
Service composition with Partial Goal
Satisfaction?

Luca Sabatucci, Massimo Cossentino, Salvatore Lopes

National Research Council of Italy (CNR)
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Via U. La Malfa, 153, Palermo (Italy)
{[name].[surname]}@icar.cnr.it

http://www.ecos.pa.icar.cnr.it

Abstract. IoT applications are often ad-hoc compositions of services
offered by connected devices that cooperate to satisfy user’s goals. Some-
times, addressing full goal satisfaction is too stringent and replacing that
with an easier to satisfy partial goal satisfaction is a good alternative to
a complete failure. In this paper we propose a service composition ap-
proach that adopts a metrics for measuring the partial satisfaction of
goal. The metrics adopts an electrical analogy extended for dealing with
temporal goals.

1 Introduction

Today, the Internet of Thing (IoT) plays a more and more important role in
our lives. According to a recent report from Cisco, the IoT will consist of 500
billion devices connected to the Internet by 2030. Each device includes sensors
that collect data, interact with the environment, and communicate over a net-
work. IoT applications are built as emerging compositions of devices’ services
according to contingent user’s goals[3]. However, in realistic environments, it is
important to consider scenarios where the full realization of a goal is not always
possible. Service unavailability and lack of resources may hinder the full satis-
faction whereas some parts of the user’s specification could be still achievable
and at least partially satisfy user expectations.

The research topic of partial goal satisfaction yields to overcome the barrier
of utilizing existing planners when boolean satisfaction conditions are too strict.
Researchers study mechanisms for differentiating between optimal and feasible
plans, thus, in case the optimal plan does not exist, the planner may still return
something more than the empty plan. In literature, there are many application
domains that lead to different proposal of partial satisfaction, often depending on
the specific definition of goals. In some domains, variables are continuous, and a
goal is defined as the maximization/minimization of an utility value representing
how much the goal worths for the user. In these cases, partial satisfaction means

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

2 Cossentino et al.

reaching a non-optimal value. This may often happens when reasoning with
incomplete information about the context [8, 7].

In many cases, the goal model is defined as a tree of goals, obtained through
AND/OR decompositions of a root goal. Here, partial satisfaction means relaxing
some of the goals thus to be dealt as weak constraints. In this view, a valid
plan may fulfil only a subset of them. For instance, [2] adopts a cost-sensitive
reachability heuristics by associating benefits to goal satisfaction and costs to
actions. In formal logical approaches, goals are expressed as predicate formulas
(for instance: g = x∧y). Asserting g is partially satisfied requires to re-define the
meaning of the classical implication operator. This approach has been followed
by Zhou et al. [10], in the context of background knowledge, in which they
introduce a family of partial implication operators. In [9] the authors propose an
approach for dealing with goals as a conjunction of states and partial satisfaction
corresponds to the fulfilment of some of these states. Goals are divided in core
goals (representing user’s interests) and context goals (attributes of the previous
ones). The authors provide a way for transforming failed goals into problems
that can be solved by using an AI planner. The problem also arises when goals
are expressed via temporal logic. In [6], authors accept the compromise to violate
the goal for a small time interval in order to obtain a fulfilment later.

In this paper we propose a service composition approach that adopts a met-
rics for measuring the partial satisfaction with respect to temporal goals. Our
idea of partial goal satisfaction has been already stated in [5]. This paper presents
two novelties:

1. The partial goal satisfaction has been exploited in the context of a planner
for service composition: it provides the heuristics for evaluating all the visited
states, thus selecting the most promising for addressing the final goal.

2. The concept of Resistance to Goal Satisfaction is extended to deal with some
temporal operators: Finally and Globally.

The paper is structured as follows: Section 2 presents the framework used for
service composition. Section 3 describes the resistance to goal satisfaction (R2S)
metrics for measuring the partial goal satisfaction of a propositional formula.
Section 4 extends the R2S formulation for the Finally and the Globally operators
by adopting Petri-net models. The final Section 5 reports some conclusions and
future works.

2 Service Composition by Planning

The service composition domain is presented by means of a non-deterministic
state-transition system, namely the World Transition System built for describing
the effects of actions, in order to address a specified goal.

Definition 1 (World Transition System). Given Σ, the alphabet of predi-
cates, and C the set of capabilities, the World Transition System (WTS) is a
tuple WTS =< W,T,R,L > where:

Partial Goal Satisfaction 3

– W ⊆ 2Σ is the set of states of the world
(where w ∈W is a vector of boolean variables, associated to Σ)

– T : W × C →W is the transition relation
– R : W → R is the scoring function
– L : W → {S, F,WS,WF} is the temporal labeling function

A capability c ∈ C represents the non deterministic action associated to a
service. It wraps the service by denoting a precondition (the condition necessary
for executing the service) and a range of possible effects. Each capability effect
describes one possible state evolution W →W due to the service invocation.

In this context, the planning domain is identified by the tupleD =< I,Cav, G >
where:

– wI ∈W is the initial state of the world,
– Cav ⊆ C is a set of capabilities that are available at the time of planning,
– G is a set of goals expressed in linear temporal logic (LTL).

The Linear Temporal Logic (LTL) [4] is often used in software engineering
for the formal specification of goals and system properties [1]. It extends the
propositional logic to model the future by using an infinite sequence of states
that represents discrete moments of time (every state has only one successor).

Definition 2 (Linear Temporal Logic). The LTL goal φ is defined as follows:

φ ≡ p | > | ¬φ | φ ∨ φ | φ ∧ φ | Gφ | Fφ | φUφ | Xφ (1)

where p ∈ Σ are atomic formulas, i.e. simple predicates.

Briefly, LTL formulas are based on propositions and their combination through
logical connectors and temporal operators. While logic connectors can only de-
scribe a static behaviour, limiting their arguments validation to only one state,
temporal operators requires looking at multiple states for their validation. The
basic and derived temporal operators are:

– The X operator (Next) imposes that ϕ will be true in the next state.
– The U operator (Until) states that ϕ will be true in every state until ψ

becomes true and imposes that sooner or later ψ will become true.
– The F operator (Finally, sometimes �) Fφ = >Uφ states that eventually, at

least once, ϕ will be true in a future state.
– The G operator (Globally, sometimes �) Gφ = ¬F¬φ means ϕ must be true

in every state (current and future).

The WTS is non-deterministic because the same capability may be associated
to many world evolutions. In practice, at planning time, these evolutions are
alternative, and the planner must consider all of them. Indeed, the result of the
planning encompasses plans with decision points and loops.

4 Cossentino et al.

Definition 3 (Non-Deterministic Solution). A Non-deterministic Solution
π, is defined inductively as π = c | c · π | π � (π ⊗ π) where c ∈ Cav, · is the
concatenation operator, � is the decision operator and ⊗ is the exclusive or.

Intuitively, a plan π identifies a workflow of actions. The definition of π
includes sequences (classical plans), decision points (non-deterministic plans)
and loops, as shown in Figure 1. Whereas classical planning produces plans
which execution will address the given goal, in this paper, we front a slightly
different problem. We search for plan which execution may not lead to the desired
final state.

Definition 4 (Full/Partial Solution). A plan π may lead to either Full or
Partial satisfaction of the given goal φ:

– π is a full solution when the execution of the plan Exec(π) |= φ;

– otherwise, the plan π is said partial solution.

c1 c2 c3

c1

c2

c3

c1 c2

Fig. 1. The solution of the planner is a workflow. It can incorporate three patterns:
sequences π = c1 · c2 · c3, decision points π = c1 � (c2 ⊗ c3) and loops π = c1 � (π⊗ c3).

The proposed planning algorithm for service-composition with partial goal
satisfaction derives from a best-first search in the state-of-world state.

Partial Goal Satisfaction 5

Data: w0,G,cap set
Result: solutions
Function service composition(w0,G,cap set):

solutions← ∅
WTS ← initialize WTS(w0)
repeat

nodei ← get highest from frontier(WTS)
expansion set← service composition(nodei, cap set)
foreach state ∈ expansion set do

state.token← check LTL(state, goal, nodei)
if state.token = SUCCESS then

solutions← search solutions(WTS, state)
else

score← evaluate partial sat(state, token)
WTS ← update WTS(WTS, state, token, score)

end

end

until size(solutions) ≤MAX SOL and size(WTS) ≤MAX SPACE
partial solutions← search partial(WTS)
sort(partial solutions)

End Function

Algorithm 1: Planning Algorithm for Service Composition with Partial Goal
Satisfaction

Algorithm 1 iteratively builds a WTS, starting from the initial state w0. At
each step the algorithm looks at the frontier (the nodes that are not yet visited)
and it expands the most promising node by using the applicable capabilities.
The preference on the node to be selected for the expansion is evaluated using
some user heuristic. In this planning algorithm, temporal aspects are useful for
determining full and partial solutions. Each node is marked with four types of
temporal markers: full success (S), total failure (F), partial success (WA) and
partial failure (WF). These are explained in details in Section 4.

Indeed, π ⊂ WTS is a full solution when it starts from the initial state
w0, it does not contain any Failure state, and all the subpaths terminate in a
Success state (loops are valid if they have an exit condition towards a Success
state). Typically the algorithm terminates when a sufficient number of full so-
lutions are discovered. However, it may be the case that such solutions do not
exist. In this case the algorithm terminates when the WTS size is over a given
threshold1. When the algorithm terminates, we explore the WTS for extracting
partial solutions. π ⊂WTS is a partial solution when the initial state is w0, but
(differently from full solutions) it can contain some Failure states, and subpath
that terminates in a partial success state (WS) are allowed. Clearly, not all the
partial solutions are equally acceptable. We defined a metrics for ordering them
according to a “Distance to Goal Satisfaction”. This metrics will be discussed in
details later, in subsection 3.1.

3 Measuring the Distance to Satisfaction

A goal is a logical formula composed by propositional variables, logical connec-
tives and temporal operators, as seen in Section 2.

1 Alternatively, Algorithm 1 may terminate after a given time interval.

6 Cossentino et al.

An example of goal may be the specification of the status of some traffic
lights and direction signals for speeding up the evacuation of inhabitants in a
city district in case of an emergency.

In our study we consider the possibility that some of the goal conditions
cannot be achieved by the system itself without the intervention of the user. For
instance, some traffic direction signals may not be activated by a remote system
and therefore a human being has to correctly deploy them.

3.1 The R2S Metrics for the Propositional Logic

In some situations, goals cannot be achieved even involving the human in their
pursuit. Therefore we explicitly consider the possibility to finish our solution
planning activity with a Not(Goal) condition that means the intended goal for-
mula has not been verified. Usually, by employing the available services in one
of the studied plans, the system may reach states where some of the variables
composing the goal formula are satisfied. We call these Partial Solution States
and, the problem becomes to find a metrics for selecting the best partial solution
state. Even a state where none of the propositional variables in the goal formula
is verified may be seen as a partial solution state, of course that would be the
least preferable one.

In considering what metrics could be useful for evaluating the goodness of
a partial solution state, we could refer to contributions from literature like [9]
but we now prefer states that are in a strategic position (in the solution space)
for reaching the full satisfaction. This may be a little different from preferring a
state that maximizes some kind of utility (or quality of service) function since
the latter would be a good state for an indefinite positioning of the systems but it
could also not be a well-suited state for later achieving the full goal satisfaction.

Going back to the example of traffic lights and direction signals, suppose
the best evacuation route may not entirely ruled by traffic lights and direction
signals because one turn at a specific point is not provided with any remote-
controlled device. Two options of partial satisfaction may be pursued: in the
first the system chooses an alternative (sub-optimal) route, in the second the
system activates the best route and warns the user of the lack of a signal in a
specific location. A police unit may be dispatched to solve that in order to obtain
the full satisfaction. Which of the two solutions is preferable strongly depends
on the problem and on the specific emergency (system status). For this reason,
in many applications we suggest leaving the final decision to the human. It is
worth noting that adopting the first option (good state for staying in a partial
solution situation) may bring the system far from a state the ensures a viable
solution at the next step (for instance with a human intervention).

In order to measure the distance of a state in the solution space from the
desired goal we introduce the following definition [5]:

Definition 5 (Distance to Goal Satisfaction). The Distance to Goal Sat-
isfaction (DGS) of a state, in the world-state space, is the distance –in terms
of the number of variables to be changed, and the degree of freedom in changing
them– of this state towards the nearest one that satisfies the goal.

Partial Goal Satisfaction 7

According to this informal definition, the Distance to Goal Satisfaction de-
pends on two factors:

– The number of variables to be changed: this is the minimum number of
propositional variables in the goal formula that have to change their value
in order to fully satisfy the goal.

– The degree of freedom: sometimes the goal formula may be satisfied by
changing the value of n variables chosen among m candidate variables (with
m>n). An obvious case for this situation is represented by the OR condition
where it is possible to verify the OR formula by changing to true the value
of one of the two variables.

Intuitively we may justify this approach by saying that the more variables
it is necessary to change in order to satisfy the goal, the more the point in the
solution space is far from the point representing the goal. Indeed, this is not
sufficient in the proposed approach: two different points with the same number
of required changes have different proximity to the goal if one of them offers the
possibility to choose the variables to be changed in a large number of options.

In order to operationalize the estimation of the Distance to Goal Satisfac-
tion, we introduce a metrics, called Resistance to Goal Satisfaction that adopts
an electric analogy for deducing an electric circuit from the goal formula. The
equivalent resistance offered by this circuit will be considered as an estimator of
the distance to goal satisfaction.

3.2 Electrical Analogy: from Goal Formula to Equivalent Circuit

The transformation of the goal formula to the equivalent circuit is based on some
simple rules:

– Each logic variable of the goal formula is represented by a resistor in the
equivalent circuit.

– The value of each resistor depends on the value of the logic variable. If that
is true, the value will be Rmin, otherwise it will be Rmax. Such values are
chosen very different in magnitude, ideally they would be Rmin= 0 (short
circuit) for the true variable, Rmax= ∞ (open circuit) for the false variable
but this would create problems in calculating the equivalent resistance for
some circuits.

– Each AND operator corresponds to the series connection of the resistors
representing the variables in the AND conjunction.

– Each OR operator corresponds to the parallel connection of the resistors
representing the variables in the OR disjunction.

– Each NOT operator corresponds to inverting the value of the resistor repre-
senting the negated variable (if the variable is true, the corresponding resistor
value is Rmax and so on).

This analogy allows calculating R2S of propositional formulas, as shown in
Algorithm 2.

8 Cossentino et al.

Data: φ,wi,R = {RA, RB , ...}
Result: R2S(φ)
Function r2s(φ,wi,R = {RA, RB , ...}):

case φ = p is a predicate do
if wi |= p then

return Rp

else
return 1/Rp

end

case φ = α ∧ β do
return R2S(α) + R2S(β)

case φ = α ∨ β do
return 1/(1/R2S(α) + 1/R2S(β))

case φ = ¬α do
return 1/R2S(α)

end
End Function

Algorithm 2: Function for calculating the R2S of propositional formulas.

It is worth to note that different values may be chosen for the resistance
representing each propositional variable. This would correspond to considering
a different relevance for the variable in the goal formula. We are not studying
this case since it would bind the R2S to the domain and we prefer to maintain
that as general as possible.

Property 1 (De Morgan’s Laws). The R2S metrics is valid with respect the fol-
lowing transformations:

R2S(¬(A ∪B)) = R2S(¬A ∩ ¬B) and
R2S(¬(A ∩B)) = R2S(¬A ∪ ¬B).

also known as De Morgan’s Laws.

This property may be easily verified by applying the above reported algo-
rithm. Now, let us suppose we want to study the following goal formula:

G = (A ∧ B) ∨ C

According to the proposed transformation rules, the equivalent circuit and
the equivalent resistance R2S would be the ones represented in Fig. 2.

Fig. 2. The equivalent circuit and the corresponding equivalent resistance R2S

The goal G will be verified for five conditions of the A,B,C variables as
reported in the table in Fig.3.

The columns of the table reports: the values of A,B,C, the corresponding
value of the goal G, the minimum number of variable changes that are necessary

Partial Goal Satisfaction 9

Fig. 3. Values of R2S for the different conditions of the A,B,C variables

in order to satisfy G, the degree of freedom in variable changes, the resistance
to satisfaction R2S.
Three different conditions do not verify the goal, they are: (0,0,0), (0,1,0), (1,0,0).
The aim of the proposed metrics is to estimate which one would be the best
choice for our planner. By adopting the equivalent resistance formula reported
in Fig.2, and supposing we adopt the value RX for Rmax and the value Rm
for Rmin where the previous one is several orders of magnitude bigger than the
second one (RX >> Rm) we obtain the following result for the R2S for the
condition (0,0,0):

R2S(0, 0, 0) =
(RA +RB)RC
RA +RB +RC

=
(RX +RX)RX
RX +RX +RX

=
2

3
RX (2)

While the R2S for the condition (0,1,0) is:

R2S(0, 1, 0) =
(RA +RB)RC
RA +RB +RC

=
(RX +Rm)RX
RX +Rm +RX

≈ 1

2
RX (3)

The R2S for the last condition of partial goal satisfaction (1,0,0) may be
easily calculated as the previous one (with the same result).

Finally, in order to verify the result provided by the proposed approach in
case of full goal satisfaction, we can calculate the R2S for the (0,0,1) condition:

R2S(0, 0, 1) =
(RA +RB)RC
RA +RB +RC

=
(RX +RX)Rm
RX +RX +Rm

≈ Rm ≈ 0 (4)

As it can be seen, the proposed metrics successfully discriminate among con-
ditions where the same number of variable changes are needed but different
degrees of freedom are available. In fact while all the conditions (0,0,0), (0,1,0),
and (1,0,0) need one variable change to satisfy G, only the last two ones allow to
achieve that by choosing the one variable between two options. Corresponding
values of R2S are minor in the last situation thus proposing to the planner to
firstly explore points of the solution space that have this value.

10 Cossentino et al.

4 Petri-Nets for Temporal Operators

The proposed approach uses an extended notation of a Petri-net where places and
transitions are semantically annotated. Due to the lack of space, this section only
aims at giving an informal idea of the approach. In semantically annotated Petri-
nets, transitions may be annotated with propositional conditions. The annotated
transition fires iff (if and only if) all the input places contain a token and the
current state-of-the-world satisfies the condition. At every discrete time instant
only 1 transition may fire, and the choice depends on the current state of the
world.

In addition, Places may be associated to a “success indicator” and to a R2S
value. The “success indicator” may be:

– Accepting (A) meaning that the goal is fully addressed; an example is given
when φ = Fa and the current state satisfies ‘a’.

– Waiting, but Accepted (WA) in which the goal is not totally addressed but
there are not violations. Consequently, if the system terminates, it concludes
with an acceptance. An example occurs when the goal is φ = Ga and the
path always satisfies ‘a’: we can never conclude with a success until the
system terminates (because future events may lead to violations).

– Failure (F) meaning that a violation of the goal happened. An example is
given with φ = Ga and ‘¬a’ occurs.

– Waiting, but Failure (WF) in which the goal is not yet addressed and if the
system terminates, it concludes with a failure. An example is given when
φ = Fa and ‘a’ has not yet happened.

Each LTL operator (X,U, F,G) may be translated into an annotated petri-
net model with an initial token configuration. In the following we discuss only
two of the most frequent cases, just to give a preliminary idea of the approach.

4.1 Finally

The Finally operator prescribes a condition will eventually hold. In a finite tran-
sition system, the condition must hold after a finite time instant. Until the con-
dition does not hold, the system Wait (with Failure) to eventually move towards
an Accepting state. Figure 4 shows a Petri-net with these two annotated places.
In addition, there is a special counter place in which, at each step where the
condition does not hold, a new token is accumulated: the number of tokens mea-
sures how long the system stays in the WF state. At each time instant, the state
may be Waiting, but Failure or Accepting, and the R2S may be, respectively,
calculated as R2S = f(n)Ra or 1/Ra.

When in state WF, the resistance to goal increases with the number of tokens
in the counter place, thus modeling the urgency of reaching the Accepting state.
The f(n) function may be chosen according to the specific domain of application.
On the right side of Figure 4 the f(n) function is drawn as linear, however other
kinds of dependency may be modelled (exponential, logarithmic) as well.

Partial Goal Satisfaction 11

¬a

a Fa

WF

A
R2S=f(n)Ra

R2S=1/Ra

n = num of tokens

f(n)Ra

R2S

n

Fig. 4. Petri-Net pattern for the Finally operator.

4.2 Globally

The globally operator is generally used to represent safety properties, i.e. condi-
tion that must always hold (or undesired properties that must never happen). A
finite transition system must continuously positively verify the condition (within
a finite time instant) or conclude with a Failure. Figure 5 shows a petri-nets
with a Waiting, but Accepted place and Failure place. Again, there is a special
counter place in which, at each step where the condition holds, a new token is
accumulated: the number of tokens measures how long the petri-net stays in
the WF state. At each time instant, R2S may be, respectively, calculated as
R2S = g(n)Rb until the condition holds or Rmax after a failure.

a

Gb ¬a

WA

FR2S=g(n)Rb

R2S=Rmax

n = num of tokens

g(n)Rb

R2S

n

Fig. 5. Petri-Net pattern for the Globally operator.

When in state WA, the resistance to goal decreases with the number of tokens
in the counter place, thus modeling the cumulative probability to remain in a
safe state. In this case too, the g(n) function may be linear as on the right side
of Figure 4 or exponential, logarithmic, according to specific needs.

Algorithm 3 describes the function evaluate partial sat, used during the plan-
ning (see Figure 1).

Data: wi,PN
Result: R2S
Function evaluate partial sat(wi,PN):

update tokens(PN,wi)
return Rarray ← getR2S from place with token(PN)

End Function

Algorithm 3: Algorithm for the evaluation of Partial Satisfaction with tem-
poral formulas.

12 Cossentino et al.

Every time the planner generates a new state, it invokes Algorithm 3. First
step: the update tokens function checks for all the formula petri-nets for acti-
vating transitions’ firing. Second step: the getR2S places with tokens function
explores all the semantic places (A, WA, WF, F) and, for each of them, calcu-
lates the corresponding R2S. Finally, Algorithm 3 sums the resulting array of
R2S; the result representes the effort yet to do for moving towards an accepting
final state.

5 Conclusions

This paper has presented a service composition algorithm that is based on a
best-first state search approach. The heuristic we adopted is the R2S, i.e. the
resistance to satisfaction, inspired to an electrical analogy, in which the effort to
spend for moving from the current state towards the final state is represented
as a resistor. The temporal extension encompasses some Petri-Net patterns that
provides variable resistances that increase/decrease with the time, thus rendering
the urgency to reach the goal, or the risk to leave a safe property.

References

1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

2. Benton, J., Do, M., Kambhampati, S.: Anytime heuristic search for partial satis-
faction planning. Artificial Intelligence 173(5-6), 562–592 (2009)

3. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: A devel-
opment approach for collective opportunistic edge-of-things services. Information
Sciences 498, 154–169 (2019)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 8(2), 244–263 (1986)

5. Cossentino M., Sabatucci L. and Lopes S.: Partial and full goal satisfaction in the
musa middleware. In: Multi-Agent Systems - Prof. of the European Conference on
Multi-Agent Systems (EUMAS) 2018. Lecture Notes in Computer Science book
series (LNCS), vol. 11450, pp. 15–29. Springer (2018)

6. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L.E., Vardi, M.Y.: This time the
robot settles for a cost: A quantitative approach to temporal logic planning with
partial satisfaction. In: Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015)

7. Lakner, P.: Utility maximization with partial information. Stochastic processes and
their applications 56(2), 247–273 (1995)

8. Mania, M., Santacroce, M.: Exponential utility maximization under partial infor-
mation. Finance and Stochastics 14(3), 419–448 (2010)

9. Vukovic, M., Robinson, P.: Goalmorph: Partial goal satisfaction for flexible service
composition. In: Next Generation Web Services Practices, 2005. NWeSP 2005.
International Conference on. pp. 6–pp. IEEE (2005)

Partial Goal Satisfaction 13

10. Zhou, Y., Van Der Torre, L., Zhang, Y.: Partial goal satisfaction and goal change:
weak and strong partial implication, logical properties, complexity. In: Proceedings
of the 7th international joint conference on Autonomous agents and multiagent
systems-Volume 1. pp. 413–420. International Foundation for Autonomous Agents
and Multiagent Systems (2008)

