Intersection Types for the Computational λ -Calculus

Extended Abstract

Ugo de'Liguoro and Riccardo Treglia

Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy ugo.deliguoro@unito.it riccardo.treglia@unito.it

The computational λ -calculus was introduced by Moggi [5,6] as a metalanguage to describe non functional effects in programming languages via an incremental approach. The basic idea is to distinguish among values of some type D and computations over such values, the latter having type TD. Semantically T is a monad, endowing D with a richer structure such that operations over computations can be seen as algebras of T. Any D is embedded into TDand there is a universal way to extend any morphism in $D \to TE$ to a morphism in $TD \to TE$.

In Wadler's formulation [7], at the ground of Haskell implementation, a monad is a triple $(T, unit, \star)$ where T is a type constructor, and for all types $D, E, unit_D : D \to TD$ and $\star_{D,E} : TD \times (D \to TE) \to TE$ are such that (omitting subscripts and writing \star as an infix operator):

 $(unit d) \star f = f d, \qquad a \star unit = a, \qquad (a \star f) \star g = a \star \lambda d.(f d \star g).$

Instances of monads are partiality, exceptions, input/output, store, non determinism, continuations.

Aim of our work is to investigate the monadic approach to effectfull functional languages in the untyped case. Much as the untyped λ -calculus can be seen as a calculus with a single type $D \triangleleft D \rightarrow D$, which is interpreted by a reflexive object in a suitable category, the untyped computational λ -calculus λ_c^u has two types: the type of values D and the type of computations TD. The type D is a retract of $D \rightarrow TD$, which is the call-by-value analogous of the reflexive object (see [5], sec. 5). This leads to the following definition:

Definition 1 (The untyped computational λ -calculus). The untyped computational λ -calculus, shortly λ_c^u , is a calculus of two sorts of expressions:

Val:	$V,W ::= x \mid \lambda x.M$	(values)
Com:	$M,N::=unitV\mid M\star V$	(computations)

where x ranges over a denumerable set Var of variables.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

U. de'Liguoro, R. Treglia

A reduction relation $\longrightarrow \subseteq Com \times Com$ is defined as follows:

$$\begin{array}{ll} (\beta_c) & unit \, V \star (\lambda x.M) \to M[V/x] \\ (\star - red) & M \longrightarrow M' \Rightarrow M \star V \longrightarrow M' \star V \end{array}$$

where M[V/x] denotes the capture avoiding substitution of V for all free occurrences of x in M.

Terms of the calculus can be interpreted into any $D \simeq D \to TD$ (where we restrict to extensional models for simplicity) via the mappings $[\![V]\!]_{\rho}^{D} \in D$ and $[\![M]\!]_{\rho}^{TD} \in TD$, where $\rho \in Env_{D} = Var \to D$ by:

$$\begin{split} \llbracket x \rrbracket_{\rho}^{D} &= \rho(x) & \qquad \llbracket unit \, V \rrbracket_{\rho}^{TD} &= unit \, \llbracket V \rrbracket_{\rho}^{D} \\ \llbracket \lambda x.M \rrbracket_{\rho}^{D} &= \lambda \, d \in D. \, \llbracket M \rrbracket_{\rho[x \mapsto d]}^{TD} & \qquad \llbracket M \star V \rrbracket_{\rho}^{TD} &= \llbracket M \rrbracket_{\rho}^{TD} \star \, \llbracket V \rrbracket_{\rho}^{D} \end{split}$$

where $\rho[x \mapsto d](y) = \rho(y)$ if $y \not\equiv x$, it is equal to d otherwise. We therefore dub (extensional) *T*-model in a cartesian closed category \mathcal{D} a tuple (D, T, Φ, Ψ) such that T is a monad over \mathcal{D} and $D \simeq D \to TD$ via the morphisms $\Phi, \Psi = \Phi^{-1}$.

Proposition 1. If $M \longrightarrow N$ then $\llbracket M \rrbracket_{\rho}^{TD} = \llbracket N \rrbracket_{\rho}^{TD}$ for any *T*-model *D* and $\rho \in Env_D$.

An intersection type system for λ_c^u

To study *T*-models we use intersection types, because they are at the same time a formal system to reason on terms and a tool to bridge reduction and operational semantics of the calculus to its models. As shown in [3] reasoning over generic monads is challenging, and indeed a major issue of the present work is to complement Dal Lago's and others contributions by Coppo-Dezani approach to the study of Scott's D_{∞} models of the untyped λ -calculus.

Let *TypeVar* be a countable set of type variables, ranged over by α ; then we define the following languages of types via the grammar:

ValType:	$\delta ::= \alpha \mid \delta \to \tau \mid \delta \land \delta \mid \omega_{V}$	(value types)
ComType:	$\tau ::= T\delta \mid \tau \wedge \tau \mid \omega_{C}$	$(computation \ types)$

Over types we consider the preorders \leq_V and \leq_C making \wedge into a meet operator and such that:

$$\begin{split} \delta \leq_{\mathsf{V}} \omega_{\mathsf{V}} & (\delta \to \tau) \land (\delta \to \tau') \leq_{\mathsf{V}} \delta \to (\tau \land \tau') & \frac{\delta' \leq_{\mathsf{V}} \delta \quad \tau \leq_{\mathsf{C}} \tau'}{\delta \to \tau \leq_{\mathsf{V}} \delta' \to \tau'} \\ \tau \leq_{\mathsf{C}} \omega_{\mathsf{C}} & T\delta \land T\delta' \leq_{\mathsf{C}} T(\delta \land \delta') & \frac{\delta \leq_{\mathsf{V}} \delta'}{T\delta \leq_{\mathsf{C}} T\delta'} \\ \omega_{\mathsf{V}} \leq_{\mathsf{V}} \omega_{\mathsf{V}} \to \omega_{\mathsf{C}} \end{split}$$

Now we are ready to define the intersection type assignment for λ_c^u and the generic monad T:

 $\mathbf{2}$

Definition 2 (Type assignment). A basis is a finite set of typings Γ = $\{x_1 : \delta_1, \ldots, x_n : \delta_n\}$ with pairwise distinct variables x_i , whose domain is the set dom $(\Gamma) = \{x_1, \ldots, x_n\}$. A basis determines a function from variables to types such that $\Gamma(x) = \delta$ if $x : \delta \in \Gamma$, $\Gamma(x) = \omega_V$ otherwise.

A judgment is an expression of either shapes $\Gamma \vdash V : \delta$ or $\Gamma \vdash M : \tau$. It is derivable if it is the conclusion of a derivation according to the rules:

$x:\delta\in \varGamma$	$\varGamma, x: \delta \vdash M: \tau$	$\varGamma \vdash V : \delta$	$\Gamma \vdash M : T\delta$	$\Gamma \vdash V: \delta \to \tau$	
$\overline{\varGamma \vdash x:\delta}$	$\overline{\varGamma \vdash \lambda x.M: \delta \to \tau}$	$\overline{\varGamma \vdash unit V: T\delta}$	$\Gamma \vdash M$	$I \star V : \tau$	
where $\Gamma, x : \delta = \Gamma \cup \{x : \delta\}$ with $x : \delta \notin \Gamma$, and the rules:					

$$\frac{\Gamma \vdash P : \sigma \quad \Gamma \vdash P : \sigma \quad \Gamma \vdash P : \sigma'}{\Gamma \vdash P : \sigma \land \sigma'} \quad \frac{\Gamma \vdash P : \sigma \quad \sigma \leq \sigma'}{\Gamma \vdash P : \sigma'}$$

where either $P \in Val, \ \omega \equiv \omega_V, \ \sigma, \sigma' \in ValType \ and \ \leq \leq_V \ or \ P \in Com$, $\omega \equiv \omega_{\mathcal{C}}, \sigma, \sigma' \in ComType and \leq \leq \leq_{\mathcal{C}}.$

Then by a standard technique, that is by proving suitable Generation and Substitution Lemmas, we establish:

Theorem 1 (Subject reduction). $\Gamma \vdash M : \tau \& M \longrightarrow N \Rightarrow \Gamma \vdash N : \tau$.

Type assignment and *T*-models

As a first step we interpret types as certain subsets of D and TD, according to the sorts ValType and ComType respectively. Let (D, T, Φ, Ψ) be a T-model and $d, d' \in D$; we abbreviate $d \cdot d' = \Phi(d)(d')$. Let $\xi \in TypeEnv_D = TypeVar \rightarrow 2^D$; then the followings are natural requirements for the type interpretation mappings $\llbracket \cdot \rrbracket^D : ValType \times TypeEnv_D \to 2^{D} \text{ and } \llbracket \cdot \rrbracket^{TD} : ComType \times TypeEnv_D \to 2^{TD}:$

$$\begin{split} & \llbracket \alpha \rrbracket_{\xi}^{D} = \xi(\alpha) & \llbracket \delta \to \tau \rrbracket_{\xi}^{D} = \{ d \in D \mid \forall d' \in \llbracket \delta \rrbracket_{\xi}^{D} \ d \cdot d' \in \llbracket \tau \rrbracket_{\xi}^{TD} \} \\ & \llbracket \omega_{V} \rrbracket_{\xi}^{D} = D & \llbracket \delta \wedge \delta' \rrbracket_{\xi}^{D} = \llbracket \delta \rrbracket_{\xi}^{D} \cap \llbracket \delta' \rrbracket_{\xi}^{D} \\ & \llbracket \omega_{C} \rrbracket_{\xi}^{TD} = TD & \llbracket \tau \wedge \tau' \rrbracket_{\xi}^{TD} = \llbracket \tau \rrbracket_{\xi}^{TD} \cap \llbracket \tau' \rrbracket_{\xi}^{TD} \end{split}$$

Further we call these interpretations *monadic* if $[T\delta]^{TD}_{\mathcal{E}}$ satisfies:

- $\begin{array}{ll} 1. \ d \in \llbracket \delta \rrbracket_{\xi}^{D} \Rightarrow unit \ d \in \llbracket T \delta \rrbracket_{\xi}^{TD} \\ 2. \ d \in \llbracket \delta' \to T \delta \rrbracket_{\xi}^{D} \ \& \ a \in \llbracket T \delta' \rrbracket_{\xi}^{TD} \Rightarrow a \star d \in \llbracket T \delta \rrbracket_{\xi}^{TD} \end{array}$

The main problem with monadic interpretations is that the clauses above are not inductive, as they would be if we had types $\omega_V =_V \omega_V \to T \omega_V$ and $T \omega_V$ only. However, working in a category of domains and with an ω -continuous monad T we can build a T-model $D_{\infty} = \lim_{\leftarrow} D_n$, where D_0 is some fixed domain, and $D_{n+1} = [D_n \to TD_n]$ is such that for all $n, \, D_n \triangleleft D_{n+1}$ is an embedding. As a consequence we have $D_{\infty} \simeq [D_{\infty} \to TD_{\infty}]$. We say that D_{∞} is a *limit* T-model.

More importantly with such a T-model we can stratify the above clauses by means of approximate type interpretations $\llbracket \delta \rrbracket_{\xi}^{D_n} \subseteq D_n$ and $\llbracket \tau \rrbracket_{\xi}^{TD_n} \subseteq TD_n$, that now can be defined by induction over $n \in \mathbb{N}$. **Theorem 2.** The mappings $[\![\delta]\!]_{\xi}^{D_{\infty}} = \lim_{\leftarrow} [\![\delta]\!]_{\xi}^{D_n}$ and $[\![\tau]\!]_{\xi}^{TD_{\infty}} = \lim_{\leftarrow} [\![\tau]\!]_{\xi}^{TD_n}$ are monadic type interpretations. In particular for any $\xi \in Env_{D_{\infty}}$:

$$1. \quad [\![\delta \to \tau]\!]_{\xi}^{D_{\infty}} = \{ d \in D_{\infty} \mid \forall d' \in [\![\delta]\!]_{\xi}^{D_{\infty}} \quad d(d') \in [\![\tau]\!]_{\xi}^{TD_{\infty}} \}$$
$$2. \quad [\![T\delta]\!]_{\xi}^{TD_{\infty}} = \frac{\{unit \ d \in TD_{\infty} \mid d \in [\![\delta]\!]_{\xi}^{D_{\infty}} \} \cup}{\{a \star d \in TD_{\infty} \mid \exists \delta'. d \in [\![\delta' \to T\delta]\!]_{\xi}^{D_{\infty}} \quad \& \ a \in [\![T\delta']\!]_{\xi}^{TD_{\infty}} \}}$$

Now, writing $\rho, \xi \models^D \Gamma$ if $\rho(x) \in \llbracket \Gamma(x) \rrbracket_{\xi}^D$ for all $x \in \text{dom}(\Gamma)$, we may set $\Gamma \models^D V : \delta \ (\Gamma \models^D M : \tau)$ if $\rho, \xi \models^D \Gamma$ implies $\llbracket V \rrbracket_{\rho}^D \in \llbracket \delta \rrbracket_{\xi}^D \ (\llbracket M \rrbracket_{\rho}^{TD} \in \llbracket \tau \rrbracket_{\xi}^{TD})$. Also for any class \mathcal{C} of T-models we write $\Gamma \models^{\mathcal{C}} V : \delta \ (\Gamma \models M : \tau)$ if $\Gamma \models^D V : \delta \ (\Gamma \models^D M : \tau)$ for all $D \in \mathcal{C}$.

Theorem 3 (Soundness). If $[\![\delta]\!]_{\xi}^D$ and $[\![\tau]\!]_{\xi}^{TD}$ are monadic w.r.t. any *T*-model $D \in \mathcal{C}$ then

 $\Gamma \vdash V : \delta \implies \Gamma \models^{\mathcal{C}} V : \delta \quad and \quad \Gamma \vdash M : \tau \implies \Gamma \models^{\mathcal{C}} M : \tau.$

In particular, by Theorem 2, we may take C as the set of limit T-models.

Completeness and computational adequacy

Toward completeness, we first concentrate on the category \mathcal{D} of ω -algebraic lattices, whose objects are known to be presentable as the poset of filters over a meet-semilattice, or equivalently over a preorder whose quotient is such; the ω in the name means that the Scott topology of a domain in \mathcal{D} has a countable basis, formed by the upward cones of compact points. Then any axiomatization $Th = (\mathcal{T}, \leq_{Th})$ of a preorder over a language \mathcal{T} of intersection types making \wedge into the meet and ω the top, will generate such a domain, and vice versa: we call $D_{Th} = \mathcal{F}(Th)$ the domain of filters w.r.t. \leq_{Th} ordered by subset inclusion, and Th_D the theory of the restriction of the order in D to the compacts $\mathcal{K}(D)$. Therefore $D_{Th_D} = \mathcal{F}(Th_D) \simeq D$ which we abbreviate by \mathcal{F}_D and identify with D itself.

Let $Th_{V} = (ValType, \leq_{V})$ and $Th_{C} = (ComType, \leq_{C})$ and set $D_{*} = D_{Th_{V}}$ and $TD_{*} = D_{Th_{C}}$: then Th_{V} is a continuous EATS (see e.g. [1] ch. 3, where continuity is expressed by condition ($\mathcal{F}refl$) of Prop. 3.3.18), hence the space of continuous functions $D_{*} \to TD_{*}$ is representable in D_{*} , and actually isomorphic to it. On the other hand the theory Th_{C} is parametric in Th_{V} . More precisely given a type theory Th we can use the axioms of Th_{C} to form a new theory we call T(Th); then we can define a mapping \mathbf{T} among objects of \mathcal{D} by $\mathbf{T}D = D_{T(Th)}$ where $Th = Th_{D}$.

Theorem 4. Define $unit_D^{\mathcal{F}} : \mathcal{F}_D \to \mathcal{F}_{TD}$ and $\star_{D,E}^{\mathcal{F}} : \mathcal{F}_{TD} \times \mathcal{F}_{D \to \mathbf{T}E} \to \mathcal{F}_{\mathbf{T}E}$ by: $unit_D^{\mathcal{F}} d = \uparrow \{T\delta \in \mathcal{T}_{\mathbf{T}D} \mid \delta \in d\}$ $t \star_{D,E}^{\mathcal{F}} e = \uparrow \{\tau \in \mathcal{T}_{\mathbf{T}E} \mid \exists \delta \to \tau \in e. \ T\delta \in t\}$ Then $(\mathbf{T}, unit^{\mathcal{F}}, \star^{\mathcal{F}})$ is a monad over \mathcal{D} . Hence D_* is a T-model.

4

Strictly speaking to enforce extensionality of the filter model, Th_V must be extended to the theory Th_V^{η} by adding suitable axioms: see [4] for the precise treatment.

By stratifying types according to the rank map: $r(\alpha) = r(\omega_{\mathsf{V}}) = r(\omega_{\mathsf{C}}) = 0$, $r(\sigma \land \sigma') = \max(r(\sigma), r(\sigma')), r(\delta \to \tau) = \max(r(\delta)+1, r(\tau)) \text{ and } r(T\delta) = r(\delta)+1$, and taking $\leq_n = \leq \upharpoonright \{\sigma \mid r(\sigma) \leq n\}$ (for both \leq_{V} and \leq_{C}) we obtain theories Th_n and a chain of domains $D_n = \mathcal{F}(Th_n)$ such that $D_* = \lim_{\leftarrow} D_n$ is a limit *T*model. Consequently, we can extend the proof in [2] to our calculus obtaining:

Theorem 5 (Completeness). Let C be the class of limit T-models. Then

$$\Gamma \models^{\mathcal{C}} V : \delta \implies \Gamma \vdash V : \delta \quad and \quad \Gamma \models^{\mathcal{C}} M : \tau \implies \Gamma \vdash M : \tau.$$

Corollary 1 (Subject expansion). If $\Gamma \vdash M : \tau$ and $N \longrightarrow M$ then $\Gamma \vdash N : \tau$.

Finally let $Term^0 = Val^0 \cup Com^0$ be the set of closed terms.

Definition 3. Let $\Downarrow \subseteq Com^0 \times Val^0$ be the smallest relation satisfying:

$$\frac{M \Downarrow V \quad N[V/x] \Downarrow W}{M \star \lambda x.N \Downarrow W}$$

Then it is easily seen that $M \Downarrow V$ if and only if $M \xrightarrow{*} unit V$. We abbreviate $M \Downarrow \Leftrightarrow \exists V. M \Downarrow V$.

We say that $\tau \in ComType$ is non trivial if $\omega_{\mathsf{C}} \not\leq_{\mathsf{C}} \tau$. Then by adapting Tait's computability technique, we eventually have:

Theorem 6. For all $M \in Com^0$ we have:

$$M \Downarrow \Leftrightarrow \exists \tau \text{ non trivial } . \vdash M : \tau$$

Corollary 2 (Computational Adequacy). In the model D_* we have that

$$M \Downarrow \Leftrightarrow \llbracket M \rrbracket^{TD_*} \neq \bot_{TD_*}$$

From the proof of Theorem 6 we learn that the fact that $T\omega_V$ is not equated to ω_C in Th_C is an essential ingredient; indeed this corresponds to the fact that the generic monad T is assumed to be non trivial (hence not the identity monad), so that $TD \neq D$. This supports the intuition that a T-model equating computations to (the image of) values is not computationally adequate w.r.t. weak normal forms.

For details we refer the reader to the full paper [4].

References

- 1. Amadio, R., Curien, P.L.: Domains and lambda-calculi. Cambridge University Press (1998)
- Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48(4), 931–940 (1983)
- Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads, relators, and howe's method. In: Proc. of Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12 (2017)
- de'Liguoro, U., Treglia, R.: Intersection Types for the Computational lambda-Calculus (Jul 2019), https://arxiv.org/abs/1907.05706, unpublished
- 5. Moggi, E.: Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66, University of Edinburgh, Edinburgh, Scotland (Oct 1988)
- Moggi, E.: Notions of Computation and Monads. Information and Computation 93, 55–92 (1991)
- Wadler, P.: Monads for Functional Programming. In: Advanced Functional Programming, First International Spring School on Advanced Functional Programming Techniques-Tutorial Text. Lecture Notes in Computer Science, vol. 925, pp. 24–52. Springer-Verlag (1995)

 $\mathbf{6}$