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Abstract. The importance of the indoor positioning applications and services in many
fields such as health and safety motivated the researchers to develop accurate and cost ef-
fective localization systems. In wireless positioning techniques, the position of the mobile
node (MN) can be estimated by measuring the distances between the MN and the access
points (APs) using ranging techniques such as Time-of-Arrival (TOA), Time-Difference-
of-Arrival (TDOA) and Received Signal Strength (RSS). However, due to dense indoor
environments, multipath propagation and Non-Line-of-Sight (NLOS) introduce biases to
the range measurements causing inaccurate position estimation. This paper proposes a
recursive NLOS bias estimator algorithm, which corrects the range measurements by re-
moving the estimated biases. The proposed algorithm is non-parametric and it doesn’t
require a priori information about the environment. Simulation results show that the pro-
posed algorithm has higher positioning accuracy compared to the other state of the art
algorithms and it outperforms them by at least 137%.
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1 Introduction

Indoor Positioning Systems (IPS) gained a considerable consideration in the last decade due to
its important applications in many fields such as military and safety, which require robust and
high-accuracy positioning levels [1].

One of the most popular localization systems is the Global Positioning System (GPS) which
works very well in outdoor environments since it can provide acceptable accuracy for several
applications. However, utilizing GPS for indoor environments may degrade the accuracy of the
position estimation due to the lost GPS signal because of propagation through walls and obstacles
[2]. Several of indoor positioning systems were proposed such as Inertial Navigation systems,
Infrared (IR) and Radio Frequency (RF) positioning systems. RF-based positioning systems
include WLAN (Wi-Fi), RFID and Bluetooth [3].

The position of the MN is obtained by measuring the distances between the MN and fixed
APs with known locations. The distance can be measured using different ranging techniques such
as TOA and RSS [4]. To get an accurate position estimation, there should be direct paths or
Line-of-Sight (LOS) between each AP and the MN.

However, due to the obstacles in indoor environments, the direct path of the traveled signal
between the AP and the MN might be attenuated or undetected. This will cause the signal
to arrive through other paths such as the scattered, penetrated, reflected and diffracted paths.
Arriving through these paths will result in increased signal’s traveled time. Therefore, the esti-
mated distance between the AP and the MN will contain biases which will lead to an inaccurate
position estimation [2, 1, 5]. This problem is called the Non-Line-of-Sight (NLOS).
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These NLOS biases are variables and their values depend on the obstacle’s profile. Where
light objects such as the glass introduce small values of the biases while heavier objects such
as metals introduce severe biases in the range estimates [1] that might reach from 10s to 100s
of meters. The NLOS biases are random and they need to be estimated and removed from the
range estimates in order to obtain accurate position estimation. Therefore, several approaches
have been proposed in the literature that estimate and remove the biases such as [6, 2, 7–10].
However, some of these approaches have common assumptions that might not hold in practice
such as assuming a priori knowledge of the environment and assuming LOS/NLOS identification.
In this paper, a low-complexity non-parametric NLOS bias correction algorithm based on a patent
[11] is proposed where it recursively estimates and corrects the biases without a priori knowledge
about the NLOS errors.

The rest of this paper is organized as follows: In section 2, the problem formulation is pre-
sented. Section 3 describes the proposed NLOS bias estimator algorithm. Section 4 describes the
simulation setup and the results. Finally, the conclusions are drawn in the last section.

2 Problem Formulation

For a general indoor localization scenario and to localize the MN in a 2D plane, assume that
there are N APs and a MN with a position that needs to be estimated. The range measurement
ri between the AP and the MN at time ti is given by:

ri = di + bi + ni, (1)

where di is the true distance between the MN and the AP, bi is the positive bias which follows
Rayleigh distribution or exponential distribution [12]. ni denotes the system measurement noise
which follows Gaussian distribution with zero mean and σ standard deviation. di is given by:

di =
√

(xm(i)− xap)2 + (ym(i)− yap)2 (2)

where (xm(i),ym(i)) is the MN’s coordinate and (xap,yap) is the AP’s coordinate. The true

distance can be estimated by subtracting the estimated biases b̂i from the range measurements
ri as:

d̂i = ri − b̂i. (3)

3 Recursive Bias Estimator

In this section, a NLOS bias estimation and correction algorithm is proposed. The algorithm
estimates and corrects the biases recursively by using the differential information of the range
measurements.

The first-order difference between two consecutive range measurements can be written as:

∆ri,i−1 = ri − ri−1 = ∆di,i−1 +∆bi,i−1 +∆ni,i−1, (4)

By Using Eq.4, the second-order difference can be given by:

∆∆ri,i−1 = ∆ri,i−1 −∆ri−1,i−2 = ∆∆di,i−1 +∆∆bi,i−1 +∆∆ni,i−1. (5)

The second-order bias difference can be defined by ∆∆bi,i−1 = bi − 2bi−1 + bi−2 and Eq.5 can
be re-written as:

∆∆ri,i−1 = ∆∆di,i−1 + bi − 2bi−1 + bi−2 +∆∆ni,i−1. (6)
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The general form of the recursive bias estimator can be obtained by rearranging Eq.6 and it is
defined by:

b̂i = ∆∆ri,i−1 −∆∆di,i−1 + 2b̂i−1 − b̂i−2 −∆∆ni,i−1, (7)

In Eq.7, the only available information in practice are ∆∆ri,i−1 and b̂i. Where, ∀i < 2, b̂i = 0

and ∀i ≥ 2, b̂i can be obtained recursively. Moreover, when the sampling interval Ts is small,
∆di,i−1 ≈ 0. Thus, the implementation form of the bias estimator in Eq.7 can be written as:

b̂i = ∆∆ri,i−1 + 2b̂i−1 − b̂i−2, (8)

In this work, it is assumed that b̂1 = 0. However, in practice, this assumption might not hold. In
case of a nonzero initial bias where b1 = θ and b̂1 = 0, b̂2 can be calculated using Eq.8 as follows:

b̂2 = ∆∆r2,1 = ∆r2,1 = ∆d2,1 + b2 − θ + n2 − n1, (9)

The above form can be generalized to:

b̂i = ∆di,1 + bi − θ + ni − n1. (10)

Eq. 10 shows that the estimated biases from Eq.8 undergo skew ∆di,1 caused by the motion of

the MN, and an offset θ+n1 due to the assumption b̂1 = 0. The proposed algorithm corrects the
estimated biases b̂i by estimating ∆di,1, θi and subtracting them from b̂i. The effect of the biases
on the range measurements is shown in Fig. 1a where the true distance di and the corrupted
range measurements ri are plotted. The true bias bi and the estimated biases b̂i using Eq.8 are
shown in Fig. 1b. The true biases are positive since the algorithm is based on the TOA; where
time-based ranging techniques such as the TOA produce biases with positive magnitudes that
vary depending on the multipath environment.
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Fig. 1. (a) True distance di, noisy range measurement ri and corrected measurements d̂i, (b) True biases
bi and bias estimates b̂i calculated using Eq. 8

∆di,1 Estimation Fig. 1b shows the effect of the skew ∆di,1 on the estimated biases which can

be estimated by tracking the minimum (baseline) of the estimated biases b̂i as follows:

Mi = min
j

b̂j : j ∈ [i−W + 1, i], (11)
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where a controllable sliding window of length W is used to find the minimum value of b̂i in each
window. Fig. 2a illustrates the minimum baseline Mi.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-5

0

5

10

15

20

25

30

In
it
ia

lly
 E

s
ti
m

a
te

d
 B

ia
s
e
s
 v

s
 M

in
im

u
m

 B
a
s
e
lin

e

(a)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

10

12

14

16

18

20

22

24

26

T
ru

e
 M

e
a
s
u
re

m
e
n
ts

 v
s
 M

in
im

u
m

 b
a
s
e
lin

e

d
i

M
i

bias drops

(b)

Fig. 2. (a) Tracking the lower envelope (minimum baseline) of b̂i using a minimum sliding window
W = 100, (b) Bias drops in the minimum baseline Mi

θ Estimation The offset θ in Eq. 10 depends on the channel condition at t1. If the estimated
bias was initialized under a NLOS condition where b̂1 = 0 and b1 6= 0, a significant offset θ will
be added to the estimated biases b̂i. The offset θ can be estimated from the minimum baseline
Mi which depends on the propagation environment, as the value of Mi drops when the channel
condition improves whether by transitioning from a NLOS condition to a LOS condition or when
the obstacle profile changes. Fig. 2b plots the minimum baseline Mi which shows the bias drops
resulted from LOS and NLOS transitions. Clearly, Mi and di are equivalent at the second bias
drop where the magnitude of the bias drop is equal to θ. Therefore, θ is estimated by using the
magnitudes of the bias drops. Consider the first order difference of the minimum baseline Mi

given by:
∆Mi,i−1 = Mi −Mi−1, (12)

Fig. 3a illustrates ∆Mi,i−1 which shows negative impulses at different locations indicating the
occurrence of the bias drops. However, due to the measurement noise, ∆Mi,i−1 is corrupted by
noise that should be filtered as follows:

∆BDi =

{
∆Mi,i−1 : |∆Mi,i−1| > η

0 : otherwise
(13)

where η > 0 is a threshold related to the measurement noise intensity. Fig. 3a provides a thresh-
olded impulse train of bias drops ∆BDi with different magnitudes. Next, to recreate the bias
drops presented in the minimum baseline Mi, the impulse train in Fig. 3a should be passed
through a running-sum function given by:

BDi =

i∑
k=1

∆BDi. (14)
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The offset θ can be estimated by passing the bias drops BDi through a running minimum as:

θ̂i = min
j

BDj : j ∈ [1, ...i] (15)

The bias drops BDi and the estimated offset θ̂i are shown in Fig. 3b. It is clear from Fig. 3b
that the estimated offset θ̂i improves when the magnitude of the bias drop increases indicating
an improvement in the channel condition. Specifically, a transition from a NLOS condition to a
LOS condition. Finally, the corrected estimated biases equation is given by:

b̂ci = b̂i − (Mi −BDi + θ̂i) (16)

The true distance di and the estimated distance d̂i are illustrated in Fig. 1a where d̂i was obtained
by:

d̂i = ri − b̂ci (17)
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Fig. 3. (a) The noisy first order difference of the minimum baseline ∆Mi,i−1 and the filtered first order
difference of the minimum base line ∆BDi, (b) Bias drops extractor waveform BDi and the estimated
offset θ̂i

4 Simulation Results

4.1 Simulation Setup

Assume an indoor environment of dimensions 23 m x 23 m with 1 MN and 4 fixed APs. The
APs: AP1, AP2, AP3 and AP4 are located at (0,0), (0,23), (23,23) and (23,0) respectively and
the MN moves in a straight line according to the motion equation given by:

xm(i) = xm(i− 1) + vx(i)Ts

ym(i) = ym(i− 1) + vy(i)Ts
(18)

where its initial position starts at (1,10) and Ts = 0.001s. Recall that the range measurement
between the MN and the AP is modeled by Eq.1. The bias bi follows Rayleigh distribution [12]
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with Rayleigh scaling parameter σR which determines the harshness of the bias errors i.e, (σR
= 2), (σR = 4) and (σR = 8) denote light, moderate and severe NLOS respectively. Higher σR
means higher NLOS errors. The measurement noise ni follows Gaussian distribution with zero
mean.

4.2 Simulation Analysis

In this section, the state of-the-art algorithms [7] and [10] and the recursive bias estimator are
analyzed and evaluated based on their bias correction performance.

The algorithms are simulated in a dynamic random environment where the MN moves with
different speeds and mixed NLOS errors for 20s as it is shown in Fig. 4 which plots the time
evolution of the true and the corrupted range measurements relative to AP1. The MN’s velocity
was 1m/s for the first 10s and 0.2m/s for the next 10s. The performance of the algorithms was
evaluated by calculating the absolute distance error as follows:

ei = |di − d̂i| (19)

where di denotes the true distance and d̂i is the distance estimate obtained by the algorithms.
Then, the error samples are used to plot the empirical CDFs to evaluate the performance of the
algorithms. Moreover, the mean absolute error is given as:

E =
1

N

N∑
i=1

ei (20)

where N is the number of samples. In the polynomial fitting algorithm [10], first, the measure-
ments are smoothed by N th order polynomial fitting then the measurement noise is utilized for
the correction. This algorithm requires generating fitting by using the range measurements while
this step in practice is unattainable. In the PNMC algorithm [7], the measurements are divided
by windowing and in each window the NLOS ratio is estimated. Then the measurements are cor-
rected based on the NLOS ratio estimate. This algorithm assumes the NLOS error distribution
is known and it was generated by following the same method in [12]. The PNMC algorithm is
environment dependent since it depends on the NLOS errors distribution which is unknown in
practice. The recursive bias estimator algorithm was simulated by using different fixed window
lengths W and the value of W corresponding to the lowest error was selected in the simulation of
the recursive estimator. Fig. 5a plots the true and the corrected range measurements. The error
CDFs are plotted in Fig. 5b.

Table 1 summarizes the simulation results of the algorithms where the results were obtained
after changing the parameters W and σR. Moreover, the minimum and the maximum E of
each algorithm is recorded in the table. The error percentage relative to the minimum recursive
estimator is obtained by ((E(algorithm) − 0.16) × 100) where 0.16 is the minimum E of the
recursive estimator.

The mean absolute error E of the recursive estimator was obtained after changing the window
sizes W . The algorithm achieves the highest accuracy of 0.16m when W = 600 and it achieves
the lowest accuracy when W = 300. Moreover, since the PNMC uses windowing and it depends
on the NLOS error distribution for the correction, the parameters W and σR were changed to
obtain E. The PNMC achieves the highest accuracy of 2.54m when W = 200 and σR = 4.

Simulation results show that the recursive bias estimator achieved the highest accuracy com-
pared to the polynomial fitting and the PNMC algorithms without a priori knowledge of the
environment by at least 137%. This is evident from Table 1 where the maximum E corresponding
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to the recursive estimator is much less than the minimum E of the other algorithms. In addition,
the fitting in the polynomial fitting algorithm was negatively affected by the speed of the MN
and the varying NLOS errors.
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5 Conclusions

In this paper, a NLOS bias estimator is proposed that estimates and removes the biases recur-
sively based on the range measurements. The algorithm can be implemented in different indoor
environments since it is non-parametric and a priori information about the channel is not re-
quired.
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Table 1. Ranging Errors

Algorithm Parameters E(m)
Error % Relative
to the minimum
Recursive Estimator

Min E(m) Max E(m)

W σR

Recursive Estimator 300 - 0.20 4% 0.16 0.20
600 - 0.16 -
900 - 0.18 2%

PNMC 50 2 2.94 278% 2.69 3.31
4 2.69 253%
8 3.31 315%

100 2 2.94 278% 2.58 3.24
4 2.58 242%
8 3.24 308%

200 2 2.95 279% 2.54 3.19
4 2.54 238%
8 3.19 303%

Polynomial Fitting - - 1.53 137% - -

In addition, the algorithm was compared with two state of the art algorithms in a dynamic
random environment where the MN moves with different speeds and experiences different severity
of NLOS errors. Simulation results show that the proposed algorithm outperforms the analyzed
state of the art algorithms by at least 137%.
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