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Abstract. We present our ongoing work on the election control problem
via social influence. We consider the problem of exploiting social influence
in a network of voters to change their opinion about a target candidate
with the aim of increasing his chance to win or lose the election.
We introduce the Linear Threshold Ranking and the Probabilistic Lin-
ear Threshold Rankings, natural and powerful extensions of the well-
established Linear Threshold Model. In both models we are able to max-
imize the score of a target candidate by showing submodularity. We
exploit such property to provide a constant factor approximation algo-
rithm for the constructive and destructive election control problems.
We outline some further research directions which we are investigating.
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1 Introduction

Recently, there has been a growing interest in the relationship between social
networks and political campaigning. Political campaigns nowadays use social
networks to lead elections in their favor, e.g., by spreading fake news on the elec-
tions outcome [13]. There exists evidence of political intervention which shows
the effect of social media manipulation. A real-life example is in the recent pres-
idential US election where a study on the effect of social media on people shows
that in average 92% percent of American remembered the pro-Trump fake news,
and 23% percent of them remembered the pro-Clinton fake news [1]. Many other
real-life examples have been recorded and studied [3, 8, 10, 14].

There exists an extensive literature on manipulating elections without consid-
ering the underlying social network structure of the voters; we point the reader
to a recent survey [7]. Nevertheless, there are only few studies that exploit opin-
ion diffusion in social networks to change the outcome of elections. Independent
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Cascade Model (ICM) [9] has been considered as diffusion process in the problem
of constructive/destructive election control [15], that consists in changing voters’
opinions with the aim of maximizing/minimizing the margin of victory of tar-
get candidate w.r.t. its most voted opponent. A variant of the Linear Threshold
Model (LTM) [9] with weights on the vertices has been considered on a graph in
which each node represents a cluster of voters with a specific list of candidates
and there is an edge between two nodes if they differ by the ordering of a single
pair of adjacent candidates [6].

In this work we focus on the election control problem via social influence,
introduced in [15]: Given a social network of voters, we want to select a subset
of voters that, with their influence, will change the opinion of the network’s
users about a target candidate, maximizing its chances to win/lose. As in [15],
we consider the scenario in which only the opinions about a single candidate
can be changed, simulating the spread of a single news among the users of the
network. With this aim we start by defining a model in which the preference list
of each voter is known [4, 5]. However, this assumption is not always satisfied
in a realistic scenario as voters can be undecided on their preferences or they
may not reveal them to the manipulator. Thus, we extend this model to design
a scenario in which the manipulator can only guess a probability distribution
over the candidates for each voter [11]. We consider LTM as diffusion model to
take into account the degree of influence that voters exercise on the others to
describe the scenario in which a high influence on someone can radically change
its opinion. Wilder et al. [15] studied a scenario in which a voter can only change
the position of the target candidate in its ranking by one position, regardless of
the amount of influence received, using ICM under plurality rule.

In this paper we report our ongoing research on which we wish to get feedback
so as to possibly include these results in future publications. We point interested
reader to our preliminary published results in [11, 4, 5].

2 Background

Voting Systems are sets of rules that regulate all aspects of elections and de-
termine their outcome. Herein we consider two single-winner voting systems:
(i) Plurality rule: Each voter can only express a single preference among the
candidates; the winner is the candidate with the highest number of votes. (ii)
Scoring rule: Each voter expresses his preference as a ranking ; each candidate
is then assigned a score, computed as a function of its position in the ranking.
This is a general definition that include several election methods by choosing an
adequate scoring function: (a) plurality rule: 1 point to the first candidate and 0
to the others; (b) t-approval : 1 point to the first t candidates and 0 to the others
(each voter approves t candidates); (c) borda count : m− l points to a candidate
in position l, with m the number of candidates.

Influence Maximization is the problem of finding a subset of nodes in a graph
that maximizes the spread of information. In this work we focus on the diffusion
model known as Linear Threshold Model (LTM) [9]. Given a graph G = (V,E),
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in LTM each node v ∈ V has a threshold tv ∈ [0, 1] sampled independently
and uniformly at random and each edge (u, v) ∈ E has a weight buv ∈ [0, 1]
such that

∑
(u,v)∈E buv ≤ 1. Each node can be either active, that is it spreads

the information, or inactive. Let At ⊆ V be the set of active nodes at time t,
where A0 is the set of active nodes at the beginning of the process. A node v
becomes active if the sum of the weights of the incoming edges from active nodes
is greater than or equal to its threshold, i.e., v ∈ At if and only if v ∈ At−1 or∑

u∈At−1:(u,v)∈E buv ≥ tv. We define the eventual set of active nodes as A := At̃,

where t̃ is the first time in which the set of active nodes does not change anymore,
i.e., At̃ = At̃+1. Given a budget B, the influence maximization problem consists
in finding a set of nodes A0 of size at most B such that E [|A|] is maximum.

A central result is that the distribution of A, starting from any set A0,
is equivalent to the distribution of reachable nodes in the set of random sub-
graphs called live-edge graphs [9]. In a live-edge graph each node v has at most
one incoming edge: Each incoming edge (u, v) is sampled with probability pro-
portional to its weight buv and no incoming edge is sampled with probability
1−

∑
u∈V :(u,v)∈E buv. The result states that the influence maximization problem

in live-edge graphs is monotone and submodular ;1 hence, it can be approximated
to a factor of 1 − 1/e using a simple hill-climbing greedy algorithm [12]. While
it is #P -hard to compute the expected number of active nodes, there exists a
simulation-based approach in which the spread of influence can be evaluated by
sampling a polynomial number of live-edges [9, Proposition 4.1].

3 Models and Algorithms for Election Control

We present two models for the election control problem, both a variant of the
Linear Threshold Model. At the end of LTM, we modify the lists of preference
of voters according to some predefined rules. We represent the underlying social
network as a directed graph G = (V,E). Let C = {c1, . . . , cm} be the set of
m candidates; we refer to our target candidate, i.e., the one that we want to
make win/lose the elections, as c?. Each voter v ∈ V has a list of preferences for
the elections represented as a function πv : C → R. Then, we define the initial
expected score of a candidate ci as the number of votes that ci obtains from the
voters before the process starts, that is, F (ci, ∅) :=

∑
v∈V πv(ci), and the expected

score of a candidate ci at the end of the process as F (ci, S) :=
∑

v∈V π̃v(ci),
where S is the set of seed nodes.

In the problem of election control we want to maximize the chances of the
target candidate to win/lose the elections. To achieve that, we maximize its
expected Margin of Victory (MoV). As in [15], we define MoV(S) as the expected
increase of the difference between the score of c? and that of its most voted
opponent. Formally, if c and ĉ are respectively the candidates different from c?
with the highest score before and after the LTM process, the MoV is

MoV(S) := F (c, ∅)− F (c?, ∅)− (F (ĉ, S)− F (c?, S)) .

1 For a ground set N , a function z : 2N → R is submodular if for any S, T s.t.
S ⊆ T ⊆ N and ∀e ∈ N \ T it holds that z(S ∪ {e})− z(S) ≥ z(T ∪ {e})− z(T ).
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Given a budget B, the election control problem asks to find an initial set of
seed nodes S, of size at most B, that maximizes the MoV, i.e.,

arg maxS MoV(S) s.t. |S| ≤ B.

3.1 Linear Threshold Ranking

We first introduce a deterministic model called Linear Threshold Ranking (LTR),
based on LTM, that takes into account the degree of influence that voters exer-
cise on each other. As in LTM, each node v ∈ V has a threshold tv ∈ [0, 1]; each
edge (u, v) ∈ E has a weight buv with the constraint that

∑
u:(u,v)∈E buv ≤ 1.

Moreover, each node v has a permutation πv of C, i.e., its list of preferences
for the elections; in this case πv(ci) denote the position of candidate ci in the
preference list of node v. After the LTM process stops, i.e., no more nodes are
being activated, the position of c? in the preference list of each node changes
according to a function of its incoming active neighbors. Let A be the set of
active nodes at the end of LTM. The threshold tv of each node v ∈ V models its
strength in retaining its original opinion about candidate c?: The higher is the
threshold the lower is the probability that v is influenced by its neighbors. The
weight of an edge buv measures the influence that node u has on node v. The
new position of c? after the process will be

π̃v(c?) := πv(c?)−min
(
πv(c?)− 1,

⌊
α(πv(c?))

tv

∑
u∈A, (u,v)∈E buv

⌋)
,

where α : {1, . . . ,m} → [0, 1] is a function that depends on the position of c?
in πv and models the rate at which c? shifts up; the candidates overtaken by c?
will shift one position down. In this general model we are able to approximate
the maximum score that c? can achieve up to a factor of 1−1/e through the use
of Greedy, a greedy algorithm that iteratively selects the node that maximizes
the increment in score [12]. We exploit this fact to provide the following results.

Theorem 1. Greedy gives a 1
3 (1 − 1/e)-approximation for the constructive

and a 1
2 (1− 1/e)-approximation for the destructive election control problems in

arbitrary scoring rule voting systems, under the LTR model.

3.2 Probabilistic Linear Threshold Rankings

In this section we extend the previous model and consider a non-deterministic
scenario in which we take into account the inherent uncertainty of a voter and
we model its decision as a probabilistic function over the list of candidates. Each
node v ∈ V has a probability distribution over the candidates πv; here πv(ci)
denotes the probability that v votes for candidate ci; then for each v ∈ V we
have that πv(ci) ≥ 0 for each candidate ci and

∑m
i=1 πv(ci) = 1. We focus on the

plurality voting rule. Given an initial set of seed nodes S, the diffusion process
proceeds as in LTM; then, at the end of the process, active nodes increase their
probability of voting for the target candidate by adding the influence coming
from the active neighbors and then by normalizing to have again a probability
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distribution. Formally, for each node v ∈ A, where A is the set of active nodes
at the end of LTM, the preference list πv changes as follows:

π̃v(c?) =
πv(c?) +

∑
u∈A∩Ni

v
buv

1 +
∑
u∈A∩Ni

v
buv

, and π̃v(ci) =
πv(ci)

1 +
∑
u∈A∩Ni

v
buv

, ∀ci 6= c?, (1)

where N i
v denote the sets of incoming neighbors for a node v ∈ V . All inactive

nodes v ∈ V \ A will have π̃v(ci) = πv(ci) for all candidates, including c?. We
call this process Probabilistic Linear Threshold Ranking (PLTR).

For this model, we show that the election control problem is hard to approx-
imate to within a polynomial fraction of the optimum through a reduction from
Densest-k-Subgraph problem, hard to approximate within any constant factor.
However, we are able to show that a small relaxation of the model allows us
to give a constant factor approximation algorithm. We call this model Relaxed
PLTR (R-PLTR), here, the probability distribution of a node is updated if it has
at least an active incoming neighbor, also if the node is not active itself: Every
node v ∈ V updates its probability distribution according to (1) and not just
every node v ∈ A as in PLTR. The rationale is that a voter might slightly change
its opinion about the target candidate if it receives some influence from its ac-
tive incoming neighbors even if the received influence is not enough to activate it
(thus making it propagate the information to its outgoing neighbors). Therefore,
we include this small amount of influence in the objective function. The election
control problem in R-PLTR is still NP -hard; however, adapting Greedy for the
weighted-LTM case, we are able to guarantee a constant factor approximation
ratio in this setting for both the constructive and destructive scenarios.

Theorem 2. Greedy gives a 1
6 (1 − 1/e)-approximation for the constructive

and a 1
4 (1− 1/e)-approximation for the destructive election control problems in

the plurality rule voting system, under the R-PLTR model.

4 Future Research

We presented our ongoing work on the problem of controlling elections through
social influence: Given a social network of voters, we want to select a subset
of them that, influencing the others about a specific candidate, will make him
win/lose the elections. We introduced Linear Threshold Ranking and the Proba-
bilistic Linear Threshold Rankings, models that describe the change of opinions
taking into account the amount of exercised influence, and two greedy algo-
rithms with constant factor approximation to the problems of constructive and
destructive election control in the model. As future research directions we would
like to study our model in scenarios which are not currently captured, including
multi-winner and proportional representation systems. It is also worth to ana-
lyze approaches that mix constructive and destructive control. Finally, it would
be interesting to study how to prevent election control for the integrity of voting
processes, e.g., through the placement of monitors in the network [2, 18] or by
considering strategic settings [16, 17].
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