CYCLE as CHAIN but with an additional join be-
tween the first and last triple pattern

?x p1 ?y . ?y p2 ?x

STAR all triple patterns share a join variable either
as subject or as object

?x p1 ?y . ?x p2 ?z . ?x
p3 ?w

TREE no EDGE, CHAIN or STAR, without cycles ?x p1 ?y . ?x p2 ?z . ?z
p3 ?w . ?z p4 ?v

FLOWER CHAINs, TREEs and PETALs with a com-
mon join variable. A petal includes multiple
disjoined CHAINs between the same pair of
variables

?x p1 ?y . ?y p2 ?z .
?x p3 ?w . ?w p4 ?z .
?x p5 ?v . ?v p6 ?u

A recent study [4] provides structural and shape analysis for all the queries in
the USEWOD 2016 research dataset [11]. According to this analysis, six shapes
are the most common shapes in query logs: EDGE, CHAIN, CYCLE, STAR,
TREE, and FLOWER. Query shapes are described in Table 1. For our study, we
only consider unique select queries of these types that do not have any syntac-
tical errors according to the SPARQL specification. Moreover, we also consider
structural characteristics such as the use of operators JOIN, OPTIONAL, and
FILTER, use of variables as predicates, whether the used filters are safe and sim-
ple and whether the used OPTIONAL clauses are well-designed and tractable
in line with Bonifati et al. [4]. A safe filter only includes variables used in its
graph pattern, while simple filters include only one variable or correspond to
X = Y with X, Y being variables. Well designed OPTIONAL clauses only join
graph patterns using variables that are always bound (in the left operand), while
tractable OPTIONAL clauses include at most one join variable between their
operands. In this study, we focus on the queries that do not have any variables
as predicates, and that contains only safe simple FILTER clauses and well-
designed and tractable OPTIONAL clauses. In other words, we focus on queries
with tractable graph patterns and there are 4, 337, 181 such queries contained in
the USEWOD 2016 dataset.

Table 2: Shapes of Queries

Query Shape Total Relevant

CHAIN 832,873 171,244

CYCLE 73 31

EDGE 3,189,874 1,275,313

FLOWER 3,209 5

STAR 274,678 8,657

TREE 36,474 358

For these 4, 337, 181 queries, we examined their shapes and the findings are
listed in Table 2. The total number corresponds to the number of queries with

5



this shape. We exclude queries with empty answers and queries that are not sup-
ported by existing implementations to allow for a more interesting performance
study of existing LDF interface implementations using these queries. Existing
implementations of TPF and brTPF do not support features such as VALUES,
subqueries, REGEX expressions with three arguments, aggregations, functions
on RDF terms (e.g., isLiteral), and functions on strings (e.g., UCASE). More-
over, some predicates such as bif:contains are only supported by Virtuoso. We
refer to the remaining queries as relevant queries. The number of relevant queries
for our study is shown in the rightmost column of Table 2. Some query shapes
had considerably fewer queries that have answers and are supported by exist-
ing implementations. An example is queries with FLOWER shape, where 3,108
out of 3,209 queries include the predicate bif:contains that is only supported
by Virtuoso. After we determine the set of relevant queries, we remove modi-
fiers DISTINCT, ORDER BY, LIMIT and OFFSET from the queries with these
modifiers. This is needed to focus on the evaluation of the graph patterns and to
have a fair comparison between different interfaces. Since both TPF and brTPF
are not optimized for these modifiers and use post-processing on the client-side
to process queries with modifiers, we think it would be unfair to compare brTPF
and TPF with SPARQL endpoints using such queries.

Query Loads. After determining the set of relevant queries, we continue
with creating query loads for single-client and multiple-clients experiments. In
line with [8], we include experimental evaluation with multiple clients to assess
how the number of clients concurrently accessing the interface affects the per-
formance of the interface. Moreover, this set of experiments makes it possible to
evaluate the interfaces under high load.

For the single-client experiments, we consider query loads of at most 100
random queries for each shape2. In total, we have 436 queries distributed into 6
query loads, 1 for each shape: CHAIN, CYCLE, EDGE, FLOWER, TREE, and
STAR.

For multiple-client experiments, we consider up to 64 clients as done by Har-
tig and Aranda in [8]. Experimental results, e.g. [8, 18], demonstrate that the
advantages of TPF and brTPF become visible even with 16 clients. For these
experiments, instead of creating a separate query load for each shape, we create
two query loads (Equal and Proportional) for each client that combine queries
with different shapes. Both query loads are constructed by randomly drawing
queries from different query shapes. The queries are drawn with respect to the
uniform distribution for the Equal query load and with respect to the frequency
distribution for the Proportional query load. In the uniform distribution, every
shape has the same probability to be drawn, while in the frequency distribu-
tion the shape probability is proportional to the frequency of that shape in the
relevant queries.

We want to make sure that the intersection of the query loads for different
number of clients is empty since we do not want interfaces take advantage of

2 For shapes with less than 100 queries, all the available queries are included in the
query load.

6



caching during the experiments. For this reason, we considered only shapes with
at least 6, 400 queries as we aimed to have 64 query loads with 100 queries to
have experiments with 64 clients.

Interfaces and Implementations. In this paper, we focus on three inter-
faces for accessing RDF datasets: TPF [18], brTPF [8], and SPARQL endpoints.
All the interfaces require a server and a client implementation. We use popular
triple stores that rely on different data representations (binary RDF, RDMS,
native graph database) as concrete server implementations for the SPARQL
endpoint interface: Fuseki (HDT)3, Virtuoso [6] 7.2.5.3229-pthreads, and Blaze-
graph [17] 2.1.5 Release Candidate version. Fuseki is used with default config-
uration4. The file sizes for different triple stores are: 5.3G (HDT), 1.7G (HDT
Index File), 21G (Virtuoso DB File), 34G (Blazegraph Journal File).

Because the brTPF server is only available in Java and to exclude the pos-
sibility that our results could be attributed to different implementations, we
integrated brTPF into the latest available (and bug-free) TPF server (Java)5.
We use that as the server implementation for TPF and brTPF. This implemen-
tation is based on the use of HDT files [7, 12].

We use the nodeJS client from [8] as brTPF client, and the nodeJS client
from [18] as TPF client6. We use a nodeJS client from [13] for SPARQL endpoints
since we want to have a fair comparison between interfaces by relying on the same
client infrastructure.

Table 3: Machine configurations

Machine Cores RAM OS Network Speed

Small 8 x 2294.250 MHz 64GB Ubuntu 16.04.1 LTS up to 10,000Mb/s

Big 64 x 2294.176 MHz 516GB Ubuntu 14.04.6 LTS up to 1,000Mb/s

Hardware Configuration. We use two machines with different configura-
tions that are described in Table 3. For the experiments with a single client, the
servers are deployed using docker7 containers in the big server and configured so
that they will use up to 8GB of RAM and three cores, while the clients are run in
the small machine and each client is set to use one core and up to 3GB of RAM.
For the experiments with multiple clients, the servers are deployed using docker
containers in the small machine and configured to use up to 21GB of RAM8 and
three cores, while up to 64 clients are run in the big machine and each client is
set to use one core and up to 3GB of RAM. Given the machine configurations,

3 part of hdt-java, available at https://github.com/rdfhdt/hdt-java latest devel-
opment version, February 17th, 2019

4 The configuration files for Virtuoso and Blazegraph are available in our project
website: http://qweb.cs.aau.dk/evaluation

5 The code of latest TPF server in Java is available at https://github.com/

LinkedDataFragments/Server.java.The code of the extended server is available at
our project website

6 To the best of our knowledge, this is the only client publicly available
7 https://www.docker.com/
8 Virtuoso was not able to handle 64 clients with less RAM and lower bounds set by

the configuration file failed to have any impact on restricting the RAM usage.

7

https://github.com/rdfhdt/hdt-java
http://qweb.cs.aau.dk/evaluation
https://github.com/LinkedDataFragments/Server.java
https://github.com/LinkedDataFragments/Server.java
https://www.docker.com/


cf. Table 3, there are enough resources available for all the clients and servers
configured as described above. We use a low-latency network (<1ms).

Evaluation Metrics. In the experimental evaluation we refer to SPARQL
endpoints, TPF server and brTPF server as server. To evaluate the different
approaches, we use the following measures:
– Execution Time (ET): the time elapsed between issuing the query and get-

ting the query results (with a timeout of five minutes),
– Number of HTTP requests (NH): the number of HTTP requests sent to the

the server,
– Server Load (SL): the CPU percentage used by the TPF server, brTPF

server, and SPARQL endpoints during query processing. The CPU percent-
age is measured using the statistics docker provides regarding docker con-
tainers via docker stats command with a frequency of 30 seconds. It might go
up to 300% (as each server has 3 cores) and the reported load is the average
CPU percentage throughout processing all queries within a query load,

– Number of Retrieved kBs (NRKB): the number of kilobytes transferred from
the server to the client during query execution,

– Number of Sent kBs (NSKB): the number of kilobytes transferred from the
client to the server during query execution,

– Number of Timed out Queries (NTQ): the number of queries that do not
complete their execution within five minutes.

4 Evaluation Results

In this section, we present the results of the single-client and multiple-client ex-
periments9. We performed experiments using: Blazegraph endpoint (e B), Fuseki
endpoint (e F), and Virtuoso endpoint (e V), brTPF server (brtpf), and TPF
server (tpf).

4.1 Preliminary Experiments

Surprisingly, we encountered several problems in our preliminary experiments
when executing the generated query loads: queries that aborted with errors,
queries with inconsistent results across systems, and timed-out queries. Figure 1
shows an overview of such queries. Including aborted and timed-out queries in
our results can negatively impact the performance, data transfer, and server
usage metrics of the systems that completed the execution of the queries with-
out any problems10. Hence, we present the metrics obtained by excluding the
problematic queries.

We assessed the reasons why we obtain different results across systems. Prob-
lems include incorrect evaluation of queries with OPTIONALs involving BGPs

9 The complete evaluation results are available at our project website: http://qweb.
cs.aau.dk/evaluation

10 Figures showing the effect of including queries with consistent answers are available
in our project website.

8

http://qweb.cs.aau.dk/evaluation
http://qweb.cs.aau.dk/evaluation


0

5

10

15

20

25

br
tp

f
e_

B
e_

F
e_

V tp
f

N
A

Q

(a) Errors

0

5

10

15

20

25

br
tp

f
e_

B
e_

F
e_

V tp
f

N
T

Q

(b) Timeouts

0

5

10

15

20

25

br
tp

f
e_

B
e_

F
e_

V tp
f

N
D

A
Q

(c) Answers

Fig. 1: Number of queries aborted with error (NAQ), timed out (NTQ), or with
different number of answers (NDAQ)

with more than one triple pattern (TPF), incorrect evaluation of queries with
nested OPTIONALs (TPF and brTPF), fragment pages missing control ele-
ments that prevent accessing the second page of a fragment (the brTPF client
implementation), evaluation of property paths that do not follow the standard
set semantics (Virtuoso).

It is important to note that queries with the lowest number of triple patterns,
e.g., EDGE-shaped queries, have no queries with different answers across the
systems, while queries with higher numbers of triple patterns, e.g., TREE-shaped
or STAR-shaped queries, amount to 14 of the total 16 queries (across all query
loads) with different answers across systems. Therefore, studying queries with a
higher numbers of triple patterns and diverse shapes allows for identifying some
limitations of existing implementations of the different interfaces.

●●●●●●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●●

●●

●

2

4

6

8

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

Tr
ip

le
 P

at
te

rn
s

(a) TPs

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●●●

2

4

6

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

B
G

P
s

(b) BGPs

●

●

●

●●●

●●●●●●●●●

●

●●●●●●●

0

2

4

6

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

O
P

T
IO

N
A

Ls

(c) Optionals

●●●● ●●●●●●●●●●●●●

●●●●●●●●●0.0

0.5

1.0

1.5

2.0

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

F
IL

T
E

R
s

(d) Filters

●●●●●●

●
●

●●●
●
●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

m
ea

nB
G

P
S

el

(e) Mean BGP Sel

●●●●●●

●

●

●

●●●

●

●●●

●

●
●

●●

●

●

●

●●

●

●

●

●●

0.0

0.2

0.4

0.6

CHAIN
CYCLE

EDGE

FLOWER
STAR

TREE

st
de

vB
G

P
S

el

(f) Stdev BGP Sel

Fig. 2: Number of Triple Patterns (TPs), Basic Graph Patterns (BGPs), Option-
als, and Filters, Mean and Standard Deviation (Stdev) BGP-restricted Triple
Pattern Selectivity (Sel)

After removing the 16 queries mentioned above, Figure 2 shows some struc-
tural and data-driven characteristics of the queries in each query load. The query
loads with higher diversity for these characteristics are CHAIN and TREE.
TREE includes the higher number of OPTIONAL clauses and consequently the
higher number of BGPs. CHAIN and TREE include queries with more diverse
BGP-restricted triple pattern selectivity. For a BGP bgp = {tp1 , tp2 , ..., tpn},
the BGP-restricted triple pattern selectivity of bgp for tpi indicates the pro-

9



portion of solutions for tpi that are compatible with solutions for bgp. A high
BGP-restricted triple pattern selectivity value indicates that most intermediate
results contribute to the solution of bgp, while a low value indicates that there
are many intermediate results that do not contribute to the solution of bgp.

4.2 Single-Client Experiments

Performance. Existing benchmarks for SPARQL endpoints [3,14,15] use met-
rics such as queries per second (QpS) and query mixes per hours (QMpH) for
performance evaluation. Existing TPF and brTPF studies [8,18] employ queries
per hour or throughput (QpH) metrics. All these metrics provide information
with a very coarse granularity, i.e., just one number to describe how a system
performed a query load. Figure 3 shows some of these metrics for processing all
single-client query loads. According to these results, the system that perform
the best is the Fuseki endpoint (e F). Moreover, the performances of brTPF and
TPF are very similar.

100

101

102

103

br
tp

f
e_

B
e_

F
e_

V tp
f

E
T

 (
s)

(a) ET

0.00
0.25
0.50
0.75
1.00
1.25

br
tp

f
e_

B
e_

F
e_

V tp
f

Q
pS

(b) QpS

0

3

6

9

br
tp

f
e_

B
e_

F
e_

V tp
f

Q
M

pH

(c) QMpH

Fig. 3: Total ET, Queries per Second (QpS), and Query Mixes per Hour (QMpH)
for different interfaces

However, having a single number that summarizes the performance of the
systems across the query loads may hide some interesting facts. In particular,
we have no information about how each system performs queries with specific
shapes. Figure 4 therefore shows the query execution time (ET) represented
with a boxplot for each query shape and system. EDGE- and CHAIN-shaped
queries are performed faster by Blazegraph, Fuseki, and brTPF. Even if EDGE-
shaped queries have no binding-restricted requests, brTPF exhibits a slightly
better performance than TPF. This shows that the brTPF client also includes
further optimizations besides the binding-restricted requests, e.g., variables in
the triple pattern are replaced by ?s, ?p, ?o to reduce the data transfer. On the
other hand, Virtuoso’s performance for EDGE- and CHAIN-shaped queries is
very low. This is evidenced by an execution time that is considerably higher than
the ones of other endpoints for half of the queries. For CYCLE-shaped queries,
endpoints perform better than TPF and brTPF. For STAR-shaped queries, Vir-
tuoso performs better than others. However, it is also worth noting that TPF
and Blazegraph have quite a high number of outliers for this shape. For TREE-
shaped queries, Fuseki performs the best. TPF and brTPF have a quite large
variance between execution times for this shape. For this reason, we conclude
that one should not use TPF and brTPF for processing TREE-shaped queries.

10



For FLOWER-shaped queries, Fuseki provides the most efficient query process-
ing. If we want to execute queries with characteristics as diverse as the ones in
query load TREE (see Figure 2), one would not choose the Blazegraph endpoint
even if it has the best overall performance according to Figure 3. Figure 4 also
shows that the shape of the issued queries affects the query processing perfor-
mance for each system.

●

●●

●

●●●●

●

●

●
●
●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

10−1

100

101

102

brtpf e_B e_F e_V tpf

E
T

 (
s)

CHAIN  CYCLE  EDGE  FLOWER  STAR  TREE  

Fig. 4: ET per query shape for interfaces

Network Load. Figure 5 shows the average number of requests (NH) and
average amount of data transferred from the servers to the clients (NRKB) per
interface as studied earlier [8, 18]. NH and NRKB are independent from the
endpoint used; the TPF interface has the higher NH and NRKB, while the
endpoint interface has the lowest.

100
101
102
103
104
105
106

br
tp

f e tp
f

N
H

(a) NH

100
101
102
103
104
105
106

br
tp

f e tp
f

N
R

K
B

(b) NRKB

0

100

200

300

br
tp

f
e_

B
e_

F
e_

V tp
f

S
L

(c) SL

Fig. 5: NH, NRKB and SL

Figure 6 shows the number of transferred kBs from the server (NRKB) and
from the client (NSKB) represented as a boxplot for each system and query
load. Each query load has very different values for NRKB and NSKB. Naturally,
the endpoints transfer considerably less kBs for both metrics. Relative values
across interfaces are consistent except for the FLOWER- and STAR-shaped
queries. While the endpoints have similar NSKB and higher NRKB values for
STAR-shaped queries, the TPF and brTPF interfaces end up having consid-
erably more data transfer for the FLOWER-shaped queries. This suggests that
such queries result in a high number of intermediate results consistently with the
BGP-restricted triple pattern selectivity reported for this query load in figures
2e and 2f. The number of HTTP requests (NH) is constant and amounts to one
for the endpoint interface as expected, while it is higher for the brTPF and TPF
interfaces. Moreover, it increases with respect to the number of triple patterns
included in the query for brTPF and TPF interfaces. In general, an endpoint

11



●

●●

●
●

●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

10−1

100

101

102

103

104

105

brtpf e_B e_F e_V tpf

N
R

K
B

CHAIN  CYCLE  EDGE  FLOWER  STAR  TREE  

●

●

●

●

●●

●●●

●

●●
●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●●

●●●●●
●
●●●
●●
●

●●●

●
●●●●●●

●

●●

●

●●

●●
●
●●●

●

●●●●●●
●
●
●

●

●●●●

●

●●

●

●●

●●

●●●●●
●
●●●
●●
●

●●●

●
●●●●●●

●

●●

●

●●

●●
●
●●●

●

●●●●●●
●
●
●

●

●●●●

●

●●

●

●●

●●

●●●●●
●
●●●
●●
●

●●●

●
●●●●●●

●

●●

●

●●

●●
●
●●●

●

●●●●●●
●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

100

101

102

103

104

105

brtpf e_B e_F e_V tpf

N
S

K
B

CHAIN  CYCLE  EDGE  FLOWER  STAR  TREE  

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●●

100

101

102

103

104

105

brtpf e_B e_F e_V tpf

N
H

CHAIN  CYCLE  EDGE  FLOWER  STAR  TREE  

Fig. 6: NRKB, NSKB, and NS per query load

is the best performing interface and TPF is the worst performing interface for
metrics related to the network load.

CPU Load. Figure 5c shows the CPU usage by the servers. While, overall,
the endpoints use more CPU, using a Virtuoso endpoint uses nearly the same
CPU as using a TPF server. A comparable CPU usage for Virtuoso suggests that
by utilizing indexes and efficient query plans, it might be possible to achieve good
CPU utilization while supporting complete SPARQL specification.

4.3 Multiple Clients

To stress the systems with multiple concurrent clients, we have executed experi-
ments with 1, 16, 32, and 64 clients. We have processed Equal and Proportional
query loads and report execution time (ET) that is the time elapsed since the be-
ginning of processing the query loads until all the clients are done. In the figures

12



with box-plots, we show the distribution of the metrics in the query load. The
results illustrate the trade-offs of using the different interfaces and endpoints.

Performance. While TPF and brTPF are designed to reduce the server
load, they also considerably increase the execution time of queries. brTPF and
TPF result in higher numbers of query timeouts than the endpoints (see Fig-
ure 7a).

1 16 32 64

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

0

100

200

N
T

Q

1 16 32 64

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

100
101
102
103
104
105

E
T

 (
s)

Fig. 7: Total Number of Timed out Queries (NTQ) and Execution Time (ET)
for 1, 16, 32, and 64 clients

Figure 7b shows the execution time as traditionally presented in existing
studies [8, 18]. For the endpoint interface, Fuseki achieves the best performance
while Blazegraph shows the worst performance. Moreover, we can see that there
are no changes in the relative performance of the endpoints for different number
of clients except for 1 client, where Blazegraph performs slighly better than
Virtuoso.

Figure 8 illustrates the execution time when each server is allocated 8GB
of main memory instead of 21GB to assess whether the allocated memory to
the server makes any difference. The execution times have a very similar trend
compared to the execution times presented in Figure 7b. The only difference
is that Virtuoso cannot handle 32 and 64 concurrent clients with 8GB of main
memory.

1 16 32 64

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

100
101
102
103
104
105

E
T

 (
s)

Fig. 8: Total ET for 1, 16, 32, and 64 clients (8GB of main memory)

13



●

●

●

●

●
●●
●
●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●
●●●
●
●
●
●
●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●●●●●●

●

●

●

●

●

●

●

●

●●●
●●●●
●●

●

●

●
●
●

●

●

●●

●●
●
●

●●
●
●●●●●

●●

●

●●
●
●

●

●
●

●

●

●

●

●

●●

●

●●
●
●●●●●●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●●●
●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●●
●●

●

●

●

●●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●● ●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●●

●●●

●

●●●●●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●
●●●●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●
●●

●

●

●

●●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●
●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●●●●

●

●

●

●

●●●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●
●
●●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●
●

●●●

●
●

●

●

●

●●
●
●
●

●●●

●
●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●
●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●●●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●
●

●●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●
●●●
●
●●
●
●●
●

●●

●

●

●

●●

●

●
●
●

●

●

●

●
●●●

●

●
●

●

●
●●●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●●●●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●
●●

●

●

●

●●

●

●●●

●
●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●●

●

●●●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●●●●●●
●●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●
●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●
●

●
●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●
●●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●

●●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●
●

●

●●
●

●
●
●●

●

●●
●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●●

●

●
●

●
●
●

●
●

●●

●

●

●

●
●●●

●

●●

●

●●
●●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●●

●●●
●

●

●

●

●

●
●

●

●
●

●●

●●

●

●
●

●

●

●●

●
●
●

●
●●●●

●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●●●

●

●
●
●
●

●

●

●

●
●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●●
●●●

●

●

●●

●

●●
●

●

●●●

●

●

●●
●●

●
●

●

●

●
●

●

●
●

●●●●

●

●
●

●

●

●●
●

●

●

●
●
●●

●

●
●●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●
●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●
●

●
●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●
●

●

●●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●●

●
●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●
●

●
●
●●

●

●
●

●

●
●

●

●

●●●●●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●
●●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●●●

●

●

●●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●

●

●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●
●

●
●

●
●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●
●
●

●

●

●●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●●●

●

●

●●●
●●

●

●●

●

●
●●
●

●

●
●
●●●●●●
●●●●

●
●
●
●●
●

●

●●●●●

●

●

●

●●●

●

●
●●

●

●

●

●●●●

●

●●
●

●●

●
●

●
●●
●

●●●●●●

●●

●●●●●

●

●

●
●
●

●

●

●
●
●

●

●●

●
●

●

●

●

●●

●

●
●
●
●●

●

●●

●

●

●●

●

●●

●●●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●
●●

●

●●●●●

●

●●

●

●●●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●

●

●

●●

●

●
●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●●
●●

●

●

●●

●●●

●
●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●

●

●

●

●●

●

●

●●●

●

●

●●●●●

●

●●●●

●

●●●●●

●

●

●●

●

●

●●
●
●
●
●

●

●●
●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●

●●●

●

●
●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●
●●●●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●
●

●

●●

●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●
●●

●

●

●

●

●
●●

●

●

●●●●

●

●●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●
●

●●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●●
●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●
●

●●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●●●
●

●

●

●●

●●●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●●
●●●●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●

●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●●

●

●

●
●●
●

●

●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●●●
●
●

●

●
●

●

●●●●

●

●
●

●

●
●

●

●

●

●

●

●●●●
●

●

●●

●
●

●●

●

●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●●
●●
●
●
●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●
●

●●●
●

●

●●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●
●
●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●●
●

●
●
●
●

●●

●●

●●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

1 16 32 64
E

qual
P

roportional

br
tp

f  

e_
B  

e_
F  

e_
V  

tp
f  

br
tp

f  

e_
B  

e_
F  

e_
V  

tp
f  

br
tp

f  

e_
B  

e_
F  

e_
V  

tp
f  

br
tp

f  

e_
B  

e_
F  

e_
V  

tp
f  

10−1

100

101

102

10−1

100

101

102E
T

(s
)

CHAIN  EDGE  STAR  

Fig. 9: ET per approach and query load for 1, 16, 32, and 64 clients

Figure 9 presents the execution time of the interface and backend combina-
tions in a finer granularity for each query load and query shape. As shown in
the figure, the endpoint interface produces the best performance when there is
only a single client, which is in line with what we have seen with our single-client
evaluation. However, when there are at least 16 clients, Fuseki and Virtuoso per-
form better than the other interfaces. Moreover, the advantages of Fuseki and
Virtuoso are greater for the Equal query load, which shows that more complex
queries, e.g., with more triple patterns, are processed more efficiently by these
systems.

Network Load. Our experimental evaluation shows that there is a great
difference in the number of bytes the clients receive (NRKB) for each of the
different interfaces (Fig. 10). While NRKB naturally increases as the number
of clients increases, the increment is more considerable for the TPF and brTPF
interfaces.

1 16 32 64

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

0e+00
3e+05
6e+05
9e+05

N
R

K
B

Fig. 10: NRKB for 1, 16, 32, and 64 clients

CPU Load. Figure 11 shows the average CPU loads of the servers. All the
systems have more CPU load as the number of clients increases, the Blazegraph
endpoint is the one that is affected the most. From using slighly more CPU than

14



1 16 32 64

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

br
tp

f
e_

B
e_

F
e_

V tp
f

0

100

200

300
S

L

Fig. 11: Average CPU usage for the servers and their backends for 1, 16, 32, and
64 clients

Virtuoso and slighly less CPU than the TPF and brTPF interfaces for 1 client,
it ends up using considerably more CPU than any other system. The difference
between the CPU loads of endpoints is quite significant between 1 client and
16 clients, but not so much when the number of clients is further increased.
For Virtuoso, later increases are so small that they are even smaller than the
increases experienced by TPF and brTPF. For 32 and 64 clients, the CPU usage
for all the systems, except Blazegraph, is quite similar.

5 Conclusion

In this paper, we presented an in-depth experimental evaluation of the state-of-
the-art interfaces for querying linked data based on real query logs. We assessed
the effect of query shapes on the performance of these interfaces.

The single-client evaluation results suggest that the shape of the query has
a non-negligible effect on the performance of the interfaces. In addition, for
complex query shapes like FLOWER and TREE, the Fuseki endpoint provides
the best performance in terms of execution time, network load, and CPU load.

Our experiments clearly demonstrate that if the expected number of concur-
rent clients is not high, all the endpoints perform similarly well. However, if we
examine the query loads and query shapes, we notice that such similarly good
performance is due to Virtuoso processing the most complex query shapes more
efficiently, while Fuseki processes the most simple query shapes more efficiently.
While Fuseki handles the increase in the number of clients well, Blazegraph’s
performance deteriorates fast and Virtuoso aborts if less than 21GB of RAM are
available. Differently from previous evaluations, our evaluation shows evidence
that SPARQL endpoints can scale better than the TPF and brTPF interfaces,
as is the case for Fuseki. For complex shapes, the difference in performance is
considerably higher, and in such cases Fuseki represents a clearly better choice
than the other systems. As future work we plan to study the performance of
existing LDF interfaces for more complex configurations, which would include
higher number of clients, more diverse query loads, other triple stores, networks
with varying and controlled delays, and use of HTTP cache.

Acknowledgments. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-4093-00301B
and Aalborg University’s Talent Management Programme.

15



References

1. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress testing of RDF
data management systems. In ISWC, pages 197–212, 2014.

2. C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL web-
querying infrastructure: Ready for action? In ISWC, pages 277–293, 2013.

3. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

4. A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. PVLDB, 11(2):149–161, 2017.

5. K. Clark, L. Feigenbaum, G. Williams, and E. Torres. SPARQL 1.1 proto-
col. W3C recommendation, W3C, Mar. 2013. http://www.w3.org/TR/2013/

REC-sparql11-protocol-20130321/.
6. O. Erling and I. Mikhailov. Virtuoso: RDF support in a native RDBMS. In

Semantic Web Information Management, pages 501–519. Springer, 2009.
7. J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias.

Binary RDF representation for publication and exchange (HDT). J. Web Sem.,
19:22–41, 2013.

8. O. Hartig and C. B. Aranda. Bindings-restricted triple pattern fragments. In OTM
Conferences, pages 762–779, 2016.

9. O. Hartig, I. Letter, and J. Pérez. A formal framework for comparing linked data
fragments. In ISWC, pages 364–382, 2017.

10. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–
195, 2015.

11. M. Luczak-Roesch, Z. A. Saud, B. Berendt, and L. Hollink. Usewod 2016 research
dataset, 2016.

12. M. A. Mart́ınez-Prieto, M. A. Gallego, and J. D. Fernández. Exchange and con-
sumption of huge RDF data. In The Semantic Web: Research and Applications -
9th Extended Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece,
May 27-31, 2012. Proceedings, pages 437–452, 2012.

13. G. Montoya, C. Aebeloe, and K. Hose. Towards efficient query processing over
heterogeneous RDF interfaces. In DeSemWeb@ISWC. CEUR-WS.org, 2018.

14. M. Morsey, J. Lehmann, S. Auer, and A. N. Ngomo. DBpedia SPARQL benchmark
- performance assessment with real queries on real data. In ISWC, pages 454–469.
Springer, 2011.

15. M. Saleem, Q. Mehmood, and A. N. Ngomo. FEASIBLE: A feature-based SPARQL
benchmark generation framework. In ISWC, pages 52–69, 2015.

16. M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari, Q. Mehmood, and A. N.
Ngomo. How representative is a SPARQL benchmark? an analysis of RDF triple-
store benchmarks. In The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, pages 1623–1633, 2019.

17. B. B. Thompson, M. Personick, and M. Cutcher. The bigdata R© RDF graph
database. In Linked Data Management, pages 193–237. Chapman and Hall/CRC,
2014.

18. R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert. Triple pattern fragments: A low-cost knowledge
graph interface for the web. J. Web Sem., 37-38:184–206, 2016.

16

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

	Analysis of the Effect of Query Shapes on Performance over LDF Interfaces

