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1 Introduction

The use of a conceptual model or an ontology over data sources has been shown
to be necessary to overcome many important database problems (for a survey see
[1]). Since ontologies provide a conceptual view of the application domain, the
recent trend to employ such ontologies for navigational (and reasoning) purposes
when accessing the data gives additional motivation for the problem of extracting
the ontology from database schema [2]. When such an ontology exists, modelling
the relation between the data sources and an ontology is a crucial aspect in order
to capture the semantics of the data.

In this paper we define the framework for extracting from a relational database
an ontology that is to be used as a conceptual view over the data, where the
semantic mapping between the database schema and the ontology is captured
by associating a view over the source data to each element of the ontology. Thus,
the vocabulary over the ontology can be seen as a set of (materialised) views over
the vocabulary of the data source; i.e., a technique known as GAV approach in
the information integration literature [3]. To describe the extracted conceptual
model, we provide an expressive ontology language which can capture features
from Entity-Relationship and UML class diagrams, as well as variants of De-
scription Logics. The heuristics underlying the ontology extraction process are
based on ideas of standard relational schema design from ER diagrams in order
to uncover the connections between relational constructs and those of ontologies.
Besides the latter assumption the procedure presented in this paper takes into
consideration relations being in third normal form (3NF). Under this assump-
tion we can formally prove that the conversion preserves the semantics of the
constraints in the relational database. Therefore, there is no data loss, and the
extracted model constitutes a faithful wrapper of the relational database.

2 Preliminaries

We assume that the reader is familiar with standard relational database notions
as presented, for example, in [4]. We assume that the database domain is a fixed
denumerable set of elements ∆ and that every such element is denoted uniquely
by a constant symbol, called its standard name [5]. We make use of the standard
notion of relational model by using named attributes, each with an associated
datatype, instead of tuples.

A relational schema R is a set of relationships, each one with a fixed set
of attributes (assumed to be pairwise distinct) with associated datatypes. We



use [s1 : D1, . . . , sn : Dn] to denote that a relationship has attributes s1, . . . , sn

with associated data types D1, . . . , Dn. We interpret relationships over a fixed
countable domain ∆ of datatype elements, which we consider partitioned into
the datatypes Di. A database instance (or simply database) D over a relational
schema R is an (interpretation) function that maps each relationship R in R
into a set RD of total functions from the set of attributes of R to ∆. Let A =
[s1, . . . , sm] be a sequence of m attribute names of a relationship R of a schema
R. The projection of RD over A is the relation πAR

D ⊆ ∆m
D , satisfying the

condition that φ ∈ RD iff (φ(s1), . . . , φ(sm)) ∈ πAR
D.

The ontology extraction task takes as input a relational source; e.g. a DBMS.
We abstract from any specific database implementation by considering an ab-
stract relational source DB, which is a pair (R, Σ), whereR is a relational schema
and Σ is a set of integrity constraints. The semantics of relational schemata is
provided in the usual way by means of the relational model. Below we briefly
list the kind of database integrity constraints we consider in our framework (for
more details the reader is referred to [6]). Nulls-not-allowed constraints: satisfied
in a database when null are not contained in any indicated attribute. Unique
constraints: satisfied when the sequence of attributes are unique in a relation.
Together with nulls-not-allowed constraints they correspond to key constraints.
Inclusion dependencies: satisfied when the projection of two relations are in-
cluded one in the other. When the attributes of the target relation are a candi-
date key as well, we call them foreign key constraints. Exclusion dependencies:
satisfied when the intersection of the projection of two relations is the empty
set. Covering constraints:1 between a relation and a set of relations, satisfied
when the projection of the relation over the specified attributes is included in
the union of the projections of the relations in the set.

We call a DLR-DB system S a triple 〈R,P,K〉, where R is a relational
schema, P is a component structure over R, and K is a set of assertions involv-
ing names in R. The intuition behind a named component is the role name of
a relationship in an ER schema (or UML class-diagram). The component struc-
ture P associates to each relationship a mapping from named components to
sequences of attributes. Let R be a relationship in R, to ease the notation we
write PR instead of P(R).

Let R be a relationship in R, with attributes [s1 : D1, . . . , sn : Dn]. PR

is a non-empty (partial) function from a set of named components to the set
of nonempty sequences of attributes of R. The domain of PR, denoted CR, is
called the set of components of R. For a named component c ∈ CR, the sequence
PR(c) = [si1 , . . . , sim

], where each ij ∈ {1, . . . , n}, is called the c-component of
R. We require that the sequences of attributes for two different named com-
ponents are not overlapping, and that each attribute appears at most once in
each sequence. The signature of a component PR(c), denoted τ(PR(c)), is the
sequence of types of the attributes of the component. Two components PR(c1)
and PR(c2) are compatible if the two signatures τ(PR(c1)) and τ(PR(c2)) are
equal.

1 In ER terminology, this may also be indicated as mandatory for an IS-A relationship.



The DLR-DB ontology language, used to express the assertions in K, is based
on the idea of modelling the domain by means of axioms involving the projection
of the relationship over the named components. An atomic formula is a projec-
tion of a relationship R over one of its components. The projection of R over the
c-component is denoted by R[c]. When the relationship has a single component,
then this can be omitted and the atomic formula R corresponds to its projec-
tion over the single component. Given the atomic formulae R[c], R′[c′], Ri[ci], an
axiom is an assertion of the form specified below; where all the atomic formulae
involved in the same axiom must be compatible. The semantics is provided in
terms of relational models for R, where K plays the role of constraining the set
of “admissible” models.

R[c] v R′[c′] πcR
D ⊆ πc′R′D Subclass

R[c] disj R′[c′] πcR
D ∩ πc′R′D = ∅ Disjointness

funct(R[c]) for all φ1, φ2 ∈ RD with φ1 6= φ2, we have

φ1(s) 6= φ2(s) for some s in c
Functionality

R1[c1], . . . , Rk[ck] coverR[c] πcR
D ⊆

[
i=1...k

πciR
′D
i Covering

A database D is said to be a model for K if it satisfies all its axioms, and for
each relationship R in R with components c1, . . . , ck, for any φ1, φ2 ∈ RD with
φ1 6= φ2, there is some s in ci s.t. φ1(s) 6= φ2(s). The above conditions are well
defined because we assumed the compatibility of the atomic formulae involved
in the constraints.

The DLR-DB ontology language enables the use of the most commonly used
constructs in conceptual modelling (see [7]). Note that by taking away the cov-
ering axioms and considering only components containing single attributes this
ontology language corresponds exactly to DLR-Lite (see [8]). By virtue of the
assumption that components do not share attributes, it is not difficult to show
that the same reasoning mechanism of DLR-Lite can be used in our case. The
discussion on the actual reasoning tasks which can be employed in the context
of DLR-DB systems is out of the scope of this paper. Herewith we are mainly
interested of the use of the language to express data models extracted from the
relational data sources.

3 Ontology Extraction

Our proposed ontology extraction algorithm works in two phases. Firstly, a clas-
sification scheme for relations from the relational source is derived. Secondly,
based on this classification, the ontology describing the data source is extracted.
Moreover, the process generates a set of view definitions, expressing the mapping
between the database schema and the ontology. In this section we briefly sketch
the procedure, more details and the algorithms can be found in [6].

The principles upon our technique are based on best practices on relational
schema design from ER diagrams – a standard database modelling technique [9].
One benefit of this approach is that it can be shown that our algorithm, though
heuristic in general, is able to reconstruct the original ER diagram under some



assumptions on the latter. Specifically, we consider ER models that support
entities with attributes,2 n-ary relationships which are subject to cardinality
constraints, and inheritance hierarchies (IS-A) between entities (including mul-
tiple inheritance) which may be constrained to be disjoint or covering. Roughly
speaking, we reverse the process of translating ER model to relational model.
As a result, we identify that relations representing entities have keys which are
not part of their foreign keys, and every such foreign key represents functional
binary relationship (i.e., one-to-one or one-to-many) with another entity. On the
other hand, relations that correspond to n-ary relationships with cardinalities
“many” for all participating entities have keys composed of their foreign keys.
Since we assume there is no IS-A between relationships, every such foreign key
references key of a relation resulting from (sub-)entity. When a relation has key
that is also its foreign key, and no other non-key foreign keys appear in that
relation, then, clearly, an inheritance relationship exists. If instead non-key for-
eign keys are present but the relation is the target of some foreign key, we are
sure that this relation corresponds to sub-entity. Otherwise, such relation might
also “look like” functional relationship (binary or n-ary), mapped directly to a
relation, and therefore relations of this type are classified as ambiguous relations
(see below).

The classification of the relations, based on their keys and foreign keys, can
be summarised as: base relation when the primary key is disjoint with every
foreign key; specific relation when the primary key is also a foreign key and it
has a single foreign key, or it is referred to by some relation;3 relationship relation
when the primary key is composed by all the foreign keys, which are more than
1. Any other relation is classified as ambiguous.

Once the relations in DB are classified according to the conditions defined
above, then the actual ontology extraction process returns a DLR-DB system
as output. For every base and specific relation ri the algorithm generates a
relationship Ri with the attributes in a one-to-one correspondence with non-
foreign key attributes of ri, and a single c-component, where PRi

(c) corresponds
to the key attributes of ri and thus functionality axiom funct(Ri[c]) is added to
K;a view is defined by projecting on all non-key foreign key attributes of ri.

Once relationships for base and specific relations are defined, associations
between those relationships must be identified. Specifically, a non-key foreign
key in a relation ri referencing relation, rj , determines the association between
relationships Ri and Rj . Thus, for each such foreign key, a relationship Rk is gen-
erated, having two components, ci-component and cj-component, where PRk

(ci)
and PRk

(cj) correspond to key attributes of ri and rj , respectively, where ci-
component is functional, i.e., we have funct(Rk[ci]) in K; a corresponding view
is defined by joining rj with ri and projecting on their keys. For expressing
an association, determined by Rk, between Ri and Rj the axioms of the form
Rk[ci] v Ri and Rk[cj ] v Rj are added to K. Furthermore, whenever the lat-
ter foreign key of ri participates in a nulls-not-allowed constraint, the axiom
Ri v Rk[ci] is generated stating mandatory participation for instances of Ri to

2 We do not deal with multi-valued attributes in this paper.
3 I.e., the relation appears on the right-hand side of some foreign key constraint.



Rk as values for the ci-component; its participation to a unique constraint deter-
mines instead the functionality axiom funct(Rk[cj ]) meaning that every value of
the cj-component appears in it at most once; finally, appearance of the foreign
key of ri in the right-hand side of an inclusion dependency determines manda-
tory participation for values of the only component of Rj to the relationship Rk

as values for the cj-component, and thus the axiom Rj v Rk[cj ] is added to K.
For expressing an ISA between classes, for every specific relation ri the subclass
axiom Ri v Rj is added to K, where Rj is the relationship corresponding to
(base or specific) relation, rj , that the key foreign key of ri references. Addi-
tionally, each exclusion dependency on the set of specific relations induces the
disjointness axioms Ri disj Rk, for every pair of relations ri, rk appearing in the
exclusion dependency. Similarly, every covering constraint on the set of specific
relations induces the corresponding covering axiom in K.

Each relationship relation ri is accounted for by generating a relationship Ri,
with attributes in a one-to-one correspondence with those of ri, and n compo-
nents, where n is the number of foreign keys of ri. Each PRi

(cil
) (l ∈ {1, . . . , n})

has sequence of attributes corresponding to the l-th foreign key attributes of ri;
the corresponding view is defined by projecting on all attributes of ri. Then, for
each foreign key of ri referencing relation rj (that is already represented with a
relationship Rj having a single component), the algorithm generates an axiom
Ri[cil

] v Rj stating that the role corresponding to the cil
-component of Ri is of

type Rj . Furthermore, if this foreign key appears on the right-hand side of an
inclusion dependency, the axiom Rj v Ri[cil

] is added to K that states manda-
tory participation for instances of Rj to the relationship Ri as values for the cil

component.
Finally, the appropriate structures for ambiguous relations must be identi-

fied. As already discussed before, an ambiguous relation may correspond in ER
schema to either sub-entity, which also participates with cardinality “one” in
a binary relationship, or a functional relationship that was directly mapped to
a relation. Following the idea that all functional binary relationships should be
represented in a relational model with an embedded foreign key, e.g., in order
to obtain the relational schema with a minimum number of relations, and that
n-ary relationships (n ≥ 3) are relatively unusual, our heuristics “prefers” to
recover an inheritance relationship, and thus the algorithm generates the struc-
tures corresponding to those defined for specific relations. On the other hand, a
user could decide which is the “best” structure for ambiguous relations. In this
way, the ontology extraction task may be a completely automated procedure, or
semi-automated process with a user intervention.

As an example of the ontology extraction process, consider the relational
schema (primary keys are underlined) with constraints of Figure 1. At the initial
step of extraction process, relations Scholar, Publication and Department are
classified as base relations, i.e. their keys and foreign keys do not share any
attributes; IsAuthorOf relation is classified as relationship relation – its key
is entirely composed from foreign keys; while relations PostDoc and Professor
satisfy the conditions required for specific relations, i.e. the key ssn is their single
foreign key.



Without going into details of the algorithm, in Table 1 we list the extracted
relationships of DLR-DB R together with the devised component structure P,
by considering the relation names and their corresponding attributes in the input
relational source. Starting with base and specific relations, we have the corre-
sponding relationships with single components. Since the component names for
the latter relationships are not relevant (they can be omitted), we choose a com-
mon name id for all the five of them.4 Figure 2 shows the extracted ontology
together with the corresponding ER diagram.

Relationship Component c PR(c) Additional attr. View definition
Scholar id ssn name πssn,name(Scholarr)
Publication id id title, year πid,title,year(Publicationr)
Department id no name πno,name(Departmentr)
PostDoc id ssn scholarship πssn,scholarship(PostDocr)
Professor id ssn salary πssn,salary(Professorr)
WorksFor employee ssn πssn,no(Departmentr on Scholarr)

dept no
IsAuthorOf author schSsn πschSsn,publId(IsAuthorOfr)

publication publId

Table 1. Extracted Schema.

4 Discussion and Related Work

Much work has been addressed on the issue of explicitly defining semantics
in database schemas [10, 7] and extracting semantics out of database schemas
[11, 12]. The work described in [10] provides algorithms that investigate data
instances of an existing legacy database in order to identify candidate keys of
4 For the sake of clarity, the naming of the components for relationships WorksFor and

IsAuthorOf, as well as the name of the WorksFor relationship itself, are determined
by domain knowledge.

Scholarr(ssn, name, deptNo) Publicationr(id, title, year)
IsAuthorOfr(schSsn, publId) Departmentr(no, name)
PostDocr(ssn, scholarship) Professorr(ssn, salary)

Scholarr [deptNo] ⊆ Departmentr [no]
IsAuthorOfr [schSsn] ⊆ Scholarr [ssn]
IsAuthorOfr [publId] ⊆ Publicationr [id]
PostDocr [ssn] ⊆ Scholarr [ssn]
Professorr [ssn] ⊆ Scholarr [ssn]
Scholarr [ssn] ⊆ IsAuthorOfr [schSsn]

Publicationr [id] ⊆ IsAuthorOfr [publId]
Departmentr [no] ⊆ Scholarr [deptNo]
unique(Scholarr, deptNo)
nonnull(Scholarr,deptNo)
PostDocr [ssn] ∩ Professorr [ssn] = ∅

Fig. 1. Relational schema with constraints.



Scholar

PostDoc Professor

IsAuthorOf WorksFor

scholarship salary

ssn
name

Publication Department

id
title

year no name

publication employee dept1,n1,n 1,1

 { disjoint }

author 1,n

funct(Scholar[id])
funct(Publication[id])
funct(Department[id])
funct(PostDoc[id])
funct(Professor[id])
IsAuthorOf[author] v Scholar
IsAuthorOf[publication] v Publication
WorksFor[employee] v Scholar
WorksFor[dept] v Department

Scholar v IsAuthorOf[author]
Publication v IsAuthorOf[publication]
Scholar vWorksFor[employee]
Department vWorksFor[dept]
funct(WorksFor[employee])
PostDoc v Scholar
Professor v Scholar
PostDoc disj Professor

Fig. 2. Extracted ontology and corresponding ER diagram.

relations, to locate foreign keys, and to decide on the appropriate links between
the given relations. As a result, user involvement is always required. In our work
we instead assume the knowledge on key and foreign key constraints, as well
as non null and unique values on attributes, inclusion and disjointness between
relations, etc. exist in the schema.

The work in [12] propose transformations that are applied to produce the
re-engineered schema and handles the establishment of inheritance hierarchies.
However, it considers relations in BCNF and thus every relation is in a one-to-
one correspondence with an object in the extracted schema. The main idea of the
methodology described in [11] comes close to ours in the sense that it derives
classification for relations and attributes based on heuristics of what kind of
ER components would give rise to particular relations. Unlike the latter, our
proposed technique can be seen as a schema transformation as defined in [15].
Because of lack of space, we omit the proof that this transformation is indeed
equivalence preserving (for the actual proof and details see [6]).

The recent call for a Semantic Web arose several approaches in bringing
together relational databases and ontologies. Among them we mention [13],
where the authors describe an automatic mapping between relations and ontolo-
gies, when given as input simple correspondences from attributes of relations to
datatype properties of classes in an ontology. Unlike our approach, it requires a
target ontology onto which the relations are mapped to. On the other hand, the
approach of [14] extracts the schema information of the data source and converts
it into an ontology. However, the latter technique extracts only the structural
information about the ontology, so the constraints are not taken into account.

This paper describes an heuristic procedure for extracting from relational
database its conceptual view, where the wrapping of relational data sources by
means of an extracted ontology is done by associating view over the original data
to each element of the ontology. To represent the extracted ontology, instead of



a graphical notation, we employ an ontology language thus providing a precise
semantics to extracted schema. Our extraction procedure relies on information
from the database schema and automatically extracts all the relevant semantics
if an input relational schema was designed using a standard methodology.

We are currently following several directions to continue the work reported in
this paper. First, conceptual modelling constructs as multi-valued attributes and
weak entities, alternative techniques for inheritance representation in relational
tables. To this purpose we are starting to experiment with real database schemas
to evaluate the quality of the extracted ontologies.
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