Intersection Types for the Computational λ-Calculus

Extended Abstract

Ugo de'Liguoro and Riccardo Treglia
Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy
ugo.deliguoro@unito.it riccardo.treglia@unito.it

The computational λ-calculus was introduced by Moggi [5,6] as a metalanguage to describe non functional effects in programming languages via an incremental approach. The basic idea is to distinguish among values of some type D and computations over such values, the latter having type $T D$. Semantically T is a monad, endowing D with a richer structure such that operations over computations can be seen as algebras of T. Any D is embedded into $T D$ and there is a universal way to extend any morphism in $D \rightarrow T E$ to a morphism in $T D \rightarrow T E$.

In Wadler's formulation [7], at the ground of Haskell implementation, a monad is a triple (T, unit, \star) where T is a type constructor, and for all types D, E, unit $D_{D}: D \rightarrow T D$ and $\star_{D, E}: T D \times(D \rightarrow T E) \rightarrow T E$ are such that (omitting subscripts and writing \star as an infix operator):

$$
(\text { unit } d) \star f=f d, \quad a \star \text { unit }=a, \quad(a \star f) \star g=a \star \lambda d .(f d \star g) \text {. }
$$

Instances of monads are partiality, exceptions, input/output, store, non determinism, continuations.

Aim of our work is to investigate the monadic approach to effectfull functional languages in the untyped case. Much as the untyped λ-calculus can be seen as a calculus with a single type $D \triangleleft D \rightarrow D$, which is interpreted by a reflexive object in a suitable category, the untyped computational λ-calculus λ_{c}^{u} has two types: the type of values D and the type of computations $T D$. The type D is a retract of $D \rightarrow T D$, which is the call-by-value analogous of the reflexive object (see [5], sec. 5). This leads to the following definition:

Definition 1 (The untyped computational λ-calculus). The untyped computational λ-calculus, shortly λ_{c}^{u}, is a calculus of two sorts of expressions:

$$
\begin{array}{rll}
\text { Val }: & V, W::=x \mid \lambda x . M & \text { (values) } \\
\text { Com }: & M, N::=\text { unit } V \mid M \star V & \\
\text { (computations) }
\end{array}
$$

where x ranges over a denumerable set Var of variables.

[^0]A reduction relation $\longrightarrow \subseteq C o m \times$ Com is defined as follows:
\[

$$
\begin{aligned}
\left(\beta_{c}\right) & \text { unit } V \star(\lambda x . M) & \rightarrow M[V / x] \\
(\star-r e d) & M \longrightarrow M^{\prime} & \Rightarrow M \star V \longrightarrow M^{\prime} \star V
\end{aligned}
$$
\]

where $M[V / x]$ denotes the capture avoiding substitution of V for all free occurrences of x in M.

Terms of the calculus can be interpreted into any $D \simeq D \rightarrow T D$ (where we restrict to extensional models for simplicity) via the mappings $\llbracket V \rrbracket_{\rho}^{D} \in D$ and $\llbracket M \rrbracket_{\rho}^{T D} \in T D$, where $\rho \in E n v_{D}=\operatorname{Var} \rightarrow D$ by:

$$
\begin{aligned}
\llbracket x \rrbracket_{\rho}^{D} & =\rho(x) & & \llbracket u n i t V \rrbracket_{\rho}^{T D}
\end{aligned}=\text { unit } \llbracket V \rrbracket_{\rho}^{D}
$$

where $\rho[x \mapsto d](y)=\rho(y)$ if $y \not \equiv x$, it is equal to d otherwise. We therefore dub (extensional) T-model in a cartesian closed category \mathcal{D} a tuple (D, T, Φ, Ψ) such that T is a monad over \mathcal{D} and $D \simeq D \rightarrow T D$ via the morphisms $\Phi, \Psi=\Phi^{-1}$.
Proposition 1. If $M \longrightarrow N$ then $\llbracket M \rrbracket_{\rho}^{T D}=\llbracket N \rrbracket_{\rho}^{T D}$ for any T-model D and $\rho \in E n v_{D}$.

An intersection type system for $\boldsymbol{\lambda}_{\boldsymbol{c}}^{\boldsymbol{u}}$

To study T-models we use intersection types, because they are at the same time a formal system to reason on terms and a tool to bridge reduction and operational semantics of the calculus to its models. As shown in [3] reasoning over generic monads is challenging, and indeed a major issue of the present work is to complement Dal Lago's and others contributions by Coppo-Dezani approach to the study of Scott's D_{∞} models of the untyped λ-calculus.

Let TypeVar be a countable set of type variables, ranged over by α; then we define the following languages of types via the grammar:

$$
\begin{array}{rll}
\text { ValType }: & \delta::=\alpha|\delta \rightarrow \tau| \delta \wedge \delta \mid \omega_{\vee} & \text { (value types) } \\
\text { ComType }: & \tau::=T \delta|\tau \wedge \tau| \omega_{\mathrm{C}} & \text { (computation types) }
\end{array}
$$

Over types we consider the preorders \leq_{V} and \leq_{C} making \wedge into a meet operator and such that:

$$
\begin{array}{ccc}
\delta \leq_{\mathrm{v}} \omega_{\mathrm{V}} & (\delta \rightarrow \tau) \wedge\left(\delta \rightarrow \tau^{\prime}\right) \leq_{\mathrm{v}} \delta \rightarrow\left(\tau \wedge \tau^{\prime}\right) & \frac{\delta^{\prime} \leq_{\mathrm{v}} \delta \quad \tau \leq_{\mathrm{c}} \tau^{\prime}}{\delta \rightarrow \tau \leq_{\mathrm{v}} \delta^{\prime} \rightarrow \tau^{\prime}} \\
\tau \leq_{\mathrm{c}} \omega_{\mathrm{C}} & T \delta \wedge T \delta^{\prime} \leq_{\mathrm{c}} T\left(\delta \wedge \delta^{\prime}\right) & \frac{\delta \leq_{\mathrm{v}} \delta^{\prime}}{T \delta \leq_{\mathrm{c}} T \delta^{\prime}} \\
\omega_{\mathrm{V}} \leq_{\mathrm{v}} \omega_{\mathrm{V}} \rightarrow \omega_{\mathrm{C}} &
\end{array}
$$

Now we are ready to define the intersection type assignment for λ_{c}^{u} and the generic monad T :

Definition 2 (Type assignment). A basis is a finite set of typings $\Gamma=$ $\left\{x_{1}: \delta_{1}, \ldots x_{n}: \delta_{n}\right\}$ with pairwise distinct variables x_{i}, whose domain is the set $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}$. A basis determines a function from variables to types such that $\Gamma(x)=\delta$ if $x: \delta \in \Gamma, \Gamma(x)=\omega_{V}$ otherwise.
A judgment is an expression of either shapes $\Gamma \vdash V: \delta$ or $\Gamma \vdash M: \tau$. It is derivable if it is the conclusion of a derivation according to the rules:

$$
\frac{x: \delta \in \Gamma}{\Gamma \vdash x: \delta} \quad \frac{\Gamma, x: \delta \vdash M: \tau}{\Gamma \vdash \lambda x . M: \delta \rightarrow \tau} \quad \frac{\Gamma \vdash V: \delta}{\Gamma \vdash \text { unit } V: T \delta} \quad \frac{\Gamma \vdash M: T \delta}{\Gamma \vdash V: \delta \rightarrow \tau}
$$

where $\Gamma, x: \delta=\Gamma \cup\{x: \delta\}$ with $x: \delta \notin \Gamma$, and the rules:

$$
\overline{\Gamma \vdash P: \omega} \frac{\Gamma \vdash P: \sigma \quad \Gamma \vdash P: \sigma^{\prime}}{\Gamma \vdash P: \sigma \wedge \sigma^{\prime}} \quad \frac{\Gamma \vdash P: \sigma \quad \sigma \leq \sigma^{\prime}}{\Gamma \vdash P: \sigma^{\prime}}
$$

where either $P \in$ Val, $\omega \equiv \omega_{V}, \sigma, \sigma^{\prime} \in$ ValType and $\leq=\leq_{v}$ or $P \in$ Com, $\omega \equiv \omega_{C}, \sigma, \sigma^{\prime} \in$ ComType and $\leq=\leq c$.

Then by a standard technique, that is by proving suitable Generation and Substitution Lemmas, we establish:

Theorem 1 (Subject reduction). $\Gamma \vdash M: \tau \& M \longrightarrow N \Rightarrow \Gamma \vdash N: \tau$.

Type assignment and T-models

As a first step we interpret types as certain subsets of D and $T D$, according to the sorts ValType and ComType respectively. Let (D, T, Φ, Ψ) be a T-model and $d, d^{\prime} \in D$; we abbreviate $d \cdot d^{\prime}=\Phi(d)\left(d^{\prime}\right)$. Let $\xi \in$ TypeEnv $_{D}=$ TypeVar $\rightarrow 2^{D}$; then the followings are natural requirements for the type interpretation mappings $\llbracket \cdot \rrbracket^{D}:$ ValType \times TypeEnv $_{D} \rightarrow 2^{D}$ and $\llbracket \rrbracket^{T D}:$ ComType \times TypeEnv $_{D} \rightarrow 2^{T D}$:

$$
\begin{aligned}
\llbracket \alpha \rrbracket_{\xi}^{D} & =\xi(\alpha) & \llbracket \delta \rightarrow \tau \rrbracket_{\xi}^{D} & =\left\{d \in D \mid \forall d^{\prime} \in \llbracket \delta \rrbracket_{\xi}^{D} d \cdot d^{\prime} \in \llbracket \tau \rrbracket_{\xi}^{T D}\right\} \\
\llbracket \omega_{\vee} \rrbracket_{\xi}^{D} & =D & \llbracket \delta \wedge \delta^{\prime} \rrbracket_{\xi}^{D} & =\llbracket \delta \rrbracket_{\xi}^{D} \cap \llbracket \delta^{\prime} \rrbracket_{\xi}^{D} \\
\llbracket \omega_{\mathcal{C}} \rrbracket_{\xi}^{T D} & =T D & \llbracket \tau \wedge \tau^{\prime} \rrbracket_{\xi}^{T D} & =\llbracket \tau \rrbracket_{\xi}^{T D} \cap \llbracket \tau^{\prime} \rrbracket_{\xi}^{T D}
\end{aligned}
$$

Further we call these interpretations monadic if $\llbracket T \delta \rrbracket_{\xi}^{T D}$ satisfies:

1. $d \in \llbracket \delta \rrbracket_{\xi}^{D} \Rightarrow$ unit $d \in \llbracket T \delta \rrbracket_{\xi}^{T D}$
2. $d \in \llbracket \delta^{\prime} \rightarrow T \delta \rrbracket_{\xi}^{D} \quad \& \quad a \in \llbracket T \delta^{\prime} \rrbracket_{\xi}^{T D} \Rightarrow a \star d \in \llbracket T \delta \rrbracket_{\xi}^{T D}$

The main problem with monadic interpretations is that the clauses above are not inductive, as they would be if we had types $\omega_{\mathrm{V}}={ }_{\mathrm{V}} \omega_{\mathrm{V}} \rightarrow T \omega_{\mathrm{V}}$ and $T \omega_{\mathrm{V}}$ only. However, working in a category of domains and with an ω-continuous monad T we can build a T-model $D_{\infty}=\lim _{\leftarrow} D_{n}$, where D_{0} is some fixed domain, and $D_{n+1}=\left[D_{n} \rightarrow T D_{n}\right]$ is such that for all $n, D_{n} \triangleleft D_{n+1}$ is an embedding. As a consequence we have $D_{\infty} \simeq\left[D_{\infty} \rightarrow T D_{\infty}\right]$. We say that D_{∞} is a limit T-model.

More importantly with such a T-model we can stratify the above clauses by means of approximate type interpretations $\llbracket \delta \rrbracket_{\xi}^{D_{n}} \subseteq D_{n}$ and $\llbracket \tau \rrbracket_{\xi}^{T D_{n}} \subseteq T D_{n}$, that now can be defined by induction over $n \in \mathbb{N}$.

Theorem 2. The mappings $\llbracket \delta \rrbracket_{\xi}^{D_{\infty}}=\lim _{\leftarrow} \llbracket \delta \rrbracket_{\xi}^{D_{n}}$ and $\llbracket \tau \rrbracket_{\xi}^{T D_{\infty}}=\lim _{\leftarrow} \llbracket \tau \rrbracket_{\xi}^{T D_{n}}$ are monadic type interpretations. In particular for any $\xi \in E n v_{D_{\infty}}$:

1. $\llbracket \delta \rightarrow \tau \rrbracket \rrbracket_{\xi}^{D_{\infty}}=\left\{d \in D_{\infty} \mid \forall d^{\prime} \in \llbracket \delta \rrbracket_{\xi}^{D \infty} \quad d\left(d^{\prime}\right) \in \llbracket \tau \rrbracket_{\xi}^{T D_{\infty}}\right\}$
2. $\llbracket T \delta \rrbracket_{\xi}^{T D_{\infty}}=\begin{aligned} & \left\{\text { unit } d \in T D_{\infty} \mid d \in \llbracket \delta \rrbracket_{\xi}^{D \infty}\right\} \cup \\ & \left\{a \star d \in T D_{\infty} \mid \exists \delta^{\prime} . d \in \llbracket \delta^{\prime} \rightarrow T \delta \rrbracket_{\xi}^{D_{\infty}} \quad \& \quad a \in \llbracket T \delta^{\prime} \rrbracket_{\xi}^{T D_{\infty}}\right\}\end{aligned}$

Now, writing $\rho, \xi \not \models^{D} \Gamma$ if $\rho(x) \in \llbracket \Gamma(x) \rrbracket_{\xi}^{D}$ for all $x \in \operatorname{dom}(\Gamma)$, we may set $\Gamma \not \models^{D} V: \delta\left(\Gamma \not \models^{D} M: \tau\right)$ if $\rho, \xi \not \models^{D} \Gamma$ implies $\llbracket V \rrbracket_{\rho}^{D} \in \llbracket \delta \rrbracket_{\xi}^{D}\left(\llbracket M \rrbracket_{\rho}^{T D} \in \llbracket \tau \rrbracket_{\xi}^{T D}\right)$. Also for any class \mathcal{C} of T-models we write $\Gamma \models^{\mathcal{C}} V: \delta(\Gamma \models M: \tau)$ if $\Gamma \models^{D} V: \delta$ $\left(\Gamma \models^{D} M: \tau\right)$ for all $D \in \mathcal{C}$.
Theorem 3 (Soundness). If $\llbracket \delta \rrbracket_{\xi}^{D}$ and $\llbracket \tau \rrbracket_{\xi}^{T D}$ are monadic w.r.t. any T-model $D \in \mathcal{C}$ then

$$
\Gamma \vdash V: \delta \Rightarrow \Gamma \models^{\mathcal{C}} V: \delta \quad \text { and } \quad \Gamma \vdash M: \tau \Rightarrow \Gamma \not \models^{\mathcal{C}} M: \tau
$$

In particular, by Theorem 2, we may take \mathcal{C} as the set of limit T-models.

Completeness and computational adequacy

Toward completeness, we first concentrate on the category \mathcal{D} of ω-algebraic lattices, whose objects are known to be presentable as the poset of filters over a meet-semilattice, or equivalently over a preorder whose quotient is such; the ω in the name means that the Scott topology of a domain in \mathcal{D} has a countable basis, formed by the upward cones of compact points. Then any axiomatization $T h=\left(\mathcal{T}, \leq_{T h}\right)$ of a preorder over a language \mathcal{T} of intersection types making \wedge into the meet and ω the top, will generate such a domain, and vice versa: we call $D_{T h}=\mathcal{F}(T h)$ the domain of filters w.r.t. $\leq_{T h}$ ordered by subset inclusion, and $T h_{D}$ the theory of the restriction of the order in D to the compacts $\mathcal{K}(D)$. Therefore $D_{T h_{D}}=\mathcal{F}\left(T h_{D}\right) \simeq D$ which we abbreviate by \mathcal{F}_{D} and identify with D itself.

Let $T h_{\mathrm{V}}=($ ValType,$\leq \mathrm{v})$ and $T h_{\mathrm{C}}=($ ComType,$\leq \mathrm{c})$ and set $D_{*}=D_{T h_{\mathrm{V}}}$ and $T D_{*}=D_{T h c}$: then $T h_{V}$ is a continuous EATS (see e.g. [1] ch. 3, where continuity is expressed by condition ($\mathcal{F r e f l}$) of Prop. 3.3.18), hence the space of continuous functions $D_{*} \rightarrow T D_{*}$ is representable in D_{*}, and actually isomorphic to it. On the other hand the theory $T h_{\mathrm{C}}$ is parametric in $T h_{\mathrm{V}}$. More precisely given a type theory $T h$ we can use the axioms of $T h_{\mathrm{C}}$ to form a new theory we call $T(T h)$; then we can define a mapping \mathbf{T} among objects of \mathcal{D} by $\mathbf{T} D=D_{T(T h)}$ where $T h=T h_{D}$.
Theorem 4. Define unit $\mathcal{F}_{D}^{\mathcal{F}}: \mathcal{F}_{D} \rightarrow \mathcal{F}_{T D}$ and $\star_{D, E}^{\mathcal{F}}: \mathcal{F}_{T D} \times \mathcal{F}_{D \rightarrow \mathbf{T} E} \rightarrow \mathcal{F}_{\mathbf{T} E}$ by: $u n i t_{D}^{\mathcal{F}} d=\uparrow\left\{T \delta \in \mathcal{T}_{\mathbf{T} D} \mid \delta \in d\right\} \quad t \star_{D, E}^{\mathcal{F}} e=\uparrow\left\{\tau \in \mathcal{T}_{\mathbf{T} E} \mid \exists \delta \rightarrow \tau \in e . T \delta \in t\right\}$

Then $\left(\mathbf{T}\right.$, unit $\left.{ }^{\mathcal{F}}, \star^{\mathcal{F}}\right)$ is a monad over \mathcal{D}. Hence D_{*} is a T-model.
Strictly speaking to enforce extensionality of the filter model, $T h_{V}$ must be extended to the theory $T h_{\vee}^{\eta}$ by adding suitable axioms: see [4] for the precise treatment.

By stratifying types according to the rank map: $r(\alpha)=r\left(\omega_{\mathrm{V}}\right)=r\left(\omega_{\mathrm{C}}\right)=0$, $r\left(\sigma \wedge \sigma^{\prime}\right)=\max \left(r(\sigma), r\left(\sigma^{\prime}\right)\right), r(\delta \rightarrow \tau)=\max (r(\delta)+1, r(\tau))$ and $r(T \delta)=r(\delta)+1$, and taking $\leq_{n}=\leq \upharpoonright\{\sigma \mid r(\sigma) \leq n\}$ (for both \leq_{V} and \leq_{C}) we obtain theories $T h_{n}$ and a chain of domains $D_{n}=\mathcal{F}\left(T h_{n}\right)$ such that $D_{*}=\lim _{\leftarrow} D_{n}$ is a limit T model. Consequently, we can extend the proof in [2] to our calculus obtaining:

Theorem 5 (Completeness). Let \mathcal{C} be the class of limit T-models. Then

$$
\Gamma \not \models^{\mathcal{C}} V: \delta \Rightarrow \Gamma \vdash V: \delta \quad \text { and } \quad \Gamma \not \models^{\mathcal{C}} M: \tau \Rightarrow \Gamma \vdash M: \tau
$$

Corollary 1 (Subject expansion). If $\Gamma \vdash M: \tau$ and $N \longrightarrow M$ then $\Gamma \vdash N$: τ.

Finally let $\operatorname{Term}^{0}=\operatorname{Val}^{0} \cup \operatorname{Com}^{0}$ be the set of closed terms.
Definition 3. Let $\Downarrow \subseteq C o m^{0} \times V a l^{0}$ be the smallest relation satisfying:

$$
\overline{\text { unit } V \Downarrow V} \quad \frac{M \Downarrow V \quad N[V / x] \Downarrow W}{M \star \lambda x . N \Downarrow W}
$$

Then it is easily seen that $M \Downarrow V$ if and only if $M \xrightarrow{*}$ unit V. We abbreviate $M \Downarrow \Leftrightarrow \exists V . M \Downarrow V$.

We say that $\tau \in$ ComType is non trivial if $\omega_{\mathrm{C}} \not \mathbb{L}_{\mathrm{c}} \tau$. Then by adapting Tait's computability technique, we eventually have:

Theorem 6. For all $M \in \operatorname{Com}^{0}$ we have:

$$
M \Downarrow \Leftrightarrow \exists \tau \text { non trivial } . \vdash M: \tau
$$

Corollary 2 (Computational Adequacy). In the model D_{*} we have that

$$
M \Downarrow \Leftrightarrow \llbracket M \rrbracket^{T D_{*}} \neq \perp_{T D_{*}}
$$

From the proof of Theorem 6 we learn that the fact that $T \omega_{\mathrm{V}}$ is not equated to ω_{C} in $T h_{\mathrm{C}}$ is an essential ingredient; indeed this corresponds to the fact that the generic monad T is assumed to be non trivial (hence not the identity monad), so that $T D \not \approx D$. This supports the intuition that a T-model equating computations to (the image of) values is not computationally adequate w.r.t. weak normal forms.

For details we refer the reader to the full paper [4].

References

1. Amadio, R., Curien, P.L.: Domains and lambda-calculi. Cambridge University Press (1998)
2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48(4), 931-940 (1983)
3. Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads, relators, and howe's method. In: Proc. of Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1-12 (2017)
4. de'Liguoro, U., Treglia, R.: Intersection Types for the Computational lambdaCalculus (Jul 2019), https://arxiv.org/abs/1907.05706, unpublished
5. Moggi, E.: Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66, University of Edinburgh, Edinburgh, Scotland (Oct 1988)
6. Moggi, E.: Notions of Computation and Monads. Information and Computation 93, 55-92 (1991)
7. Wadler, P.: Monads for Functional Programming. In: Advanced Functional Programming, First International Spring School on Advanced Functional Programming Techniques-Tutorial Text. Lecture Notes in Computer Science, vol. 925, pp. 24-52. Springer-Verlag (1995)

[^0]: Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

