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Abstract. A mean-offset classification technique was identified. It was found that the mean-

offset classifier provides stability under dynamic indoor conditions and provides consistent re-

sults when training and test data combinations are swept from 10 – 95%. In this paper the mean-

offset classifier is compared to the K-Nearest Neighbors (KNN) and Naïve Bayesian (NB) clas-

sifiers, with a view of developing an adaptable and computationally efficient indoor localization 

model using machine learning principles. It was seen that the mean-offset classifier improved 

results considerably and achieved an accuracy of 0.85 m and 1.15 m under line-of-sight (LOS) 

and non-line-of-sight (NLOS) conditions in residential areas.  

Keywords: KNN, LOS, Mean-offset, Machine learning, Naive Bayesian 

NLOS. 

1 Introduction 

1.1 Overview 

There has been a rapid growth in localization techniques and the application thereof in 

indoor environments [1]. The automation of locating people and objects in indoor en-

vironments, such as shopping malls, hospitals, warehouses and indoor sports centers, 

provides industries with valuable statistics that can be used to enhance their businesses. 

In this context, a plethora of indoor localization schemes have been proposed based on 

the type of signals used such as optical waves, Wireless Local Area Network (WLAN) 

radio signals and sound waves [2].  WLAN based location has become popular as wire-

less technologies are readily available, cost effective, scalable and most importantly 

received signal strength indicator (RSSI) can be extracted from most Wi-Fi receivers 

easily.  There are two main groups in WLAN localization propagation model-based 

techniques and fingerprinting models. The former characterizes the indoor channel by 

building a site-general or site-specific path loss model based on received signal strength 

(RSS) and frequency fading statistics [3]. The latter obtains RSSI values and stores it 

in a database, after which a similarity metric is used as a differentiating factor to predict 

the user’s location. RSSI has two major drawbacks, however. Multipath complicates 

and degenerates RSSI values as multiple line-of-sight (LOS) and non-line-of-sight 

(NLOS) signals with different phases, amplitudes and delays distort the shape of the 

signal, which leads to spatial ambiguity [3]. The second shortcoming is RSSI instability 

i.e. RSSI differs on different devices when recorded at the same place and time. To 

overcome the drawbacks faced by RSSI values, machine learning algorithms such as 

classification techniques and artificial neural networks (ANN) are implemented.   
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1.2 Related work 

There has been a growth in implementing machine learning algorithms to RSSI based 

indoor localization. Table 1 summarizes the comparisons of localization using machine 

learning techniques. In the Kernel-based learning method a spatial filtering step is in-

troduced to locate the estimated point to a subset of the environment and a kernelized 

distance for estimating the Euclidean distance between the observed RSS and the stored 

fingerprints is proposed, achieving an accuracy of 2.43m [2]. Support vector machines 

(SVM) classifiers that implement the linear and gaussian kernel achieve an accuracy of 

2 m and 3.12 m respectively [4].  In [P], a hybrid approach combining PCA with a grid 

search-based Kernel SVM is proposed. The PCA algorithms decorrelates and denoises 

the data received in the offline phase before applying the grid search algorithm during 

the online phase to achieve an accuracy of 1.37 m [5]. The widely used KNN classifier 

achieves an accuracy of 3.08 m [5]. Decision trees are non-parametric supervised learn-

ing methods, which achieves an accuracy of 2.87 m [4]. A random forest classifier se-

lects the tree with the highest votes after multiple decision trees are generated and 

achieves an accuracy of 3.1 m [4].  

Table 1. Comparisons of indoor localization models using classification techniques 

Proposed Method Accuracy (m) 

Kernel based [2] 2.43 

KNN [5] 3.08 

PCA-SVM [5] 1.37 

SVM: Linear Kernel [4] 2 

SVM: Gaussian [4] 3.12 

Decision tree [4] 2.87 

Random forest [4] 3.1 

 

 

The main contributions of this paper are summarized as follows: 

 

• A mean-offset classifier which computes the percentage of error between the 

users RSSI against the database of trained RSSI centroids is implemented. The 

classifier is tested under dynamic indoor conditions where human movement 

is present and across multiple days to see if temporal fluctuations affect local-

ization.  

• K-NN and Naïve Bayesian classifiers are implemented and compared to the 

mean-offset classifier under static indoor localization scenarios. Training data 

are swept from 10 – 90% to compare which classifier performs accurately 

when minimum training data are available.  
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2 Methodology 

Machine learning algorithms improve the accuracy of localization systems. All ma-

chine learning algorithms are implemented in two phases, training and test phases [4]. 

In the first phase, a collection of RSSI values are stored in the database. The data are 

then pre-processed by scaling the features and splitting the data into training and test 

sets. The classifier then uses the database of RSSI values to learn and build a model by 

which location can be predicted. In the test phase, the classifier that has the most accu-

rate model is used to predict location of the new set of RSSI.  

 

 

Fig. 1. Proposed mean-offset algorithm 

2.1 K-Nearest Neighbours (KNN) 

K-nearest neighbour is a classification technique that calculates the distance between 
features. The stored RSSI features correlate to the distance between the AP and mobile 
device. The algorithm calculates the 𝑃 −norm of 𝑁- dimensions RSSI vector 𝑥𝑖, where 𝑥𝑖 is the value on the RSSI database given as 𝐷𝑁  [4]: 𝑥𝑖 ∈ 𝐷𝑁 (1) 

Select the number K of neighbour and take the nearest K neighbours of the new data 

point according to the Euclidean distance. The distance between measured 𝑥̅ and the 

RSSI value from the database 𝑥̅𝑖 is represented as [4]:  

𝑑(𝑥̅ − 𝑥̅𝑖) = (∑|𝑥𝑗̅ − 𝑥𝑖𝑗̅̅̅̅ |𝑝|𝑥̅|
𝑗=1 )𝑝−1

 (2) 

Where 𝑑 is the measured distance, 𝑥𝑖𝑗̅̅̅̅  is the average and 𝑗 represents the selected APs. 

The value for 𝑝 = 2 as the Euclidean norm-distance is used. The K-NN classifier 
chooses the minimum distance of the K-neighbour points where 𝑊𝑘 is the list of points 
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corresponding to the K fingerprints on the database. Each 𝐸 contains the RSSI feature 
from the vector 𝑥𝑖 which must satisfy the following conditions [4]: 𝑑(𝑥̅ − 𝑥𝑖̅) ≤ 𝑑(𝑥̅, 𝑥𝑗)̅̅ ̅̅  (3) 𝑊𝐾 =  {𝐸1, … , 𝐸𝐾} (4) 𝑥1:𝐾̅̅ ̅̅ ̅ = {𝑥1̅̅̅, … , 𝑥𝐾̅̅ ̅} (5) 

 The estimated location, 𝐸̂, by averaging the coordinated of the KNN classifier is 
given as  

𝐸̂ = 1𝐾 ∑ 𝐸𝑖𝐾
𝑖=1  (6) 

2.2 Naïve Bayesian Classifier (NB) 

The Naïve Bayes classifier uses the Bayes theorem to makes classification decisions 

with an assumption of conditional independence and uses conditional probabilities to 

make classification decisions. In the indoor localization system, the location of a user 

needs to be determined given the RSSI feature from APs. To achieve this the probability 

of RSSI given in each region and the probability of the regions needs to be calculated. 

The probability of the RSSI values is given by [6]: 

 𝑃𝑅𝑒𝑔 = arg 𝑚𝑎𝑥[𝑓(𝑅𝑆𝑆𝐼𝑖)|𝑘)] (7) 

  𝑓(𝑅𝑆𝑆𝐼𝑖)|𝑘) = 𝑓(𝑘|𝑅𝑆𝑆𝐼) ∗ 𝑓(𝑅𝑆𝑆𝐼𝑖))(∑ 𝑓(𝑘|𝑅𝑆𝑆𝐼𝑖𝑁1 ) ∗ 𝑓(𝑅𝑆𝑆𝐼𝑖)) (8) 

Where 𝑓(𝑅𝑆𝑆𝐼𝑖)|𝑘) and 𝑓(𝑘|𝑅𝑆𝑆𝐼) are prior likelihood distributions. (∑ 𝑓(𝑘|𝑅𝑆𝑆𝐼𝑖𝑁1 ) ∗ 𝑓(𝑅𝑆𝑆𝐼𝑖)) and 𝑓(𝑅𝑆𝑆𝐼𝑖) are constant in all cases as there is no in-

formation about the user’s position, hence making it a maximum likelihood estimate 

[6]: 

 𝑃𝑀𝐿 = arg 𝑚𝑎𝑥[𝑓(𝑘|𝑅𝑆𝑆𝐼𝑖)] (9) 

Hence, maximising the likelihood probability will help make a decision. This problem 

is simplified to [6]: 

 𝑔(𝐾) = arg 𝑚𝑎𝑥 [𝑝(𝑘) ∏ 𝑝(𝑅𝑆𝑆𝐼𝑖|𝑛
1 𝑘)] (10) 

As the NB classifier assumes these probabilities are conditionally independent. 
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2.3 Mean-offset classifier 

The mean-offset classifier computes the percentage of error between the users RSSI 

against the database of trained RSSI centroids, after which the grid with the lowest 

percentage of error is chosen as the location, Fig. 1. Assuming the area of interest has 𝐴 APs and 𝑁 grids, each grid with the physical location 𝐺𝑛(𝑥𝑖 , 𝑦𝑖) has a corresponding 

fingerprinting vector 𝑓𝑖 = {𝐴𝑃1𝐺1 , 𝐴𝑃2𝐺1 , … , 𝐴𝑃(𝐴)𝐺1) where 𝑥𝐴𝑃(𝐴)𝐺𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the database 

of centroids computed across each grid as follows: 𝑥𝐴𝑃1𝐺1̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐴𝑃1𝐺1(𝐹𝑘)𝑛𝑛
𝑘=1  (11) 

During the training phase, the stored RSSI features in a database are clustered based on 

the proximity measure, which quantifies the similarity between the RSSI vectors. In 

this scenario RSSI collected from the same room in an indoor environment are clustered 

together, Fig 2. Where the prediction of the location, (𝑥𝑖 , 𝑦𝑖), with the least error, 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑘), between a test sample and each grids centroid is given as:  𝑒𝑘 = [∑ (|𝑥𝐴𝑃1𝐺𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝑃1(𝐹𝑘)|𝑥𝐴𝑃1𝐺𝑛 + |𝑥𝐴𝑃2𝐺𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝑃2(𝐹𝑘)|𝑥𝐴𝑃2𝐺𝑛
𝑛

𝑛=1 + |𝑥𝐴𝑃3𝐺𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝑃3(𝐹𝑘)|𝑥𝐴𝑃3𝐺𝑛 ) × 100] 

(12) 

(𝑥𝑖 , 𝑦𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑘) (13) 

Where 𝐴𝑃1(𝐹𝑘), 𝐴𝑃2(𝐹𝑘), 𝐴𝑃3(𝐹𝑘) are the test samples, Fig. 1. 

3 Experiment and Results 

3.1 Experimental setup 

The indoor localization system was carried out on the second floor of a residential 

space. The dimension of the residential environment is 11 m by 5 m. It has three bed-

rooms (outlined in red, green and blue), a passage (outlined in purple) and one bathroom 

(outlined in orange), which are separated by walls and cupboards Fig. 2. There are 119 

testing grids that are clustered as outlined in Fig. 2. In training, five RSSI measurements 

per AP, a total of 1785 RSSI measurements, were collected across all the grids. In the 

online phase, the user moved to five random locations and RSSI measurements from 

three APs were stored to a server via an API call and exported to Python, which applied 

the classifiers to locate the user’s position.     
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Fig. 2. Floor map of the residential area. The blue, green, purple, orange and red outlines indi-

cate the clustered areas.  

3.2 Classifier comparison 

To evaluate the classification techniques, the RSSI measurements collected during the 

training phase where applied to K-NN, NB and Centroid-Offset classifiers. The classi-

fiers selected where provided training data that ranged from 10% - 90% as an efficient 

classifier needs to be able to adapt to scenarios where only minimum training data is 

available. The mean offset classifier outperforms the KNN and NB classifier when the 

split between the training-test data is between 20 % and 75% Fig. (3). As more training 

data are provided, the NB classifier marginally outperforms the mean-offset classifier. 

However, the NB classifier also struggles when < 60% training data are provided. Over-

all, the mean-offset classifier consistently achieves accuracy of within 1.3 m.  

 

 

Fig. 3. Accuracy of Naïve Bayesian, KNN and mean offset classifiers under different training 

scenarios 

3.3 Mean-offset classifier 

The mean-offset classifier should account for dynamic changes presented by an indoor 

environment, such as temporal fluctuations in RSSI when recorded from the same point 

over multiple days and the movement of people and furniture. The Mean-Offset 
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classifier was applied under two cases: tests were conducted on different times over 

multiple days and with movement of people. 

 

 

Fig. 4. Measured RSSI values from five different locations over four days indicating the fluctu-

ation experienced in RSSI values 

The test was conducted on five different locations over a period of four days. The fluc-

tuations in RSSI across the three different APs was recorded and is represented in Fig. 

4. The RSSI values had an average fluctuation of – 3dBm across the four days. The 

average accuracy over the locations at 12:00, 14:00, 18:00 and 20:00 was 1.08 m, 1 m, 

0.83 m, 0.94 m and 0.58 m respectively Fig. 5. The accuracy over five locations across 

four days was 0.89 m.  

 

Fig. 5. Average localization errors across five different locations 

Mean-offset classifier was selected based on its performance as it shows adaptability 

under uncertain conditions and in instances where the environment is changing rapidly 

and the RSSI values are fluctuating. The test data gathered in an indoor residential area 

are applied to the mean-offset classifier and the results are tabulated in Table 2. Under 

LOS conditions an accuracy of 0.85 and 1.15 m was achieved in residential area.  
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Table 2. Comparison in accuracy (m) under LOS and NLOS scenarios in a residential area are 

using mean-offset classifier 

LOS conditions (Residential) NLOS conditions (Residential) 

Test Accuracy (m) Accuracy (m) 

1 1.1 0.97 

2 1 1.4 

3 0.83 1.34 

4 0.95 0.75 

5 0.58 1.3 

Avg 0.86 1.15 

4 Conclusion and Future work  

In conclusion, the mean-offset classifier was proposed for fingerprint indoor localiza-

tion using Wi-Fi. The mean-offset classifier computes the percentage of error between 

the users of RSSI against the database of trained RSSI centroids, after which the grid 

with the lowest percentage of error is chosen as the location implemented. Experimental 

results have demonstrated that the mean-offset classifier achieves an average localiza-

tion of 0.86 m with over 70% of errors under 1 m, which outperforms other kernel-

based, KNN, PCA-SVM, linear-SVM, gaussian-SVM, decision tree and random forest 

classifiers. Furthermore, main challenges such as RSSI instability and temporal ambi-

guity have been mitigated by the mean-offset classifier. The mean-offset classifier 

needs to be implemented for dynamic localization under several indoor locations such 

as malls, office spaces and underground parking. A hybrid between Artificial Neural 

Networks (ANN) and mean-offset is a concept that will be further investigated.  
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