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Abstract. In fingerprinting techniques using a magnetic field signal, since the 

moving direction of the current user may be different from the moving direction 

of the person who creates the magnetic field map at the collection time, the sam-

pled magnetic vector may have different values from the vector values recorded 

in the field map. This may substantially lower the positioning accuracy. In this 

paper we propose a vector calibration algorithm which can adjust the sampled 

magnetic vector values to the vector direction of the magnetic field map by using 

the parametric equation of a circle. This can minimize the inaccuracy caused by 

the direction mismatch. To implement this, we just need to compute the relative 

azimuth from the moving direction of the current user to the moving direction 

during the magnetic field map collection. To evaluate our vector calibration al-

gorithm, we first collected a magnetic field map in our test-bed. Then, a user 

walked through a random path and we adjust the sampled vector values to match 

the recorded magnetic field direction in the map. As a result, we can decrease the 

difference between the sampled magnetic vector and the magnetic field map val-

ues from 17.34 μT to 2.98 μT  in x dimension, and from 13.12 μT to 1.98 μT in 

y dimension on average. This translates to 85% reduction in the map mismatch 

compared to the numbers without calibration. In addition, we also demonstrate 

the effectiveness of the calibration by applying the algorithm to our LSTM-based 

indoor positioning system (IPS). 
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1 Introduction 

The magnetic field is the attractive signal for indoor localization. The magnetic signal 

has two distinct advantages over RF signals. First, it does not require extra signal gen-

eration infrastructure such as beacons or APs since they are everywhere by nature.  

Therefore, you do not have to worry about the maintenance of functionality or dis-

charge. Second, the magnetic signals are quite stable over time unlike RF or acoustic 

signals in indoor environment [6]. Therefore, IPSs based on magnetic signals are inher-

ently economical yet have a potential to deliver more accurate positioning performance 

than RF-based IPSs.  
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However, magnetic sensors have the disadvantage that their vector values differ de-

pending on the direction. It causes a mismatch with the magnetic field map. To avoid 

this problem, many researches usually use only the magnitude of the vector, which re-

mains constant for rotation. However, using only the magnitude reduces the uniqueness 

of the fingerprint. In the fingerprinting technique, the more values used as the finger-

print, the higher the uniqueness of the fingerprinting. The uniqueness of the fingerprint 

is an important factor affecting both the localization accuracy and the speed of initial 

positioning. 

In this paper, we propose a magnetic vector calibration algorithm that can compen-

sate the change of a user's moving direction and adjust the sampled vector sequence to 

the original direction recorded in the magnetic map. Since we calibrate the vector se-

quences dynamically all the time relative to the original direction in the magnetic map, 

the calibrated vector sequences can still match the numbers stored in the magnetic map, 

minimizing the difference between the sampled vector sequences and the original se-

quences in the map for the same path. Due to the uniqueness of vector fingerprint com-

pared to the magnitude fingerprint, we can achieve higher positioning accuracy as well 

as faster initial positioning.  

To do the calibration, we should be able to compute the relative azimuth from the 

moving direction of the current user to the moving direction during the magnetic field 

map collection. For this, we use a gyroscope in a smartphone. Since the gyroscope 

measures the angular velocity, we can calculate the rotation angle of the smartphone, 

that is, the walking direction of the user. And we measure the azimuth from the mag-

netic north with a compass sensor. Then by applying the parametric equation of a circle, 

we can adjust the sampled magnetic vector values to the moving direction of the field 

map collector. As a result, although the user walked in a random direction in real-time 

test, we could reduce the mismatch with the magnetic map to about 85%.  

We also test the impact of our magnetic vector calibration, by applying it to our 

LSTM-based IPS [6, 8], where we use recurrent neural network models such as LSTM 

to learn all the potential moving paths of a user and their corresponding magnetic vector 

and position sequences. Without calibration, the actual real time test error for the test 

path rises-up to above 5 meters, more than an order of magnitude degradation in the 

localization performance. By applying the calibration algorithm, we could achieve the 

average positioning error of about 0.73 meters. 

The remainder of this paper is organized as follows. Section II discusses the related 

works. Section III presents the detailed vector calibration algorithm. Section IV shows 

the experimentation results of a real-time test with and without our proposed calibration 

algorithm. Finally, Section V concludes the paper. 

2 Related Work 

In the magnetic signal-based fingerprinting, the three-dimensional magnetic vector sig-

nal is used as the fingerprint for each position. While the magnetic signal generally 

points to true north in outdoor environment, the magnetic field is further distorted in 
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indoor environment by the structure of the building such as concrete walls, iron doors 

and elevators, which leads to a more unique signal value for each position. 

In the magnetic field-based fingerprinting techniques, two types of magnetic signal 

values can be used: a magnetic vector or the magnitude of the magnetic vector.  

 Magnetic vector as a fingerprint: The 3-axis magnetic sensor reads a magnetic 

vector in the three-dimensional space relative to the smartphone orientation. The vector 

value differs depending on the orientation of the sensor, so it is quite difficult to use as 

a fingerprint. During the positioning phase, a user may sample magnetic vectors in a 

direction different from the field map. This can cause a mismatch for the mapping, 

which leads to inaccurate localization. To avoid this problem, Chung et al. [2] made the 

wearable device with four magnetic sensors to measure the magnetic field in four dif-

ferent directions simultaneously. Similarly, Xie et al. [1] collected magnetic field vec-

tors for different directions each position. However, it takes a lot of time and manpower 

to construct a magnetic field map in a largescale indoor environment. For example, if 

it takes five hours to collect a magnetic field map in one direction, collecting four di-

rections may take 20 hours. In addition, since a user may move in any of 360 degrees 

direction, other than those four directions, there could be other mismatches due to the 

sensor orientation difference. 
Magnitude of a magnetic vector as a fingerprint: The magnitude of the magnetic 

vector is widely used in many magnetic field based IPSs [3, 4].  The magnitude remains 
constant regardless of the sensor orientation. So, using magnitude, you do not have to 
worry about the direction. However, using only magnitude reduces the uniqueness of 
the fingerprint since the number of values in the map matching the sampled fingerprint 
decreases as the three-dimensional vector becomes a scalar. In fingerprinting, the more 
values used as the fingerprint, the higher the uniqueness of the fingerprint. The unique-
ness of the fingerprint is an important factor leading to the localization accuracy. For 
example in an IPS based on particle filter, as the uniqueness of the fingerprint is reduced, 
it may take a longer time to locate the position [1]. Therefore, particle filter based IPS 
usually use sensor fusion to increase the uniqueness of the fingerprint. Zeng et al. [4] 
used Wi-Fi and images as well as magnetic sensor as fingerprints. Akai and Ozaki [5] 
used Light Detection and Ranging (LIDAR) in addition to magnetic sensor for locali-
zation. However, this has extra cost and since the signal noise of these sensors may be 
larger than the magnetic sensor, the positioning accuracy may be lowered. 

In our work we use a magnetic vector as a fingerprint, which can maintain the 
uniqueness of the fingerprint, while we collect the magnetic field map only in one di-
rection to minimize the manpower and collection time. In addition, with the dynamic 
vector calibration algorithm proposed in this paper we can minimize the map matching 
mismatches even if a user may change his or her direction anytime.  

3 Magnetic Vector Calibration to Compensate Sensor 

Orientation 

If you hold a smartphone horizontally and rotate 360 degrees collecting the magnetic 

field vector in x and y dimension, the graph showing the magnetic vector draws a circle 

as illustrated in Figure 1. 
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Fig. 1. If you rotate 360 degrees while measuring the magnetic vector at one position, the vec-

tor draws a circle. 𝛼 is an angle rotated counterclockwise from the magnetic north. 

In an indoor environment, the magnetic north may change depending on the location 
because of magnetic field distortion. For example, Figure 2 shows both the magnetic 
north direction and the moving direction of the administrator at each location. The red 
arrows point to the direction of the moving direction of the administrator during the 
field map collection while the black arrows point to magnetic north. Since the magnetic 
vector is sensitive to the moving direction, i.e. the sensor orientation, the measurement 
for the field map collection should be performed in one direction only. 

 

Fig. 2. The black arrow points to the direction of magnetic north. Due to magnetic field distor-

tion, magnetic north varies depending on the location. The red arrows show the moving direc-

tion of the administrator during the field map collection.  

Let us first define the notations used for the calibration algorithm. When creating a 
magnetic field map, we represent the magnetic vector collected from a certain position 
as a tuple (𝐵𝑚𝑎𝑝𝑥

, 𝐵𝑚𝑎𝑝𝑦
, 𝐵𝑚𝑎𝑝𝑧

). We also denote the angle between the direction of 

the map collector and the magnetic vector, i.e. magnetic north be α. Since we assume 
that a user holds a smartphone horizontally, we can express the magnetic vector as the 
Equation (1) and Equation (2) by using the parametric equation of a circle. Since we 
only consider holing a smartphone horizontally in this paper, 𝐵𝑚𝑎𝑝𝑧

has the same value 

in any direction. So, in (1), r, the radius of the circle, can be expressed by Equation (2), 
where 𝐵𝑚 is the magnitude of the magnetic vector.  

𝐵𝑚𝑎𝑝𝑥
= 𝑟(− 𝑠𝑖𝑛(𝛼)) (1) 

𝐵𝑚𝑎𝑝𝑦
= 𝑟𝑐𝑜𝑠(𝛼) 

𝑟 = √𝐵𝑚𝑎𝑝𝑥
2 + 𝐵𝑚𝑎𝑝𝑦

2                                         (2) 

=  √𝐵𝑚
2 − 𝐵𝑚𝑎𝑝𝑧

2 
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When a user walks in some direction during positioning phase, let the value of the 
magnetic vector sampled by the user be (𝐵𝑡𝑒𝑠𝑡 𝑥

, 𝐵𝑡𝑒𝑠𝑡𝑦
, 𝐵𝑡𝑒𝑠𝑡 𝑧

) at the same position. 

Since we assume that the user holds the smartphone horizontally, the value of the mag-
netic vector in z dimension is invariant to rotation in the horizontal plane. So, 𝐵𝑡𝑒𝑠𝑡 𝑧

 

has the same value as 𝐵𝑚𝑎𝑝𝑧
. Therefore, the radius r can also be obtained by Equation 

(3). Our goal is to calibrate (𝐵𝑡𝑒𝑠𝑡 𝑥
, 𝐵𝑡𝑒𝑠𝑡 𝑦

) with respect to (𝐵𝑚𝑎𝑝𝑥
, 𝐵𝑚𝑎𝑝𝑦

). 

𝑟 = √𝐵𝑡𝑒𝑠𝑡𝑥

2 + 𝐵𝑡𝑒𝑠𝑡 𝑦
2                                       (3) 

=  √𝐵𝑚
2 − 𝐵𝑡𝑒𝑠𝑡𝑧

2 

During the positioning phase, if you know α, (𝐵𝑚𝑎𝑝𝑥
, 𝐵𝑚𝑎𝑝𝑦

) can easily be obtained 

by (1) since we can compute radius r by using Equation (3). Since the radius 𝑟 is invar-

iant to rotation in the horizontal plane, they can be measured regardless of the user’s 

moving direction. However, since α is changing depending on its position all the time, 

it cannot be computed by magnetic north.  
To address this issue, we use a gyroscope and a compass sensor in a smartphone. 

The gyroscope can calculate the relative rotation angle, and the compass sensor can 
measure the azimuth from the magnetic north. When the map collection direction is 
zero degrees, the gyroscope calculates the current rotation angle, which we call the 
positioning relative angle. Also, whenever the user walks, the compass sensor calculate 
the azimuth from the magnetic north at each location, which we call the positioning 
azimuth. Then, the smartphone can calculate α by equation (4). 

α = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑧𝑖𝑚𝑢𝑡ℎ − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑔𝑙𝑒                 (4) 

Originally, for relative angle measurements, the user must know the direction of the 
magnetic field map collection. But if we use true north, the user do not need to. When 
collecting the magnetic field map, record the relative azimuth from the true north to the 
database. Then, by measuring the relative azimuth from the true north during position-
ing phase, the relative rotation angle from the direction of the magnetic field map col-
lection can be calculated dynamically. 

Now that we have obtained α by (3), we can calculate (𝐵𝑚𝑎𝑝𝑥
, 𝐵𝑚𝑎𝑝𝑦

). In other 

words, we can compute the magnetic vector values of the map in any direction in real-
time. 

4 Evaluation 

As we discuss in Section 2, we collect magnetic vectors only in one direction when 

collecting the field map. Figure 3 visualizes the magnetic field map for our test-bed by 

showing the vectors only in x dimension. When a user walks along the test path, the 

smartphone was kept horizontal as in the map collection, but the user may make any 

horizontal movement freely, i.e. random yaw rotation. The magnetic vector values may 

change with the yaw rotation, but our goal is to adjust these values as closely as the 

magnetic field values stored in the field map. 
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Fig. 3. The magnetic field map of our test-bed called Hana Square field map. When collecting 

the magnetic vectors during the field map construction, we moved in the red arrow direction 

  

Fig. 4. The blue line shows the sequence of values extracted from the magnetic field map while 

the orange line shows the sequence of values measured by the user walking in a random direc-

tion. The red line shows the result of calibration. After calibration, the difference with the map 

is about 2.985μT in x dimension, 1.929μT in y dimension. 

Figure 4 compares the same sequences for the same test path in dimensions x and y 
of the vector space. Unlike the case of magnitude, without calibration the mismatch 
between the map and the measured samples is quite large. The difference is as high as 
65μT. Figure 5 compares only the differences between the map and measured samples 
in magnitude and vector space in dimensions x and y with and without calibration. The 
average difference in the magnitude is about 1.929μT while the average differences of 
the vector in dimensions x and y are 17.34 μT and 13.12 μT respectively. These huge 
differences will lead to inaccurate localization in a magnetic field based IPS. However, 
after applying our calibration, we could reduce these differences to 2.985μT on average 
in x dimension and to 1.981μT on average in y dimension. This suggests that we can 
effectively minimize sequence mismatches even with the magnetic vector with the pro-
posed calibration algorithm.  

Our LSTM-based IPS using the magnetic field has demonstrated outstanding locali-

zation performance in large scale indoor environment [8]. Recurrent neural network 

models allow continuous tracking since it can use not only the current fingerprint, but 

also the past sequence of fingerprints. However, since the artificial neural network mod-

els try to remember the map exactly, even a little noise can disturb the localization 

performance.  
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Fig. 5. Comparison of differences between the map and the measured samples in the magnitude 

and in the vector in dimensions x and y with and without calibration. 

From the magnetic field map shown in Figure 3 we generate 300,000 data sets, each 

of which consists of 100 steps of a random pedestrian walk path assuming the random 

waypoint model [9] as mobility model. 60% of the data sets are used for training, 20% 

for validation, and the remaining 20% for the test. 

 

 

Fig. 6. The path predicted by LSTM based IPS compared to the actual test path. The blue line 

shows the actual path of the user. The green line shows the predicted path of LSTM based IPS 

using the magnetic vector without calibration while the red line shows the predicted path of 

LSTM based IPS with vector calibration. 

After training, the LSTM model has an average positioning error of 0.43 meters for 

the test set. However, in a real time test with a smartphone, the average positioning 

error rises to 16.97 meters assuming that we use magnetic vectors without calibration 

as input to the LSTM model. Figure 6 shows the predicted path result of LSTM model 

with and without calibration compared to the actual test path. However, with calibration 

we could reduce this average positioning error back to 0.73 meters. The predicted path 

with vector calibration is illustrated by the red line in Figure 6.  

5 Conclusion 

In this paper we propose a magnetic vector calibration algorithm for indoor localization. 
Since the magnetic vector values change depending on the sensor direction, i.e. the 
moving direction of a user, it has been seldom used for indoor localization. To enable 
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the magnetic vector based localization, we need to compute the relative angle of rota-
tion from the direction of the user movement to the direction of the field map collector. 
This is because we can compute the magnetic vectors if we know only the azimuth from 
the magnetic north when the administrator collected the magnetic map. 

To evaluate our vector calibration, we performed a random walk test to measure the 
differences in vector values between the map and the actual test. Without calibration, 
the average difference between the vector samples and the magnetic field map data was 
17.34μT in the x dimension, and 13.12 μT in the y dimension. After we applied the 
calibration, we reduced these differences to 2.985μT in the x dimension, and 1.981μT 
in the y dimension. To demonstrate the effect of our calibration algorithm in a magnetic 
field based IPS, we applied the calibration algorithm to our LSTM-based IPS [8]. When 
we used the magnetic vector without calibration as an input to the trained deep learning 
model, the localization error was 16.97m. However, when using the magnetic vector 
with calibration as input, we could reduce the positioning error to 0.73m. This suggests 
that we can use magnetic vectors instead of their magnitudes for the magnetic field 
based IPS since vectors tend to provide more uniqueness for fingerprints than magni-
tudes and can achieve superior positioning performance compared to those traditional 
magnetic field based IPSs that rely on the vector magnitudes. 
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