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Abstract. This research presents the use of deep learning based ensemble classifier to
perform indoor localization with heterogeneous devices. Features extracted from magnetic
data of Galaxy S8 are fed into neural networks (NNs) for training. The experiments are
performed with S8 and G6 smartphones to find out the impact of device dependence on
localization accuracy. Results demonstrate that NNs can play a potential role for precise
indoor localization. The proposed approach is able to achieve a localization accuracy of
2.5 m at 50% on two different devices. Mean error for S8 and G6 is 2.61 m and 2.95 m,
respectively.
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1 Introduction and Background

Indoor localization has attracted a huge interest in industry and academia during the last decade.
The inception and penetration of location based services (LBS) further accelerated this research.
The success of global positioning system (GPS) made it the most reliable localization technology
for the outdoor environments. However, GPS sensitivity to occlusions including ceilings and
walls makes it inappropriate and inefficient for indoor localization. This lead researchers to
investigate alternative technologies which could potentially overcome such limitations and work
efficiently for indoor environments. A large body of work has been presented on such technologies
including ultra-wideband (UWB), radio frequency identification (RFID), infrared (IR), etc. Such
technologies are however limited by their dependence on additional hardware which needs to
be installed in the area intended for localization. The proliferation and wide use of modern
smartphone presenst a potential solution to this limitation. Today smartphones are equipped with
a variety of sensors which can be leveraged for indoor localization. Smarthone sensors including
Wi-Fi, Bluetooth, and camera lead to the development of many localization techniques.

Wi-Fi and Bluetooth based localization systems are limited by inherent limitations of wireless
communication [1, 2]. The problems of multipath shadowing, fading and impact of other dynamic
factors on signal fluctuation may occasionally lead to very high localization error. The geomag-
netic field based localization has been the center of many research works and got an exponential
attention during the last few years [3, 4]. The geomagnetic field (referred to as magnetic field in
the rest of the paper) is the natural phenomenon and pervasive in nature. The magnetic field
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strength varies from 25 µTesla to 65 µTesla over the globe. On the other hand, man made con-
struction obstruct the magnetic field and alter it to cause anomalies. Such magnetic anomalies
are observed to exhibit unique behavior and used as fingerprint in many research works [5, 6].
Despite that the techniques which utilize magnetic field fingerprints have two major limitations.
First is the change in magnetic behavior due to heterogeneity of the smartphones. Smartphones
use the magnetometer built by various companies which lead to different magnetic field intensity
even for the same place [3]. This limits the wide applicability of magnetic field based localization
systems as various smartphones show different localization error with the same approach. Second
limitation is the similarity of magnetic field intensity at multiple locations, especially when the
localization space is large. We aim to solve these problems using deep neural networks (DNN).

Deep learning has recently been utilized to solve many problems and indoor localization is
no exception. DNN and convolution neural networks (CNN) have been used for indoor scene
recognition, object detection, etc. We make the use of ensemble learning wherein more than
one DNN are trained and each DNN serves as a location classifier. The prediction from each
of these classifiers is then employed to find the final location of the user. Deep learning is a
data intensive technique and requires a large amount of data for training. We have collected
thousands of magnetic samples for this purpose. The key contribution of this research is the
proposal of a smartphone sensors base indoor localization approach which works with multiple
neural networks (NN) to predict user’s current location. The proposed approach is tested with
heterogeneous devices including Galaxy S8 and LG G6 to evaluate the localization accuracy.

The rest of the paper is organized in the following manner. Section 2 overviews few works
related to this research. Section 3 describes the proposed approach while Section 4 details the
experiment setup and analyzes the results. Finally, conclusion is given in Section 5.

2 Related Work

The application of magnetic field data for indoor localization has been investigated by many
research works . Such research include the analysis of properties of magnetic field data that can be
used for localization, as well as, the impact of various devices usage, and the orientations of these
devices [5-8]. Li et al., investigated the use of smartphone magnetometer based fingerprinting
approach to perform indoor localization in [9]. The localization error is low if more elements of
magnetic field are used. However, the error may become higher up to 20 m when the localization
area is large and complex. Zhang et al., reduces the survey time of building the fingerprint
database with crowd sourcing approach in [10]. Later, a revised Monte Carlo technique is used to
locate a pedestrian indoor. The proposed approach is able to converge to a 5 m area by using 30
sec data. The research suggests the use of assistive technologies to reduce the localization error.

An indoor localization system is presented in [11] which combines Wi-Fi signal with magnetic
field data to build the fingerprint database. The search space restriction using Wi-Fi access points
help in reducing the localization error to 4.5 m which is 16.6 m with magnetic field data. Recently
the use of deep learning is reported to perform localization with smartphone sensors in [12]. The
research uses smartphone camera, motion sensors, compass, magnetometer and Wi-Fi to do the
localization. CNN is used to identify indoor scene which helps to narrow down the search space
in magnetic database. The reported localization error is 1.32 at 95%. Similary the research [13]
proposes a multi-story localization approach based on smartphone sensors and makes the use of
deep learning. The CNN based scene recognition is used to identify a specific floor which increases
the localization accuracy as well. The reported localization error is 1.04 m at 50 percent.

The above mentioned research works are limited by two factors in essence. First problem is
the use of Wi-Fi signals which are vulnerable to dynamic factors. Secondly the impact of device
heterogeneity is not studied very well. Additionally the use of smartphone camera consumes
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Fig. 1. Correlation of selected features to predict a specific class. ’Class’ weight in rows shows the
importance of features.

the battery very fast and is not an efficient solution. It is noteworthy to point out that deep
learning has been utilized on smartphone camera images alone. We aim to use deep learning on
the magnetic field data to perform indoor localization.

3 Materials and Methods

This section provides the details of the proposed approach. The first task is to find suitable
features which are fed into the NNs.

3.1 Features Selection

The major limitation of using the magnetic field is the device dependence. The intensity of col-
lected magnetic data may be different depending on the sensitivity of the installed magnetometer
in various smartphones. Another shortcoming of magnetic data is its low dimensionality. We can
use only magnetic x, y, and z data as a fingerprint. These values may be very similar at multiple
locations, especially in large space. So, contrary to using the magnetic field data, we aim to work
with important features of this data.

We initially shortlisted a total of 18 features including ’minimum’, ’maximum’, ’mean’,
’trimmed mean’, ’median’, ’root mean square’, ’standard deviation’, ’interquartile’, ’percentile
(1, 50, 75, 99)’, ’mean absolute deviation’, ’coefficient of variance’, ’kurtosis’, ’Shanon’s en-
tropy ’, and ’skewness’ for this purpose. Features including ’coefficient of variance’, ’kurtosis’,
’Shanon’s entropy ’, and ’skewness’ are dropped due to their little correlation to the classification
label. The correlation of the features is shown in Figure 1.
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Fig. 2. Architecture of proposed approach.

3.2 Proposed Approach

The architecture of the proposed approach is shown in Figure 2. The features extracted from
the magnetic data are standardized and fed into neural networks. We train three different NN
to make the ensemble.

Every NN has different number of layers, as well as, the containing neurons. Similarly, the
internal structure of fully connected layers is different. The structure of NNs is shown in Figure
3. During the localization phase, the features extracted from user collected magnetic data are
used by trained NNs to predict user current location. For this purpose, we use three consecutive
frames of 2 sec each which are considered as T1, T2, and T3. For T1, the predictions from three
NNs are taken to form the location candidates (Lc).

Lc = ∃(PNN1T1
∪ PNN2T1

) ∪ (PNN1T1
∪ PNN3T1

) ∪ (PNN2T1
∪ PNN3T1

) (1)

where P shows the prediction made by NN and ∃ shows that unique predictions are considered
alone. We take top 10 predicted locations from each NN to formulate Lc. NNs predictions at T2
and T3 help to refine Lc. So, if the predictions for T2 are in the area as shown in Figure 4, they
are added in Lc for T3, else, they are discarded. The encircled area is estimated user traveled
distance at a medium speed.

Algorithm 1 Find user location

1: Lc ←− findLocCandidates(PNN1T1
, PNN2T1

, PNN3T1
)

2: for T ←− 2 to 3 do
3: Lc ←− refineLocCandidates(Lc, PNN1T , PNN2T , PNN3T );
4: (xT , yT )←− calApproxPos(SlT , ψT );

5: end for

6: Lp ←− calCenteroid(Lc);
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With each T , Lc are updated as user moves to another location. We use accelerometer and
gyroscope data for this purpose. Step detection is performed using the algorithm proposed in [4],
while step length estimation is done with Weigberg model [14]:

Sl = k 4
√
amax − amin (2)

where amax, and amin shows the maximum and minimum acceleration.
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Fig. 3. Structure of NN-1 (top), NN-2 (middle), and NN-3 (bottom).

xT and yT are calculated using SlT and heading estimation ψT as follows:

xi = xi−1 + Sli−1 × cos(ψi−1) (3)

yi = yi−1 + Sli−1 × sin(ψi−1) (4)

The same process is repeated for T2 and T3. During this process, the predicted locations
converge to a small area. We calculate the centroid of these refined locations which represent the
user’s predicted location Lp.

4 Experiment and Results

The experiments are conducted using Samsung Galaxy S8 (SM-G950N), and LG G6 (LGM-
G600L) devices. The features for training are extracted using Galaxy S8 collected data, while
testing is done with two smartphones. The path used for the experiments is shown in Figure
5. The area of experiment building is 92 ×36 m2. Experiments are performed with people of
different heights to evaluate the proposed approach.
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Estimated locations at T1

Estimated locations at T2

Fig. 4. Outlier selection criteria.

Fig. 5. The path used for experiments.

Results are shown in Figure 6. Results demonstrate that the proposed approach can locate a
person within 2.5 m, irrespective of the used device. Maximum errors are 13.33 m and 13.57 m
for S8 and G6, respectively. However, the cumulative probability of maximum error is only 0.02.
The mean error at 75% is 3.7 m and 4.1 m for S8 and G6. Even though the training is performed
with S8 data, the localization errors are very similar for two smartphones. The underlying reason
is the usage of features extracted from magnetic data than the magnetic data themselves. It also
shows the usefulness of deep learning to assist in reliable indoor localization. We conducted
additional experiments with less features also excluding ’interquartile’, ’standard deviation’, and
’mean absolute deviation’. Removing these features degrades the localization performance.

5 Conclusion

This research aims at using deep learning based ensemble classifier to solve indoor localization
with heterogeneous devices. Three NNs are trained on magnetic data features from S8 smart-
phone. The experiments are performed with S8 and G6 smartphones. Results demonstrate that
the use of features extracted from magnetic data are very fruitful to train NN. The localization
accuracy is 2.5 m at 50% on two different devices. Mean error for S8 and G6 is 2.61 m and
2.95 m, respectively. Data collection is a laborious task which we intend to overcome with crowd
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Fig. 6. Localization results using S8 and G6.

sourcing data collection in future. How the larger indoor area may affect the performance of the
proposed approach is an intended future work.
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