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Abstract. Visible Light Positioning (VLP) is considered as one of the
most promising technologies for achieving low-cost and massive coverage
indoor location-based service. However, traditional trilateration-based
VLP methods suffer the Received Signal Strength (RSS) fluctuation
problem which would significantly limit the positioning performance.
This paper proposes an interval analysis-based set-membership approach
to improve the positioning accuracy and stability of the VLP system in
noisy environments. The proposed method utilizes a statistics method
to construct confidence intervals from the fluctuated RSS measurements
and casts the positioning process into a set-inversion problem which is
then solved via an interval analysis-based algorithm in the framework of
set-membership. Simulation results have been compared with the tradi-
tional least-square based positioning method, showing that the proposed
method can provide more accurate and stable positioning results in dif-
ferent noisy interference environments.

Keywords: Visible light positioning · RSS · Confidence interval · Set-
membership · Interval analysis.

1 Introduction

In the upcoming 5G Internet of Things (IoT) era, most of the mobile services will
be generated in indoor environments and there would be an explosive growth of
Location-Based Service (LBS). As the core technology of LBS, indoor positioning
technology lays a technical foundation for housekeeping services, emergency secu-
rity, smart warehousing, crowd monitoring, precision marketing, mobile health,
cultural entertainment, etc. To meet the diversified and massive LBS demands in
indoor environment, different technologies, namely UWB, WLAN, RFID, BLE
and VLP, have been proposed and developed to tackle the positioning issues,
committed to achieve accurate, reliable, and full coverage solution.

? The authors gratefully acknowledge the financial support of the EU Horizon 2020
program towards the Internet of Radio-Light project H2020-ICT 761992.
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Among the aforementioned technologies, VLP is gaining more and more at-
tention nowadays due to numbers of inherent advantages: modest infrastructure
cost, adequate coverage, free of magnetic interference and potential centimeter
accuracy. Received Signal Strength (RSS) is perhaps the mostly used metric
in VLP system due to its simplicity and low hardware requirement [6]. How-
ever, the main challenge of such method is the continuous signal fluctuations [3].
The measured RSS values usually have a high variability over time due to the
fluctuating nature of wireless signals. Besides the thermal and shot noise, they
could be significantly affected by shadowing, fading, and multipath propagation
in indoor scenarios [10]. Such high variability will affect the ranging results and
degrade the performance of the VLP system in terms of accuracy and reliability.

To deal with the RSS signal fluctuation problem while still maintaining the
simplicity of VLP system, this paper proposes an interval analysis-based set-
membership approach to improve the accuracy and stability of the RSS-based
trilateration method. Interval analysis based methods have achieved promis-
ing results in parameter and state estimation tasks [4], as well as the mobile
robotic localization and mapping area [5,8,9]. Our proposed method constructs
confidence intervals from fluctuated RSS measurements by utilizing a statistics
method, and then characterizes the confidence region of the receiver’s position
with the Set Inversion Via Interval Analysis (SIVIA) algorithm. Afterwards, the
nominal position is characterized by a weight-coefficients method.

This paper is organized as follows: Section 2 details the framework of our
proposed method and implementation. Section 3 presents the simulation results
with a comparison to least-square method. Section 4 concludes the paper and
proposes the perspective of future work.

2 Proposed Set-membership method for VLP system

2.1 Bootstrap-based RSS ranging

Denoting the RSS original data obtained during the ranging phase by Pr =
(RSS1,RSS2, · · · ,RSSKr

)T . Traditional methods usually utilize a Gaussian filter
to firstly remove the irregular values and then use the averaged RSS value is used
for distance estimation. Our proposed method adopts the Bootstrap method to
construct confidence intervals from the raw RSS measurement data. Firstly, we
randomly sample with replacement from origin data Pr, which leads to a new
series of measurement data

P 1
r = (RSS

∗(1)
1 ,RSS

∗(1)
2 , · · · ,RSS

∗(1)
Kr

)T (1)

P 1
r is called the Bootstrap sample, where some original data may be drawn

more than once and some others may be never drawn. We can repeat the re-
sample procedure Kb times to generate a set of Bootstrap samples, denoted by
{P 1

r , P
2
r , · · · , PKb

r }.
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Secondly, for each Bootstrap sample P ir , we can compute the Bootstrap statis-
tics P ir by

P ir =
1

Kr

Kr∑
j=1

RSS
∗(i)
j (2)

where i = 1, 2, · · · ,Kb. Then the distance between the VLC receiver and trans-
mitter can be estimated by using the Optical Wireless Channel (OWC) model
described in [2]. At the receiver side, the RSS value can be expressed as

Pr = (HLOS +HNLOS) · Pt + wn (3)

where Pt and Pr are the transmitted and received signal power. HLOS and HNLOS

represent the VLC channel gain of light-of-sight (LOS) and non-light-of-sight
(NLOS) channel respectively. wn denotes the noise power at the receiver, i.e.
the shot noise and thermal noise power. Since only the LOS channel signals are
useful for RSS-based positioning algorithm, Eq. 3 can be rewritten as:

Pr = HLOS · Pt + Pn (4)

where Pn = HNLOS · Pt + wn represents the total noise power that affects the
RSS value of the LOS channel. According to Lambertian radiation model, the
typical VLC channel gain HLOS can be expressed as:

HLOS =

{
(m+1)Ar

2πd2 cosm(ϕ) cos(θ) 0 ≤ θ ≤ φFOV

0 θ > φFOV

(5)

where ϕ and d are respectively the radiation angle and distance between the
receiver and transmitter. Ar is the effective area of the receiver, and θ is the
angle of light incident to the receiving surface of the detector. m represents the
order of Lambertian emission and φFOV is the field-of-view of the receiver. The
distance between the transmitter and receiver is thus given by

d = m+3

√
(m+ 1)ArHm+1

2π

Pt
Pr

(6)

For Kb Bootstrap statistics, we can obtain Kb estimated distance results which
can be sorted from small to large as follows:

d∗1 ≤ d∗2 ≤ · · · ≤ d∗Kb
(7)

(d∗1, d
∗
2, · · · , d∗Kb

) is called the Bootstrap distribution. From this stage, we can
utilize the Bootstrap percentile formula to construct the confidence interval of
the distance estimation with a (1− α) · 100% confidence probability by :

[d] = [d∗u1
, d∗u2

] (8)

where the lower and upper bound of [d] are defined by the subscripts u1 and u2,
with u1 = floor(Kb ·α/2) and u2 = Kb−u1 + 1 [7]. On this way, the confidence
intervals of the distances between the receiver and different VLC transmitters
can be obtained.
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2.2 Confidence region configuration with SIVIA

To deal with the random RSS fluctuation problem, we propose to define the
trilateration problem as a set inversion problem and utilize the SIVIA algorithm
to compute the confidence region where the receiver is assumed to be located.

Let’s consider three deployed VLC transmitters with fixed coordinates, de-
noted by (txi

, tyi) (i = 1, 2, 3). The distances between the transmitters and
receiver are respectively d1, d2, d3. According to the trilateration positioning for-
mulation, the feasible values of the receiver’s position (rx, ry) can be configured
via the equations: 

(rx − tx1
)2 + (ry − ty1)2 + h2 = d21

(rx − tx2
)2 + (ry − ty2)2 + h2 = d22

(rx − tx3)2 + (ry − ty3)2 + h2 = d23

(9)

where h is a constant, denoting the vertical distance between the receiver and
VLC transmitters. By using the Bootstrap method, the estimated confidence
interval of the distances [d1], [d2] and [d3] between the receiver and each VLC
transmitter can be calculated. The confidence region X is thus defined as a set of
all the feasible values which satisfy the constraints (18) and can be characterized
by solving the set inversion problem:

X = {(x, y) ∈ R2 | g(x, y) ∈ [D]} = g−1([D]) (10)

where [D] is a three dimensional interval box [D] = [d1] × [d2] × [d3] and g(·) :
R2 → R3 is a vector function defined as:

g(x, y) =


√

(x− tx1
)2 + (y − ty1)2 + h2√

(x− tx2
)2 + (y − ty2)2 + h2√

(x− tx3
)2 + (y − ty3)2 + h2

(11)

The confidence region is usually an irregularly shaped area. It is equivalent
to find the intersection area of three rings whose radius range is defined by
[ri] = [ri, ri] =

√
[di]2 − [h]2 (i = 1, 2, 3), as shown in Fig. 1a. This problem can

be consistently solved by the SIVIA algorithm. Assume that [x] = [x]× [y] is the
initial solution space, [g](·) is the inclusion function of g(x, y), the main steps of
the solving process are carried out as follows:

– If [g]([x]) ⊂ [D], then any (x, y) ∈ [x] is consistent with the VLC ranging
measurements and noise bounds. [x] is proved to be in X and is kept in the
solution list.

– If [g]([x])∩ [D] = ∅, then the whole box is inconsistent with the VLC ranging
measurements and noise bounds, [x] is eliminated from the solution list.

– If [g]([x]) ∩ [D] 6= ∅, then at least one configuration in [x] is consistent with
the VLC ranging measurements and noise bounds, [x] is said to be unde-
termined. If its size conforms w([xk]) ≥ ε (ε is the prespecified precision),
then it will be bisected and the same test should be applied to each of newly
generated sub-boxes. Otherwise, [x] will be kept in the solution list due to
its small size (w([x]) ≤ ε).
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(b) Confidence region obtained with SIVIA

Fig. 1: Receiver’s confidence region configuration with SIVIA algorithm

The SIVIA algorithm performs the inclusion test and bisection process recur-
sively to verify that all the boxes in the solution list belong to X. As a result,
it yields a list of non-overlapping boxes described in Fig. 1b. The green boxes
are those which are validated and the yellows are the undetermined ones. The
union of these non-overlapping boxes thus denotes the confidence region where
the receiver is deemed to be located.

2.3 Nominal position determination

The confidence region obtained via the SIVIA algorithm is a list of interval
boxes, from which we can calculate the receiver’s final position estimation (we
call it the nominal position). In our work, we propose to use the weighted
arithmetic average method based on interval box dimensions to calculate the
nominal position. Denote the list of solution boxes in the confidence region by
L = {[x1], [x2], · · · , [xp]}, where p is the number of boxes in the confidence
region. Then the nominal position is determined through

(tx, ty)←
p∑
k=1

Ψk ·mid([xk]) (12)

where Ψi is the weight-coefficient, calculated by Ψk = vol([xk])
p∑

i=1
vol([xi])

, vol([xi]) and

mid([xi]) represent respectively the size and the center point of the ith interval
box.

3 Simulation results

3.1 Experiment set-up

To test our proposed method, we consider a typical VLP scenario in simulation,
i.e., a 4 m× 4 m× 3 m area. Three LEDs are deployed on the ceiling downward
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Fig. 2: Positioning results for 100 points

vertically. with coordinates (-1, 1, 0), (1, 1, 0) and (0, -1, 0). To setup the
simulation in Matlab, the total noise power Pn considered in the simulation
is generated based on the time-variant deviation model presented in [1]. The
time-variant noise interference Pn(t) is defined as{

χn(t) = λ · χn(t− 1) +N (0, σ2
n)

Pn(t) = χn(t) ·HLOS · Pt
(13)

where λ is an arbitrary number between 0 ∼ 1, N (0, σ2
n) is Gaussian white

noise, and χn(t) denote the LOS channel noise factor. The noise vibration level
depends on the σn value: the bigger the σn is, the larger noise fluctuation will
be.

3.2 Simulation result

Firstly, 100 unknown points are evenly distributed on the plane, their positions
are estimated through the two positioning methods with the noise level σn = 0.3.
The results are described in Fig. 2a, the red stars are the reference positions, the
blue circles are the nominal positions estimated by our proposed method and
the yellow circles are the results obtained by least-square method. We utilize
the Euclidean distance between estimated position and reference position to
calculate the positioning error. Fig. 2b gives the statistics of the positioning
error for the two methods. Our proposed method could achieve more stable
positioning results when dealing with fluctuated RSS measurements, as it can
be seen from Fig. 2b, the position errors of our method are all below 0.3 m,
while for the least-square method, the largest error reaches 0.54 m. Calculating
an average value gives 0.11 m accuracy for our method and 0.16 m for the least-
square method, showing that our proposed method expresses better performance
in terms of accuracy.

A robust positioning scheme should accommodate interference in different
noisy environments. In order to get a quantitative evaluation of our proposed
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Fig. 3: Positioning error with different noise level

method, we perform the experiments with different level of noise fluctuation
by changing the standard deviation σ of white noise in Eq. 13. The average
positioning error and the variance of the positioning accuracy are computed
for different values of σn ranging from 0.01 to 0.5. Fig. 3 presents the results
obtained over 1000 randomly positioned points. The black error bars denote the
standard deviations of the positioning errors. As we can see from the figure,
when the noise fluctuation is very small (σn = 0.01), both methods obtain
almost the same results, the positioning error is about 0.5 cm. When the noise
fluctuation increases, the positioning errors of both methods increase as well.
But the positioning error of least-square method increases more rapidly which
means it is more vulnerable to the noise fluctuation than ours. The standard
deviation of positioning error (the black error bar on the figure) of our proposed
method is also smaller than the least-square method at all noise fluctuation
levels, which demonstrates the positioning results obtained through our method
are more stable than the least-square method.

4 Conclusion

This paper presents an interval analysis-based trilateration positioning approach
in the scheme of set-membership. The proposed approach takes advantage and
combines Bootstrap and SIVIA algorithm to compute a confidence region of
the feasible positions from fluctuated RSS measurements and gives a nominal
position estimation with a weighting method. Simulation results demonstrate
that our method expresses better performance in terms of accuracy and stability
in comparison with least-square method, which indicates that our method is
more tolerable to RSS signal fluctuation. Future work will focus on validating
the performance of the proposed method in real indoor environment.
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7. Puth, M.T., Neuhäuser, M., Ruxton, G.D.: On the variety of methods for calcu-
lating confidence intervals by bootstrapping. Journal of Animal Ecology 84(4),
892–897 (2015)

8. Wang, Z., Lambert, A.: A low-cost consistent vehicle localization based on interval
constraint propagation. Journal of Advanced Transportation 2018 (2018)

9. Wang, Z., Lambert, A.: A reliable and low cost vehicle localization approach using
interval analysis. In: IEEE International Conference on Dependable, Autonomic
and Secure Computing (DASC). pp. 480–487 (2018)

10. Wang, Z., Zhang, X., Wang, W., Shi, L., Huang, C., Wang, J., Zhang, Y.: Deep
convolutional auto-encoder based indoor visible light positioning using rss temporal
image. In: IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (2019)


