
Modeling Imperative Constructs
in the Pi-Calculus?

Daniel Hirschkoff1, Enguerrand Prebet1, and Davide Sangiorgi2

1 École Normale Supérieure de Lyon, France
2 Università di Bologna, Italy, and INRIA

Abstract. We describe an extension of the pi-calculus with primitive
operations to manipulate an imperative store. We study how this ex-
tended calculus can be encoded into the pi-calculus. This leads to the
definition of a pi-calculus with location names, for which we present a
behavioural equivalence. We show the full abstraction for the encoding
and we analyse several variants of the encoding and of the bisimulation.

We study the representation of imperative constructs in the π-calculus. The
intent of this study is to provide a building block for a framework to reason about
rich programming languages, like, e.g., ML, where higher-order functions are
combined with imperative aspects. In order to handle such languages, we plan
to combine the results of this work with existing approaches to reason about
higher-order functions in the π-calculus [6, 9, 2]. Because of its expressiveness,
the π-calculus can be used as a target language in which rich programming
languages can be translated. We can then benefit from the powerful techniques
available to reason about π-calculus processes in order to establish equivalences
between programs in the source language.

Equivalences between higher-order functional languages with state are known
to be hard to establish. Several kinds of approaches, like Kripke logical relations
or trace semantics [4, 5] have been investigated to prove such equivalences. There
also exists a rich literature on game semantics to represent and analyse program
execution [7, 1]. The operational approach, as put forward using the π-calculus,
can serve as a complement to the “operational/denotational” point of view pro-
moted by game semantics to reason about high-level languages.

In the present work, we analyse a simple representation of references in the
Asynchronous π-calculus [3]. Processes are equipped with a store, which can be
accessed and modified using standard operations of allocation, read and write.
This defines our source calculus, called πref. For example, the πref process x←
`.a〈x〉 reads the value which is in location ` of the store, and then emits it along
channel a (x← ` is the construct for reading the store at `, and a〈x〉 represents
the emission of x on channel a).

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)



2 Daniel Hirschkoff, Enguerrand Prebet, and Davide Sangiorgi

The encoding is somehow standard, but has not been studied per se until
now, as far as we know — it is different, in particular, from the encoding studied
in [8]. A location (or reference) in the store contains a name, which can be either
a π-calculus channel, or a location. In the encoding, a message l〈m〉 represents
a location ` containing name m. Reading and updating the location is achieved
using a simple protocol: for instance, `(x).(`〈x〉 | P ) is the process that reads
the content of ` and then proceeds as P , where x is bound in P . Accordingly,
the process x← `.a〈x〉 seen above is encoded as `(x).(`〈x〉 | a〈x〉).

The target of the encoding is therefore the Asynchronous π-calculus with a
distinct notion of location names, a calculus we call π`. In order to analyse this
language, we introduce a type system to capture the usage of location names. We
also present a notion of bisimilarity, whose definition is rather sophisticated. We
show that this equivalence is fully abstract with respect to barbed congruence
in πref, the source language. Thus, reasoning via the encoding into π` can be
seen as a proof technique to establish equivalences between πref programs.

We now provide some intuitions about why the bisimulation in π` is not
standard. If we consider processes

P = `(x).(`〈x〉 | c〈d〉) and Q = c〈d〉 ,

which are the π-calculus translations of, respectively,

x← `.c〈d〉 and c〈d〉 ,

we may ask ourselves whether P and Q should be equivalent. They are not in the
asynchronous π-calculus, even for asynchronous bisimilarity, because the output
at c is guarded by the input at ` in P .

If we want to take into account the fact that ` stands for a location (or an
address), we have two possibilities: either deem P and Q inequivalent, because
P tries to access an unallocated address, and thus crashes before being able to
output at c; or impose that behavioural equivalence should consider that a store
is always available, in which case P and Q are behaviourally equal, because the
reading performed by P has no influence on its behaviour. In the present work,
we choose the latter option.

The starting point of our study is barbed congruence for πref configurations,
which consist in a process and a store (with some private names shared between
the process and the store). We provide a coinductive characterisation of this
relation, which we call closing equivalence. Based on our encoding from πref into
π`, we introduce a notion of typing, and define a notion of closing bisimilarity in
π`, which is fully abstract w.r.t. its counterpart in πref. We also study to what
extent the standard notion of asynchronous bisimilarity can be used to reason
about πref configurations.

References

1. Castellan, S., Clairambault, P., Hayman, J., Winskel, G.: Non-angelic concurrent
game semantics. In: Baier, C., Lago, U.D. (eds.) Foundations of Software Science and



Modeling Imperative Constructs in the Pi-Calculus 3

Computation Structures - 21st International Conference, FOSSACS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 10803, pp. 3–19. Springer (2018). https://doi.org/10.1007/978-
3-319-89366-2 1, https://doi.org/10.1007/978-3-319-89366-2 1

2. Durier, A., Hirschkoff, D., Sangiorgi, D.: Eager functions as processes. In:
Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-
12, 2018. pp. 364–373. ACM (2018). https://doi.org/10.1145/3209108.3209152,
https://doi.org/10.1145/3209108.3209152

3. Honda, K., Tokoro, M.: An object calculus for asynchronous communica-
tion. In: America, P. (ed.) ECOOP’91 European Conference on Object-
Oriented Programming, Geneva, Switzerland, July 15-19, 1991, Proceedings.
Lecture Notes in Computer Science, vol. 512, pp. 133–147. Springer (1991).
https://doi.org/10.1007/BFb0057019, https://doi.org/10.1007/BFb0057019

4. Hur, C., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimula-
tions and kripke logical relations. In: Field, J., Hicks, M. (eds.) Proceed-
ings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012. pp. 59–72. ACM (2012). https://doi.org/10.1145/2103656.2103666,
https://doi.org/10.1145/2103656.2103666

5. Jaber, G., Tzevelekos, N.: Trace semantics for polymorphic references. In: Grohe,
M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016. pp. 585–594. ACM (2016). https://doi.org/10.1145/2933575.2934509,
https://doi.org/10.1145/2933575.2934509

6. Milner, R.: Functions as processes. In: Paterson, M. (ed.) Automata, Languages
and Programming, 17th International Colloquium, ICALP90, Warwick Univer-
sity, England, July 16-20, 1990, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 443, pp. 167–180. Springer (1990). https://doi.org/10.1007/BFb0032030,
https://doi.org/10.1007/BFb0032030

7. Murawski, A.S., Tzevelekos, N.: Full abstraction for reduced ML. Ann. Pure
Appl. Logic 164(11), 1118–1143 (2013). https://doi.org/10.1016/j.apal.2013.05.007,
https://doi.org/10.1016/j.apal.2013.05.007

8. Röckl, C., Sangiorgi, D.: A pi-calculus process semantics of concurrent idealised
ALGOL. In: Thomas, W. (ed.) Foundations of Software Science and Computation
Structure, Second International Conference, FoSSaCS’99, Held as Part of the Euro-
pean Joint Conferences on the Theory and Practice of Software, ETAPS’99, Ams-
terdam, The Netherlands, March 22-28, 1999, Proceedings. Lecture Notes in Com-
puter Science, vol. 1578, pp. 306–321. Springer (1999). https://doi.org/10.1007/3-
540-49019-1 21, https://doi.org/10.1007/3-540-49019-1 21

9. Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Inf.
Comput. 111(1), 120–153 (1994). https://doi.org/10.1006/inco.1994.1042,
https://doi.org/10.1006/inco.1994.1042


