
Exploiting Conjunctive Queries in
Description Logic Programs?

Thomas Eiter1, Giovambattista Ianni1,2, Thomas Krennwallner1, and
Roman Schindlauer1,2

1 Institut für Informationssysteme 184/3, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

2 Dipartimento di Matematica, Università della Calabria,
I-87036 Rende (CS), Italy.

{eiter,ianni,tkren,roman}@kr.tuwien.ac.at

Abstract. We present cq-programs, which enhance nonmonotonic de-
scription logics (dl-) programs by conjunctive queries (CQ) and union
of conjunctive queries (UCQ) over Description Logics knowledge bases,
as well as disjunctive rules. dl-programs had been proposed as a pow-
erful formalism for integrating nonmonotonic logic programming and
DL-engines on a clear semantic basis. The new cq-programs have two
advantages: First, they offer increased expressivity by allowing general
(U)CQs in the body. And second, this combination of rules and ontolo-
gies gives rise to strategies for optimizing calls to the DL-reasoner, by
exploiting (U)CQ facilities of the DL-reasoner. To this end, we discuss
some equivalences which can be exploited for program rewriting. Exper-
imental results for a cq-program prototype show that this can lead to
significant performance improvements.

1 Introduction

Rule formalisms that combine logic programming with other sources of knowl-
edge, especially terminological knowledge expressed in Description Logics (DLs),
have gained increasing interest in the past years. This process was mainly fos-
tered by current efforts in the Semantic Web development of designing a suitable
rules layer on top of the existing ontology layer. Such combinations of DLs and
logic programming can be categorized in systems with (i) strict semantic inte-
gration and (ii) strict semantic separation, which amounts to coupling heteroge-
neous systems [1–4]. In this paper, we will concentrate on the latter, considering
ontologies as external information with semantics treated independently from
the logic program. Under this category falls [5, 2], which extends the answer-set
semantics to so-called dl-programs (L,P), which consist of a DL part L and a
rule part P that may query L. Such queries are facilitated by a special type
of atoms, which also permit to enlarge L with facts imported from the logic
program P , thus allowing for a bidirectional flow of information.

Since the semantics of logic programs is usually defined over a domain of
explicit individuals, this approach may fail to derive certain consequences, which
are implicitly contained in L. Consider a simplified version of an example from [6]:
? This work has been partially supported by the EC NoE REWERSE (IST 506779)

and the Austrian Science Fund (FWF) project P17212-N04.

L = {father v parent ,∃father .∃father−.{Remus}(Romulus), father(Cain,Adam),
father(Abel ,Adam), hates(Cain,Abel), hates(Romulus,Remus)},

P = {BadChild(X)← DL[parent](X,Z),DL[parent](Y,Z),DL[hates](X,Y)}.
Apart from the explicit facts, L states that each father is also a parent

and that Romulus and Remus have a common father. The single rule in P
specifies that an individual hating a sibling is a BadChild . From this dl-program,
BadChild(Cain) can be concluded, but not BadChild(Romulus), though it is
implicitly stated that Romulus and Remus have the same father.

The reason is that, in a dl-program, variables must be instantiated over
their Herbrand base (containing the individuals in L and P), and thus unnamed
individuals like the father of Romulus and Remus, are not considered. In essence,
dl-atoms only allow for building CQs that are DL-safe [6], which ensure that all
variables in the query can be instantiated to named individuals. While this was
mainly motivated by retaining decidability of the formalisms, unsafe CQs are
admissible under certain conditions [1]. We thus pursue the following.

• We extend dl-programs by (U)CQs to L as first-class citizens in the language.
In our example, to obtain the desired conclusion BadChild(Romulus), we may
use P ′ = {BadChild(X)← DL[parent(X,Z), parent(Y, Z), hates(X,Y)](X,Y)},
where the body of the rule is a CQ {parent(X,Z), parent(Y,Z), hates(X,Y)}
to L with distinguished variables X and Y .

Example 1. Both r = BadParent(Y) ← DL[parent](X,Y),DL[hates](Y,X) and
r′ = BadParent(Y) ← DL[parent(X,Y), hates(Y,X)](X,Y) equivalently pick
(some of) the bad parents. Here, in r the join between parent and hates is
performed in the logic program, while in r′ it is performed on the DL-side.

Since DL-reasoners including RACER, KAON2, and Pellet increasingly support
answering CQs, this can be exploited to push joins between the rule part and
the DL-reasoner, eliminating an inherent bottleneck in evaluating cq-programs.
• We present equivalence-preserving transformation rules, by which rule bodies
and rules involving cq- or ucq-atoms can be rewritten.
• We report on some experiments with a prototype implementation of cq-prog-
rams using dlvhex and RACER. They show the effectiveness of the rewriting
techniques, and that significant performance increases can be gained. These
results are interesting in their own right, since they shed light on combining
conjunctive query results from a DL-reasoner.

2 dl-Atoms with Conjunctive Queries

We assume familiarity with Description Logics (cf. [7]), in particular SHIF(D)
and SHOIN (D).3 A DL-KB L is a finite set of axioms in the respective DL.
We denote logical consequence of an axiom α from L by L |= α.

As in [5, 2], we assume a function-free first-order vocabulary Φ of nonempty
finite sets C and P of constant resp. predicate symbols, and a set X of variables.
As usual, a classical literal (or literal), l, is an atom a or a negated atom ¬a.
3 We focus on these DLs because they underly OWL-Lite and OWL-DL. Conceptually,

cq-programs can be defined for other DLs as well.

Syntax A conjunctive query (CQ) q(~X) is an expression { ~X | Q1(~X1), Q2(~X2),
. . . , Qn(~Xn)}, where each Qi is a concept or role expression and each ~Xi is a
singleton or pair of variables and individuals, and where ~X ⊆

⋃n
i=1 vars(~Xi) are

its distinguished (or output) variables. A union of conjunctive queries (UCQ)
q(~X) is a disjunction

∨m
i=1 qi(~X) of CQs qi(~X). Where it is clear from the

context, we omit ~X from (U)CQs.
Example 2. In our opening example, cq1(X,Y) = {parent(X,Z), parent(Y,Z),
hates(X,Y)} and cq2(X,Y) = {father(X,Y), father(Y, Z)} are CQs with dis-
tinguished variables X,Y , and ucq(X,Y) = cq1(X,Y) ∨ cq2(X,Y) is a UCQ.

We now define dl-atoms α of form DL[λ; q](~X), where λ = S1 op1 p1, . . . ,
Sm opm pm, m ≥ 0, is a list of expressions Si opi pi, where each Si is either a
concept or a role, opi ∈ {], −∪, −∩}, and pi is a predicate symbol matching Si’s
arity, and where q is a (U)CQ with output variables ~X (in this case, α is called
a (u)cq-atom), or q(~X) is a dl-query. Each pi is an input predicate symbol ;
intuitively, opi =] increases Si by the extension of pi, while opi = −∪ increases
¬Si; opi = −∩ constrains Si to pi.

Example 3. The cq-atom DL[parent] p; parent(X,Y), parent(Y,Z)](X,Z) with
output X,Z extends L by adding the extension of p to the property parent , and
then joins parent with itself.

A cq-rule r is of the form a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn,
where every ai is a literal and every bj is either a literal or a dl-atom. If n = 0
and k > 0, then r is a fact. A cq-program KB = (L,P) consists of a DL-KB L
and a finite set of cq-rules P .

Semantics For any CQ q(~X) = {Q1(~X1), Q2(~X2), . . . , Qn(~Xn)}, let φq(~X) =
∃~Y

∧n
i=1Qi(~Xi), where ~Y are the variables not in ~X, and for any UCQ q(~X) =∨m

i=1 qi(~X), let φq(~X) =
∨m

i=1 φqi
(~X). Then, for (U)CQ q(~X), the set of answers

of q(~X) on L is the set of tuples ans(q(~X), L) = {~c ∈ C| ~X| | L |= φq(~c)}.
Let KB = (L,P) be a cq-program. Given the semantics of (U)CQs on L,

defining the semantics of cq- and ucq-atoms w.r.t. a Herbrand interpretation I
of the predicates in P (using constants from C) in the same way as for dl-atoms
is straightforward. We recall that a ground dl-atom a = DL[λ;Q](~c) is satisfied
w.r.t. I, denoted I |=L a, if L ∪ λ(I) |= Q(~c), where λ(I) =

⋃m
i=1Ai and

– Ai(I) = {Si(~e) | pi(~e) ∈ I}, for opi =];
– Ai(I) = {¬Si(~e) | pi(~e) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(~e) | pi(~e) ∈ I does not hold}, for opi = −∩.

Now, given a ground instance a(~c) of a (u)cq-atom a(~X) = DL[λ; q](~X)
(i.e., all variables in q(~X) are replaced by constants), I satisfies a(~c), denoted
I |=L a(~c), if ~c ∈ ans(q(~X), L ∪ λ(I)). The notion of model and (strong) answer
set of KB is then defined as usual (cf. [5, 2]).

Example 4. Let KB = (L,P), where L is the well-known wine ontology4 and P
is as follows (P uses only atomic queries and may launch our rewritings):
4 http://www.w3.org/TR/owl-guide/wine.rdf

v(L) ∨ ¬v(L)← DL[WhiteWine](W),DL[RedWine](R),DL[locatedIn](W,L),

DL[locatedIn](R,L),not DL
ˆ
locatedIn(L,L′)

˜
(L).

← v(X), v(Y), X 6= Y. c← v(X). ← not c.

del(W)← DL[hasF lavor](W,wine:Delicate).

del r(W)← v(L), del(W),DL[locatedIn](W,L).

Informally, the first rule picks a largest region in which both red and white
wine grow, and the next three rules make sure that exactly one such region is
picked. The last rules choose the delicate wines in the region selected for visit.

KB has the following 3 strong answer sets (only positive facts from predi-
cates del r and v are listed): {del r(MountadamRiesling), v(AustralianRegion),
. . . }, {del r(LaneTannerPinotNoir), del r(WhitehallLanePrimavera), v(USReg-
ion), . . . }, and {del r(StonleighSauvignonBlanc), v(NewZealandRegion), . . . }.

The example in the introduction shows that cq-programs are more expres-
sive than dl-programs in [5, 2]. Furthermore, answer set existence for KB and
reasoning from the answer sets of KB is decidable if (U)CQ-answering on L is
decidable, which is feasible for quite expressive DLs including SHIQ and frag-
ments of SHOIN , cf. [8–10]. Rosati’s well-known DL+log formalism [11, 1], and
the more expressive hybrid MKNF knowledge bases [12, 13] are closest in spirit
to dl- and cq-programs, since they support nonmonotonic negation and use con-
structions from nonmonotonic logics. However, their expressiveness seems to be
different from dl- and cq-programs. It is reported in [12] that dl-programs (and
hence also cq-programs) can not be captured using MKNF rules. In turn, the
semantics of DL+log inherently involves deciding containment of CQs in UCQs,
which seems to be inexpressible in cq-programs.

3 Rewriting Rules for cq- and ucq-Atoms

As shown in Ex. 1, in cq-programs we might have different choices for defining
the same query. Indeed, the rules r and r′ are equivalent over any DL-KB L.
However, r′ performs the join on the DL side in a single call to the DL-reasoner,
while r performs the join on the logic program side, over the results of two calls
to the DL-reasoner. In general, making more calls is more costly, and thus r′

may be computationally preferable. Furthermore, the result transferred by the
single call in r′ is smaller than the results of the two calls.

Towards exploiting such rewriting, we present some transformation rules for
replacing a rule or a set of rules in a cq-program with another rule or set of rules,
while preserving the semantics of the program (see Table 1). By (repeated) ap-
plication of these rules, the program can be transformed into another, equivalent
program. Note that ordinary dl-atoms DL[λ;Q](~t), may be replaced by equiva-
lent cq-atoms DL[λ;Q(~t)](~X), where ~X = vars(~t), to facilitate rewriting.

Query Pushing (A) By this rule, cq-atoms DL[λ; cq1](~Y1) and DL[λ; cq2](~Y2) in
the body of a rule (A1) can be merged. In rule (A2), cq′1 and cq′2 are constructed

Query Pushing
r : a1 ∨ · · · ∨ ak ←DL[λ; cq1](~Y1),DL[λ; cq2](~Y2), B. (A1)

r′ : a1 ∨ · · · ∨ ak ←DL
ˆ
λ; cq′

1 ∪ cq′
2

˜
(~Y1 ∪ ~Y2), B. (A2)

where B = b1, . . . , bm,not bm+1, . . . ,not bn.

(In)equality Pushing

r : a1 ∨ · · · ∨ ah ←DL[λ; cq](~Y), Yi1 6= Yi2 , . . . , Yi2k−1 6= Yi2k , (B1)

Yi2k+1 = Yi2k+2 , . . . , Yi2l−1 = Yi2l , B.

r′ : a1 ∨ · · · ∨ ah ←DL
ˆ
λ; cq′ ∪

˘
Yi1 6= Yi2 , . . . , Yi2k−1 6= Yi2k

¯˜
(~Y), B. (B2)

where each Yij ∈ ~Y for 1 ≤ j ≤ 2l, and B = b1, . . . , bm,not bm+1, . . . ,not bn.

Fact Pushing

P̄ =


f(~c1), f(~c2), . . . , f(~cl),

a1 ∨ · · · ∨ ak ← DL
ˆ
λ;
Wr

i=1 cqi

˜
(~Y), f(~Y ′), B.

ff
(C1)

P̄ ′ =

(
f(~c1), f(~c2), . . . , f(~cl),

a1 ∨ · · · ∨ ak ← DL
h
λ;
Wr

i=1

“Wl
j=1 cqi ∪ { ~Y ′ = ~cj}

”i
(~Y), B.

)
(C2)

~c1,. . . , ~cl are ground tuples, ~Y ′ ⊆ ~Y , and B = b1, . . . , bm,not bm+1, . . . ,not bn.

Unfolding

P̄ =

(
r1 : a1 ∨ · · · ∨ ai ← a′(~Y), B1.

r2 : H ′ ∨ a′(~Y ′)← B2.

)
(D1)

P̄ ′ = P̄ ∪
˘
r′
1 : H ′θ ∨ a1θ ∨ · · · ∨ aiθ ← B2θ,B1θ.

¯
(D2)

H ′ = a′
1 ∨ · · · ∨ a′

j , and θ is the mgu of a′(~Y) and a′(~Y ′) (thus a′(~Y θ) = a′(~Y ′θ));

Where a′(~Y) is not unifiable with a′(~Z) ∈ H(r1) ∪H ′, alternatively P̄ ′ = {r′
1, r2}.

Table 1. Equivalences

by renaming variables in cq1 and cq2 as follows. Let ~Z1 and ~Z2 be the non-
distinguished (i.e., existential) variables of cq1 resp. cq2. Rename each X ∈ ~Z1

occurring in cq2 and each X ∈ ~Z2 occurring in cq1 to a fresh variable.
Query Pushing can be similarly done when one or both of cq1, cq2 is a UCQ

ucq1 resp. ucq2; here, we simply distribute the subqueries and form a single UCQ.

Pushing of (In)equalities (B) If the DL-engine is used under the unique
name assumption and supports (in)equalities in the query language, we can
easily rewrite rules with equality (=) or inequality (6=) in the body by pushing it
to the cq-query. A rule of form (B1) can be replaced by (B2), where the CQ cq′

results from cq by collapsing variables according to the equalities Yi2k+1 = Yi2k+2 ,
. . . , Yi2l−1 = Yi2l

.
Example 5. Consider rule r = bigwinery(M)← DL[Wine](W1), DL[Wine](W2),
W1 6= W2, DL[hasMaker](W1,M), DL[hasMaker](W2,M). Here, we want to
know all wineries producing at least two different wines. We can rewrite r, by
Query and Inequality Pushing, to the rule r′

r′ : bigwinery(M)←DL
[

Wine(W1),Wine(W2),W1 6= W2

hasMaker(W1,M), hasMaker(W2,M)

]
(M,W1,W2).

A similar rule works for a ucq-atom DL[λ;ucq](~Y) in place of DL[λ; cq](~Y).

Fact Pushing (C) Suppose we have a program with “selection predicates”, i.e.,
facts which serve to select a specific property in a rule. We can push such facts
into a ucq-atom and remove the selection atom from the rule body.

Example 6. Consider the program P , where we only want to know the children
of joe and jill: P = {f(joe), f(jill), fchild(Y)← DL[isFatherOf](X,Y), f(X).}
We may rewrite the program to a more compact one with the help of ucq-atoms:

P ′ =
{

fchild(Y)← DL
[
{isFatherOf (X,Y), X = joe} ∨
{isFatherOf (X,Y), X = jill}

]
(X,Y).

}
Such a rewriting makes sense in situations were isFatherOf has many tuples

and thus would lead to transfer all known father child relationships.

Unfolding (D) Unfolding rules is a standard-method for partial evaluation of
ordinary logic programs under answer set semantics. It can be also applied in
the context of cq-programs, with no special adaptation. After folding rules with
(u)cq-atoms in the body into other rules, subsequent Query Pushing might be
applied. In this way, inference propagation can be shortcut.

The following results state that the rewritings preserve equivalence. Let P ≡L

Q denote that (L,P) and (L,Q) have the same answer sets.

Theorem 1. For an X ∈ {A,B} let r and r′ be rules of form (X1) and (X2),
respectively. Let (L,P) be a cq-program with r∈P . Then, P ≡L (P \ {r})∪{r′}.

Theorem 2. Let P̄ be a set of cq-rules of form (C1) (resp. (D1)) and P̄ ′ be a
set of cq-rules of form (C2) (resp. (D2)). Then, P̄ ≡L P̄ ′. For any set of cq-rules
P such that P̄ ⊆ P , P ≡L (P \ P̄) ∪ P̄ ′, where for (D2) P̄ ′ = {r1, r2, r′1}.

Based on these rules, we have developed an optimization algorithm, described
in the extended version of this paper.5 Further, more general rewriting rules (e.g.,
incorporating cost models) can be conceived, which we omit for space reasons.

4 Experimental Results

We have tested the rule transformations using the prototype implementation of
the DL-plugin for dlvhex,6 a logic programming engine featuring higher-order
syntax and external atoms (see [14]), which uses RACER 1.9 as DL-reasoner (cf.
[15]). To our knowledge, this is currently the only implemented system for such
a coupling of nonmonotonic logic programs and Description Logics.

The tests were done on a P4 3GHz PC with 1GB RAM under Linux 2.6. As
an ontology benchmark, we used the testsuite described in [16]. The experiments
covered particular query rewritings (see Table 2) and version of the region pro-
gram (Ex. 4) with the optimizations applied. We report only part of the results,
shown in Fig. 1. Missing entries mean memory exhaustion during the evaluation.

In most of the tested programs, the performance boost using the aforemen-
tioned optimization techniques was substantial. Due to the size of the respective
5 http://www.kr.tuwien.ac.at/staff/roman/papers/dlopt-ext.pdf
6 http://www.kr.tuwien.ac.at/research/dlvhex/

vicodi program: (Fact Pushing)

Pv = {c(vicodi:Economics), c(vicodi:Social), v(X)← DL[hasCategory](X,Y), c(Y).}

semintec query: (Query Pushing)

Ps2 =


s2(X,Y, Z)← DL[Man](X),DL[isCreditCard](Y,X),DL[Gold](Y),

DL[livesIn](X,Z),DL[Region](Z)

ff
semintec costs: (Query Pushing, Functional Property)

Pl = {l(X,Y)← DL[hasLoan](X,Y),DL[Finished](Y).}
hasLoan is an inverse functional property and |hasLoan| = 682(n + 1), |Finished | =
234(n+ 1), where n is obtained from the ontology instance semintec n.

Table 2. Some test queries

ontologies, in some cases the DL-engine failed to evaluate the original dl-queries,
while the optimized programs did terminate with the correct result.

In detail, for the region program (upper left graph), we used the ontologies
wine 0 through wine 9. There is a significant speedup, and in case of wine 9 only
the optimized program could be evaluated. Most of the computation time was
spent by RACER. We note that the result of the join in the body of the first rule
had a size merely linear in the number of top regions L; a higher performance
gain may be expected for ontologies with larger joins.

The vicodi test series revealed the power of Fact Pushing (see the upper
right graph). While the unoptimized Pv could be evaluated only with vicodi 0
and 1, all ontologies vicodi i, 0≤ i≤ 4, could be handled with the optimized
program.

The semintec tests dealt with Query Pushing and show a significant evalua-
tion speedup (see lower row of Fig. 1). Ps2 is from one of the benchmark queries
in [16], while Pl tests the performance increase when pushing a query to a func-
tional property. In both cases, we used the ontologies semintec i, 0≤ i≤ 4, but
could only complete the tests of the optimized programs on all semintec n. The
performance gain for Pl is in line with the constant join selectivity.

Future work will be to compare to realizations of cq-programs based on other
DL-engines which host CQs, such as Pellet and KAON2, and to enlarge and refine
the rewriting techniques.

References

1. Rosati, R.: Integrating Ontologies and Rules: Semantic and Computational Issues.
In: Reasoning Web. LNCS 4126, Springer (2006) 128–151

2. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with
Rules and Ontologies. In: Reasoning Web. LNCS 4126, Springer (2006) 93–127

3. Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J.,
Patel-Schneider, P.F.: Combining Rules and Ontologies: A survey. Tech. Rep.
IST506779/Linköping/I3-D3/D/PU/a1, Linköping University (2005)

4. Pan, J.Z., Franconi, E., Tessaris, S., Stamou, G., Tzouvaras, V., Serafini, L., Hor-
rocks, I., Glimm, B.: Specification of Coordination of Rule and Ontology Lan-
guages. Project Deliverable D2.5.1, KnowledgeWeb NoE (2004)

 1

 10

 100

 1000

 10000

9876543210

ev
al

ua
tio

n
tim

e
/ s

ec
s

region program (Full Program Optimization)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 0

 10

 20

 30

 40

 50

 60

 70

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

vicodi program (Fact Pushing)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 0

 50

 100

 150

 200

 250

 300

 350

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

semintec query (Query Pushing)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 20

 40

 60

 80

 100

 120

 140

 160

 180

43210
ev

al
ua

tio
n

tim
e

/ s
ec

s

semintec costs (Query Pushing, Functional Property)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

Fig. 1. Evaluation time for Ex. 4, vicodi, and semintec tests.

5. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. In Dubois, D., et al.
eds.: Proceedings KR 2004, Morgan Kaufmann (2004) 141–151

6. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules.
Journal of Web Semantics 3 (2005) 41–60

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

8. Ortiz de la Fuente, M., Calvanese, D., Eiter, T.: Data Complexity of Answering
Unions of Conjunctive Queries in SHIQ. In: Proceedings DL 2006 (2006) 62–73

9. Ortiz de la Fuente, M., Calvanese, D., Eiter, T., Franconi, E.: Characterizing Data
Complexity for Conjunctive Query Answering in Expressive Description Logics.
In: Proceedings AAAI-2006, AAAI Press (2006)

10. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive Query Answering for
the Description Logic SHIQ. In: Proc. IJCAI 2007, AAAI Press (2007) 399–404

11. Rosati, R.: DL+log : Tight Integration of Description Logics and Disjunctive Dat-
alog. In: Proceedings KR 2006, AAAI Press (2006) 68–78

12. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming
live together happily ever after? In: Proceedings ISWC-2006. LNCS 4273, Springer
(2006) 501–514

13. Motik, B., Rosati, R.: A faithful Integration of Description Logics with Logic
Programming. In: Proceedings IJCAI 2007, AAAI Press/IJCAI (2007) 477–482

14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer-Set Programming. In: Pro-
ceedings IJCAI-2005, Professional Book Center (2005) 90–96

15. Haarslev, V., Möller, R.: RACER System Description. In: Proceedings IJCAR-
2001. LNCS 2083, Springer (2001) 701–705

16. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In Hermann, M., Voronkov, A., eds.: LPAR. LNCS
4246, Springer (2006) 227–241

