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Abstract. We continue here our investigation aimed at the identifica-
tion of ‘small’ fragments of set theory that are potentially useful in au-
tomated verification with proof-checkers based on the set-theoretic for-
malism, such as ÆtnaNova. More specifically, we provide a complete tax-
onomy of the polynomial and the NP-complete fragments comprising all
conjunctions that may involve, besides variables intended to range over
the von Neumann set-universe, the Boolean set operators ∪,∩, \ and the
membership relators ∈ and /∈. This is in preparation of combining the
aforementioned taxonomy with one recently developed for similar frag-
ments, but involving, in place of the membership relators ∈ and /∈, the
Boolean relators ⊆, 6⊆,=, 6=, and the predicates ‘· = ∅’ and ‘Disj(·, ·)’
(respectively meaning ‘the argument set is empty’ and ‘the arguments
are disjoint sets’), along with their opposites ‘· 6= ∅’ and ‘¬Disj(·, ·)’.

Keywords: Satisfiability problem, Computable set theory, NP-completeness,
Proof verification

1 Introduction

Since the late seventies, the satisfiability problem for fragments of set theory,
namely the problem of algorithmically determining for any formula in a given
fragment whether or not there exists an assignment of sets in the von Neumann
universe to its free variables that makes the formula true, has been thoroughly
studied within the research field named Computable Set Theory (see [4,6,15,14,9]
for a fairly comprehensive account). The initial goal envisaged an automated
proof verifier, based on the set-theoretic formalism, capable to carry out the
formalization of extensive parts of classical mathematics (e.g., the Cauchy inte-
gral theorem of complex analysis). To dispense users with the very tiny details,
typical of low-level logic-oriented proofs, such a proof verifier should have been
able to automatically guess the ‘obvious’ deduction steps left as tacit, through
an inferential core embodying an extensive library of decision procedures.
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However, a foundational quest to locate the precise frontier between the de-
cidable and the undecidable in set theory (and in other fundamental mathemat-
ical theories as well) began long before the proof verifier came into being, and
inspired much of the subsequent work. The progenitor fragments in this quest,
whose decision problems were addressed in the seminal paper [11], are the so-
called Multi-Level Syllogistic (MLS, for short) and its extension MLSS with the
singleton operator {·}. We recall that MLS is the quantifier-free fragment con-
sisting of the propositional combination of literals of the following types:

x = y ∪ z, x = y ∩ z, x = y \ z, x ∈ y.
As shown in [5], the satisfiability problem for MLS is NP-complete, even when
restricted to conjunctions of flat literals of the above types, plus negative literals
of type x /∈ y. Then, a fortiori, all decidable extensions of MLS have an NP-hard
satisfiability problem (even hyperexponential in some cases; see [2,7,8]).

Nevertheless, despite its NP-hardness, the decision procedure for a slightly
extended variant of MLSS, implemented in the form of a decidable tableaux
calculus (see [10]), has become the core of the most central inference primitive
of the ÆtnaNova/Ref proof-checker [15], viz. the ELEM rule. Optimization of the
MLSS-decision test, at least in favourable cases, is therefore of utmost importance
to limit occasional poor performances of ÆtnaNova originating from the full-
strength decision test.

For such reason, we recently undertook an investigation aimed at identifying
‘small’, yet useful, decidable fragments of set theory (which so far are all subfrag-
ments of MLS) endowed with efficient polynomial-time decision tests. In [3], we
have recently reported about the complexity taxonomy of all subfragments of the
set theory fragment denoted BST and consisting of the conjunctions of literals
involving, besides set variables, the Boolean set operators ∪,∩, \, the Boolean
relators ⊆,*,=, 6=, and the predicates (both affirmed and negated) ‘· = ∅’ and
‘Disj(·, ·)’, expressing respectively that a specified set is empty and that two
specified sets are disjoint.

Here we examine the sublanguages of MST(∪,∩, \,∈, /∈),1 the fragment of set
theory consisting of the conjunctions of literals involving, besides set variables,
the Boolean set operators ∪,∩, \ and the relators ∈ and /∈.

Of a fragment of MST(∪,∩, \,∈, /∈), we say that it is NP-complete if it has
an NP-complete satisfiability problem (see [12]). Likewise, we say that it is poly-
nomial if its satisfiability problem has polynomial complexity. As in [3], as a first
approximation, at least as far as polynomial fragments are concerned, it is enough
to discover the minimal NP-complete fragments (namely the NP-complete frag-
ments of MST(∪,∩, \,∈, /∈) that do not strictly contain any NP-complete frag-
ment) and the maximal polynomial fragments (namely the polynomial fragments
of MST(∪,∩, \,∈, /∈) that are not strictly contained in any polynomial frag-
ment of MST(∪,∩, \,∈, /∈)). Indeed, any MST(∪,∩, \,∈, /∈)-fragment either is
contained in some maximal polynomial fragment or contains some minimal NP-
complete fragment.

1 The acronym MST stands for ‘membership set theory’, whereas BST stands for
‘Boolean set theory’.
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The paper is organized as follows. Preliminarily, in Section 2, we introduce the
syntax and semantics of the fragment MST(∪,∩, \,∈, /∈) of our interest. Then, in
Section 3, we provide polynomial decision procedures for its maximal polynomial
subfragments MST(∪,∈, /∈), MST(∪,∈, /∈), and MST(∪,∩, \, /∈), whereas in Sec-
tion 4 we prove the NP-completeness of its minimal NP-complete subfragments
MST(∪,∩,∈) and MST(\,∈). Section 5 contains some closing considerations and
hints for future investigations.

2 Syntax and Semantics

The fragments of set theory of which in this paper we are investigating the
satisfiability problem are parts, syntactically delimited, of the quantifier-free
language MST(∪,∩, \,∈, /∈). This is the collection of all conjunctions of literals
of the two types s ∈ t and s /∈ t, where s and t stand for terms built up from a
denumerably infinite supply of set variables x1, x2, x3, . . . by means of the Boolean
set operators of union ∪, intersection ∩, and set difference \.

More generally, we shall denote by MST(op1, . . . , pred1, . . .) the subtheory of
MST(∪,∩, \,∈, /∈) involving exactly the set operators op1, . . . (drawn from the
set {∪,∩, \}) and the predicate symbols pred1, . . . (drawn from the set {∈, /∈}).

For any MST(∪,∩, \,∈, /∈)-conjunction ϕ, we shall denote by Vars(ϕ) the
collection of set variables occurring in ϕ; Vars(τ) is defined likewise, for any
term τ .

A set assignment M is any function sending a collection of set variables V
(called the domain of M and denoted dom(M)) into the von Neumann universe V
of well-founded sets. We recall that the von Neumann universe (see [13, pp. 95–
102]) is built up in stages as the union V :=

⋃
α∈OnVα of the levels Vα :=⋃

β<αP(Vβ), with α ranging over the class On of all ordinal numbers, where
P(·) is the powerset operator. For any set S ∈ V, the least ordinal α such
S ⊆ Vα is the rank of S, denoted rk (S).

To shorten proofs, we shall sometimes make use of urelements in the defi-
nition of set assignments. These are objects that do not own any element and
yet are distinct from the empty set (and, therefore, from any set) and distinct
among them. However, in all cases under consideration, it will always be possible,
without disrupting the correctness of any of the proofs, to replace all urelements
by ‘proper’ sets, all of which either sharing the same sufficiently high rank, or
having a conveniently large cardinality.

Natural designation rules attach recursively a value to every term τ of
MST(∪,∩, \,∈, /∈) such that Vars(τ) ⊆ dom(M), for any set assignment M ;
here is how:
M(s ∪ t) := Ms ∪Mt, M(s ∩ t) := Ms ∩Mt, and M(s \ t) := Ms \Mt.

We also put: M(s ∈ t) = true ↔ Ms ∈ Mt and M(s /∈ t) := ¬M(s ∈ t),
and then, recursively, M(ϕ∧ψ) := Mϕ∧Mψ, when ϕ,ψ are MST(∪,∩, \,∈, /∈)-
conjunctions such that Vars(ϕ ∧ ψ) ⊆ dom(M).

For convenience, we shall represent terms of the form x1 ∪ . . . ∪ xh and
y0 ∩ . . . ∩ yk as

⋃
{x1, . . . , xh} and

⋂
{y0, . . . , yk}, respectively. Thus, for a set
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assignment M and a finite nonempty collection of set variables L ⊆ dom(M), we
shall have M(

⋃
L) =

⋃
x∈LMx and M(

⋂
L) =

⋂
x∈LMx. We also put ML =

{Mx | x ∈ L}, so that M(
⋃
L) =

⋃
ML and M(

⋂
L) =

⋂
ML hold.

Given a conjunction ϕ of MST(∪,∩, \,∈, /∈) and a set assignmentM such that
Vars(ϕ) ⊆ dom(M), we say that M satisfies ϕ, and write M |= ϕ, if Mϕ = true.
When M satisfies ϕ, we say that M is a model of ϕ.

A conjunction ϕ is satisfiable if it has some model, otherwise it is unsatisfiable.
Any two conjunctions ϕ and ψ are equisatisfiable if they are either both satisfiable
or both unsatisfiable.

Since MST(∪,∩, \,∈, /∈) is a subtheory of MLS, it plainly has a solvable
satisfiability problem, namely there is an algorithm (called a decision procedure
or a satisfiability test) that, for any given conjunction ϕ of MST(∪,∩, \,∈, /∈),
establishes in an effective manner whether ϕ is satisfiable or not.

In the following sections, we shall find out the maximal polynomial and the
minimal NP-complete fragments of MST(∪,∩, \,∈, /∈).

Remark 1. Our complexity results will implicitly refer to linearly bounded sub-
classes of MST(∪,∩, \,∈, /∈), whose conjunctions ϕ meet the condition

max{j | xj ∈ Vars(ϕ)} −min{j | xj ∈ Vars(ϕ)} = O(|ϕ|). (1)

For instance, it is immediate to see that the class of all MST(∪,∩, \,∈, /∈)-
conjunctions ϕ such that Vars(ϕ) = {x1, . . . , x|Vars(ϕ)|} is linearly bounded. For
lists Lϕ of sets of variables occurring in any conjunction ϕ belonging to some
linearly bounded subclass of MST(∪,∩, \,∈, /∈), it turns out that the duplicates
of Lϕ can be detected in linear time O(|ϕ|).

3 The maximal polynomial fragments of
MST(∪,∩, \,∈, /∈)

The maximal polynomial fragments of MST(∪,∩, \,∈, /∈) are MST(∪,∈, /∈),
MST(∩,∈, /∈), and MST(∪,∩, \, /∈), whose satisfiability problems can be solved
in linear, quadratic, and constant time, respectively.

3.1 The fragment MST(∪,∈, /∈)

We prove that the satisfiability problem for MST(∪,∈, /∈)-conjunctions admits a
linear-time solution by first showing that MST(∪,∈) is linear and then proving
that the satisfiability problem for MST(∪,∈, /∈) can be reduced in linear time to
that for MST(∪,∈).

A linear-time satisfiability test for MST(∪,∈) To start with, we provide
a decision procedure for MST(∪,∈) and then prove that it runs in linear time in
the size of the input formula.
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Theorem 1. Let ϕ be a MST(∪,∈)-conjunction of the form
∧p
i=1

⋃
Li ∈

⋃
Ri,

where the Li’s and the Ri’s are finite nonempty collections of set variables. Then:

(a) if ≺ is a linear ordering of Vars(ϕ) satisfying the condition

max(Li,≺) ≺ max(Ri,≺), for i = 1, . . . , p, (2)

then ϕ has a model M such that

(a1) Mx = {ux} ∪ {
⋃
MLi | x = max(Ri,≺), for i = 1, . . . , p}, where the

ux’s are pairwise distinct urelements; and
(a2)

⋃
ML /∈ Mx, for every L ⊆ Vars(ϕ) and x ∈ Vars(ϕ) fulfilling the

condition p∧
i=1

(L = Li −→ x /∈ Ri); (3)

(b) if ϕ is satisfiable, then there is a linear ordering ≺ of Vars(ϕ) such that
condition (2) holds.

Hence, the satisfiability problem for MST(∪,∈)-conjunctions is solvable.

Proof. Let us first assume that there is a linear ordering ≺ of Vars(ϕ) such that
(2) holds. Following the ordering ≺, for x ∈ Vars(ϕ) we put

Mx := {ux} ∪
{⋃

MLi | x = max(Ri,≺), i = 1, . . . , p
}
, (4)

where the ux are pairwise distinct urelements. For any literal
⋃
Li ∈

⋃
Ri in ϕ,

with i ∈ {1, . . . , p}, setting xi := max(Ri,≺), we have
⋃
MLi ∈ Mxi ⊆

⋃
MRi,

so that M |=
⋃
Li ∈

⋃
Ri. Thus, M models correctly all conjuncts of ϕ, and

it plainly satisfies condition (a1). In fact, also condition (a2) is true for M .
Preliminarily, we observe that we clearly have⋃

ML =
⋃
ML′ if and only if L = L′, (5)

for L,L′ ⊆ Vars(ϕ), as the urelements in
⋃
ML are the same as those in

⋃
ML′

if and only if L = L′. Next, let L ⊆ Vars(ϕ) and x ∈ Vars(ϕ) be such that∧p
i=1(L = Li −→ x /∈ Ri) holds, but assume, by way of contradiction,

⋃
ML ∈

Mx. Then, by (5) and (4), L = Li0 for some i0 ∈ {1, . . . , p} such that x =
max(Ri0 ,≺) ∈ Ri0 , contradicting (3). Therefore M satisfies condition (a2) too.

Concerning condition (b), let us now assume that our conjunction ϕ is satis-
fiable, and let M be a model of ϕ. Also, let ≺ be any linear ordering of Vars(ϕ)
such that

rk
(
Mx

)
< rk

(
My

)
−→ x ≺ y, for x, y ∈ Vars(ϕ), (6)

Let us check that (2) holds for the ordering ≺. Let i ∈ {1, . . . , p}. Therefore⋃
MLi ∈

⋃
MRi, so that Ri 6= ∅. Hence if Li = ∅, max(Li,≺) ≺ max(Ri,≺)

holds trivially. On the other hand, if Li 6= ∅, we have:
max{rk

(
Mx

)
| x ∈ Li} = rk

(⋃
MLi

)
< rk

(⋃
MRi

)
= max{rk

(
Mx

)
| x ∈ Ri},

so that, by (6), max(Li,≺) ≺ max(Ri,≺) holds also in this case. Therefore, (2)
holds, completing the proof of (b).

Conditions (a) and (b) yield that the conjunction ϕ is satisfiable if and only if
there is a linear ordering ≺ of Vars(ϕ) satisfying (2), from which the decidability
of the satisfiability problem for MST(∪,∈) readily follows.
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Towards a linear satisfiability test for MST(∪,∈), we derive next two condi-
tions, which can be tested in linear time and whose conjunction is equivalent to
(2). To begin with, in connection with any formula ϕ of MST(∪,∈), we define
the left-variables (resp., right-variables) of ϕ as those variables in ϕ occurring
in the left-hand side L (resp., right-hand side R) of some literal

⋃
L ∈

⋃
R in ϕ.

Right-variables of ϕ that are not left-variables are called proper right-variables.
Let now ϕ be any satisfiable MST(∪,∈)-conjunction and let ≺ be any linear

ordering of Vars(ϕ) fulfilling condition (2). Plainly, no left-variable in ϕ can be
≺-maximal. Hence

(A) ϕ has some proper right-variable.

In addition, by letting ϕ− be the result of dropping from ϕ all conjuncts that
involve some proper right-variable, we clearly have

(B) ϕ− is satisfiable.

It turns out that conditions (A) and (B) are also sufficient for the satisfiability
of ϕ. Indeed, assume that conditions (A) and (B) hold for a given MST(∪,∈)-
conjunction ϕ, and let≺− be a linear ordering of Vars(ϕ−) fulfilling condition (2)
of Lemma 1 as applied to ϕ−. Then, any extension ≺ of ≺− to a linear ordering of
Vars(ϕ−) such that x ≺ y, for every left-variable x and proper right-variable y of
ϕ, fulfils condition (2) of Lemma 1 as applied to ϕ, proving that the conjunction
ϕ is satisfiable.

The above considerations readily yield the following satisfiability test for
MST(∪,∈):

Algorithm 1 Satisfiability tester for MST(∪,∈)

while ϕ contains some proper right-variable do
drop from ϕ all the conjuncts involving some proper right-variable;

if ϕ is the empty conjunction then
return “satisfiable”;

else
return “unsatisfiable”;

A straightforward implementation of Algorithm 1 is quadratic. An alterna-
tive implementation consists in counting the number of left-occurrences of each
variable x ∈ Vars(ϕ), while also maintaining, for each right-variable y in ϕ, the
list of the conjuncts containing y. Variables with a zero counter are exactly the
proper right-variables. While the conjunction ϕ contains right-variables with a
zero counter, drop from it all conjuncts containing some right-variable with a
zero counter and, accordingly, decrement the counters of the left-occurrences in
the dropped conjuncts. If eventually one ends up with the empty conjunction,
then the initial conjunction ϕ is declared satisfiable. Otherwise, ϕ is declared
unsatisfiable.

It is not hard to see that the above implementation has a linear-time com-
plexity. Hence, we have:

Theorem 2. The satisfiability problem for MST(∪,∈) can be solved in linear
time.
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A linear-time reduction of MST(∪,∈, /∈) to MST(∪,∈) We shall now
prove that the satisfiability problem for MST(∪,∈, /∈) can be reduced in linear
time to that of MST(∪,∈), thereby yielding a linear-time decision procedure for
the satisfiability problem of the extended fragment MST(∪,∈, /∈).

Lemma 1. The satisfiability problem for MST(∪,∈, /∈) can be reduced in linear
time to that for MST(∪,∈).

Proof. Let ϕ be a conjunction of MST(∪,∈, /∈) of the form∧p
i=1

⋃
Li ∈

⋃
Ri ∧

∧n
j=p+1

⋃
Lj /∈

⋃
Rj ,

where the Li’s and Ri’s are finite collection of set variables. For each i = 1, . . . , p,
let

R′i := Ri \
⋃
{Rj | Lj = Li, for j = p+ 1, . . . , n}, (7)

and put ϕ′ :=

{∧p
i=1

⋃
Li ∈

⋃
R′i if no R′i is empty

x0 ∈ x0 otherwise,

for a fixed, but otherwise arbitrary, set variable x0. It is an easy matter to verify
that if ϕ is satisfiable, then (ϕ′ ≡

∧p
i=1

⋃
Li ∈

⋃
R′i and) any model for ϕ is also

a model for ϕ′, i.e., |= ϕ −→ ϕ′.
Conversely, if ϕ′ is satisfiable (and therefore ϕ′ ≡

∧n
i=1

⋃
Li ∈

⋃
R′i), then,

by Theorem 1(b), there is a linear ordering ≺ of Vars(ϕ′) fulfilling condition (2)
and in addition, by Theorem 1(a), the conjunction ϕ′ has a model M satisfying
conditions (a1) and (a2) of the same theorem. We extend M to the variables
x ∈ Vars(ϕ) \ Vars(ϕ′), if any, by setting Mx := {ux}, where the ux’s are
pairwise distinct urelements new to the assignment M . Since

⋃
MR′i ⊆

⋃
MRi,

for i = 1, . . . , p, we plainly have M |=
∧p
i=1

⋃
Li ∈

⋃
Ri, namely M satisfies all

the positive conjuncts of ϕ.
Let us now show that M satisfies the negative part

∧n
j=p+1

⋃
Lj /∈

⋃
Rj of ϕ

as well. Indeed, if this were not the case, there would exist a j ∈ {p+ 1, . . . , n}
and a variable x ∈ Rj such that

⋃
MLj ∈Mx. Since

⋃
MLj is not a urelement,

Mx would contain some set and therefore x ∈ Vars(ϕ′). Thus, by condition
(a1) of Theorem 1, Mx = {ux} ∪

{⋃
MLi | x = max(R′i,≺), for i = 1, . . . , p

}
,

and so we would have
⋃
MLj =

⋃
MLi, for some i ∈ {1, . . . , p} such that

x = max(R′i,≺), so that x ∈ R′i. The pairwise distinctness of the urelements
would yield Lj = Li. Hence, by (7), x /∈ R′i, a contradiction.

In conclusion, M must also satisfy the negative part
∧n
j=p+1

⋃
Lj /∈

⋃
Rj of

ϕ, and thus, in view of M |=
∧p
i=1

⋃
Li ∈

⋃
Ri seen above, M satisfies ϕ.

Summing up, we have proved that if ϕ′ is satisfiable, so is ϕ, which, in view
of |= ϕ −→ ϕ′ observed above, yields the equisatisfiability of ϕ and ϕ′.

To complete the proof, it is enough to observe that the conjunction ϕ′ can
be constructed in O(|ϕ|) time, where |ϕ| denotes the size of ϕ, using a suitable
linear time algorithm to detect the duplicates in the list of sets L1, . . . , Ln.

In view of Theorem 2, Lemma 1 yields the following complexity result:

Theorem 3. The satisfiability problem for MST(∪,∈, /∈) can be solved in linear
time.
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3.2 The fragment MST(∩,∈, /∈)

Let ϕ be a MST(∩,∈, /∈)-conjunction of the form
p∧
i=1

⋂
Li ∈

⋂
Ri ∧

∧̀
j=p+1

⋂
Lj /∈

⋂
Rj , (8)

where the Lu’s and the Ru’s are nonempty finite collections of set variables, for
u = 1, . . . , `. We shall denote by ϕ+ and ϕ− the positive part

∧p
i=1

⋂
Li ∈

⋂
Ri

and the negative part
∧`
j=p+1

⋂
Lj /∈

⋂
Rj of ϕ, respectively. For decidability

purposes and without loss of generality, we may assume that the following con-
ditions hold for ϕ:
(C0) the positive part ϕ+ of ϕ is nonempty, namely p ≥ 1,
(C1) Lh 6= Li, for any two distinct h, i ∈ {1, . . . , p}.
Indeed, as for (C0), if the positive part of ϕ were empty, then ϕ would be always
satisfiable (e.g., ϕ would be satisfied by the null assignment M∅ over Vars(ϕ),
which maps every set variable in ϕ to the empty set ∅). In addition, without
disrupting satisfiability, condition (C1) can be enforced by replacing, for each
set of variables L ∈ {L1, . . . , Lp}, the collection of conjuncts

⋂
Li ∈

⋂
Ri in ϕ+

such that Li = L by the single conjunct
⋂
L ∈

⋂
R, where R :=

⋃
{Ri | Li =

L, for i = 1, . . . , p}, since |=
⋂{⋂

Ri | Li = L, for i = 1, . . . , p
}

=
⋂
R.

Notice that the duplicates in the list of sets L1, . . . , Lp can be suitably de-
tected in linear time, and therefore condition (C1) can be enforced in timeO(|ϕ|).

Theorem 4. Let ϕ be a MST(∩,∈, /∈)-conjunction of the form (8) and fulfilling
conditions (C0) and (C1). Then ϕ is satisfiable if and only if the following two
conditions hold:
(a) Li = Lj −→ Rj * Ri,

for i = 1, . . . , p and j = p+ 1, . . . , `;
(b) there is an indexing of the conjuncts of ϕ+ such that, for h, i = 1, . . . , p,

Li ⊆ Rh −→ h < i. (9)

Proof. (Necessity). Let us first assume that ϕ is satisfiable, and let M |= ϕ.
Concerning condition (a), let Li = Lj , for some i ∈ {1, . . . , p} and j ∈

{p+ 1, . . . , `}. Hence we have
⋂
MLi ∈

⋂
MRi \

⋂
MRj , so Rj * Ri must hold.

As for condition (b), any indexing of the conjuncts of the positive part ϕ+

of ϕ such that
rk (
⋂
MLh) < rk (

⋂
MLi) −→ h < i, (10)

for h, i = 1, . . . , p, satisfies (9), since, for h, i = 1, . . . , p,

Li ⊆ Rh −→
⋂
MLh ∈

⋂
MRh ⊆

⋂
MLi

−→ rk
(⋂

MLh

)
< rk

(⋂
MLi

)
−→ h < i.

(Sufficiency). Conversely, let us assume that conditions (a) and (b) of the theo-
rem hold for ϕ.

A pair of (distinct) indices u, v ∈ {1, . . . , `} such that Lu 6= Lv is said to be
R+-indistinguishable (w.r.t. ϕ) if Lu ⊆ Ri ←→ Lv ⊆ Ri, for every i = 1, . . . , p.
Otherwise, we say that the pair u, v is R+-distinguishable.
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For each R+-indistinguishable pair u, v, we set
kuv := min

(
{u | Lu * Lv} ∪ {v | Lv * Lu}

)
,

and let kuv be the index such that {kuv, kuv} = {u, v}, so that Lkuv
* Lkuv .

Also, we let K be the collection of all the kuv’s so defined.
Next, with each k ∈ K we associate a distinct urelement uk, and put recur-

sively, for v = 1, . . . , `:

Ii := {Iu | Lv ⊆ Ri, for i = 1, . . . , p} ∪ {uk | Lv ⊆ Lk, for k ∈ K}. (11)

We also put, for x ∈ Vars(ϕ):

Mx := {Ii | x ∈ Ri, for i = 1, . . . , p} ∪ {uk | x ∈ Lk, for k ∈ K}. (12)

The rest of the proof is devoted to showing that the assignment M just
defined satisfies ϕ. We shall use the following claims, whose proofs are omitted
for lack of space.

Claim 1. Lu = Lv ←→ Iu = Iv, for u, v = 1, . . . , `.

Claim 2. If Iu ∈
⋂
MS, where u ∈ {1, . . . , `} and S ⊆ Vars(ϕ), then S ⊆ Ri,

for some i ∈ {1, . . . , p} such that Li = Lu.

Claim 3.
⋂
MLv = Iv, for v = 1, . . . , `.

We start with the positive conjuncts. Thus, let
⋂
Li ∈

⋂
Ri be any positive

conjunct in ϕ, with i ∈ {1, . . . , p}. By Claim 3,
⋂
MLi = Ii. In addition, by

(12), Ii ∈ Mx for every x ∈ Ri, and therefore
⋂
MLi = Ii ∈

⋂
MRi, proving

that M models correctly the conjunct
⋂
Li ∈

⋂
Ri, and in turn all the positive

conjuncts of ϕ.
Next, we show that also the negative conjuncts of ϕ are satisfied by M . To

this purpose, let
⋂
Lj /∈

⋂
Rj be any negative conjunct in ϕ, with j ∈ {p +

1, . . . , `}. Again by Claim 3,
⋂
MLj = Ij . By way of contradiction, assume

that
⋂
MLj ∈

⋂
MRj , namely Ij ∈

⋂
MRj . Then, by Claim 2, Rj ⊆ Ri and

Lj = Li for some i ∈ {1, . . . , p}, contradicting condition (a) of the theorem.
Thus

⋂
MLj /∈

⋂
MRj , proving that M satisfies also the negative conjuncts of

ϕ. Hence, M satisfies the conjunction ϕ.

Complexity issues The complexity of the satisfiability problem for MST(∩,∈
, /∈) can be estimated as follows. Given a MST(∩,∈, /∈)-conjunction of the form
(8), condition (a) of Theorem 4 can be tested in O(ϕ) time by detecting the
duplicates in the list of sets L1, . . . , Lp. Next, we observe that condition (b) of
Theorem 4 is equivalent to the aciclicity of the oriented graphGϕ+ = (Vϕ+ , Eϕ+),
where Vϕ+ := {1, . . . , p} and Eϕ+ := {(h, i) | Li ⊆ Rh, for i, h ∈ Vϕ+}. The
graph Gϕ+ can be constructed in time O(p · |ϕ+|) and its aciclicity tested in time
O(p2). Hence, condition (b) can be tested in time O(p · |ϕ+|), yielding an overall
time complexity O(p · |ϕ+|+ |ϕ|) for the satisfiability problem of MST(∩,∈, /∈).

Summing up:

Lemma 2. The satisfiability problem for MST(∩,∈, /∈)-conjunctions can be solved
in quadratic time.
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3.3 The trivial fragment MST(∪,∩, \, /∈)

Since any MST(∪,∩, \, /∈)-conjunction ϕ is trivially satisfied by the null assign-
ment M∅ over Vars(ϕ), defined by M∅x = ∅ for every x ∈ Vars(ϕ), we readily
have:

Theorem 5. The satisfiability problem for the fragment MST(∪,∩, \, /∈) can be
solved in constant time.

4 The minimal NP-complete fragments

4.1 The fragment MST(∪,∩,∈)

We shall prove that the satisfiability problem for MST(∪,∩,∈)-conjunctions is
NP-complete by reducing the problem 3-SAT to it.

Let F :=
∧m
i=1(Li1 ∨ Li2 ∨ Li3) be an instance of 3-SAT, where the Lij ’s are

propositional literals, and let P1, . . . , Pn be the distinct propositional variables
occurring in F . Also, let x,X1, X1, . . . , Xn, Xn be 2n+ 1 distinct set variables.
For i = 1, . . . ,m, j = 1, 2, 3, and k ∈ {1, . . . , n} such that Lij ∈ {Pk, 6= Pk}, put

Tij := if Lij = Pk then Xk else Xk endif .
Finally, let

ΦF :=
∧m
i=1(x ∈ Ti1 ∪ Ti2 ∪ Ti3) ∧

∧n
k=1(x ∈ Xk ∪Xk ∧ Xk ∩Xk ∈ x).

Theorem 6. A 3-SAT instance F is propositionally satisfiable if and only if the
corresponding MST(∪,∩,∈)-conjunction ΦF is satisfied by a set assignment.

Proof. (Necessity). To begin with, let us assume that F is propositionally sat-
isfiable, and let v be a Boolean valuation that satisfies it. Let Mv be the set
assignment induced over Vars(ΦF ) by v and defined as follows, for k = 1, . . . , n:
MvXk := if v(Pk) = true then {{∅}} else ∅ endif and MvXk := {{∅}} \
MvXk, and such that Mvx := {∅}. Hence, Mv(Xk ∪Xk) = {{∅}} and Mv(Xk ∩
Xk) = ∅ for each k, so that Mv |=

∧n
k=1(x ∈ Xk ∪Xk ∧ Xk ∩Xk ∈ x).

Let i ∈ {1, . . . ,m}. Since, by hypothesis, v satisfies F , then v(Li1 ∨ Li2 ∨
Li3) = t, so that v(Liji) = t for some ji ∈ {1, 2, 3}. Let k ∈ {1, . . . , n} be such
that Liji ∈ {Pk,¬Pk}. If Liji = Pk, then v(Pk) = t and Tiji = Xk, so that
MvTiji = {{∅}}. On the other hand, if Liji = ¬Pk, then v(Pk) = f and Tiji =
Xk; hence, again, MvTiji = {{∅}}. Thus, Mvx = {∅} ∈ {{∅}} = Mv(Tiji) ⊆
Mv(Ti1 ∪ Ti2 ∪ Ti3), proving that Mv satisfies the literal x ∈ Ti1 ∪ Ti2 ∪ Ti3.

The arbitrariness of i ∈ {1, . . . ,m}, together with Mv |=
∧n
k=1(x ∈ Xk ∪

Xk ∧ Xk ∩Xk ∈ x) proved before, yields that the set assignment Mv satisfies
the conjunction ΦF corresponding to F .

(Sufficiency). Let us now assume that the MST(∪,∩,∈)-conjunction ΦF is satisfi-
able, and let M be a set assignment that satisfies it. Then, for each k = 1, . . . , n,
we have Mx ∈ MXk ∪ MXk ∧ MXk ∩ MXk ∈ Mx, and therefore Mx /∈
MXk ∩MXk. Hence, either Mx ∈ MXk or Mx ∈ MXk, but not both. We
now define a Boolean valuation vM induced on P1, . . . , Pn by the set assignment
M , by putting, vM (Pk) := M(x ∈ Xk), for k = 1, . . . , n. Since M |= ΦF , then
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M |=
∧m
i=1 x ∈ Ti1 ∪ Ti2 ∪ Ti3. Let i ∈ {1, . . . ,m}. Then Mx ∈ MTiji for some

ji ∈ {1, 2, 3}. Let k ∈ {1, . . . , n} be such that Tiji ∈ {Xk, Xk}. If Tiji = Xk, then
Liji = Pk and vM (Pk) = t. On the other hand, if Tiji = Xk, then Liji = ¬Pk
and vM (Pk) = f. In any case, vM (Liji) = t, and so vM (Li1 ∨Li2 ∨Li3) = t. The
arbitrariness of i ∈ {1, . . . ,m} yields that the Boolean valuation v satisfies the
3-SAT instance F .

From the previous theorem, and since the conjunction ΦF corresponding to
F can be constructed in time O(|F |), we can conclude that

Lemma 3. The satisfiability problem for MST(∪,∩,∈)-conjunctions is NP-complete.

4.2 The fragment MST(\,∈)

We shall prove that the satisfiability problem for MST(\,∈)-conjunctions is NP-
complete by reducing the 3-SAT problem to it.

Thus, let F :=
∧m
i=1(Li1 ∨ Li2 ∨ Li3) be an instance of 3-SAT, where

the Lij ’s propositional literals, and let P1, . . . , Pn be the distinct propositional
variables occurring in F . Also, let x,X,X1, . . . , Xn be n+2 distinct set variables.
For i = 1, . . . ,m, j = 1, 2, 3, and k ∈ {1, . . . , n} such that Lij ∈ {Pk,¬Pk}, let
Tij := if Lij = Pk then Xk else X \Xk endif. Finally, put

ΦF :=
∧m
i=1(X \ Ti1 \ Ti2 \ Ti3) ∈ x ∧ x ∈ X.

Theorem 7. A 3-SAT instance F is propositionally satisfiable if and only if the
MST(\,∈)-formula ΦF is satisfied by a set assignment.

Proof. (Necessity). First, let us assume that F is propositionally satisfiable, and
let v be a Boolean valuation over P1, . . . , Pn that satisfies F . We define the set
assignment Mv, induced over Vars(ΦF ) by v, by setting:

MvX := {{∅}}, Mvx := {∅}, MvXk :=

{
{{∅}} if v(Pk) = t

∅ otherwise,

for k = 1, . . . , n. Plainly Mvx ∈ MvX. Let i ∈ {1, . . . ,m}. As, by hypothesis,
the Boolean valuation v satisfies F , then v(Li1 ∨ Li2 ∨ Li3) = t, so that there
exists a ji ∈ {1, 2, 3} such that v(Liji) = t. Let k ∈ {1, . . . , n} be such that
Liji ∈ {Pk,¬Pk}. If Liji = Pk, then v(Pk) = t and Tij = Xk, so that MvTiji =
{{∅}}. On the other hand, if Liji = ¬Pk, then v(Pk) = f and Tiji = X \Xk and
MvXk = ∅, and again MvTiji = {{∅}}. Hence,

MvX\MvTi1\MvTi2\MvTi3 = MvX\(MvTi1∪MvTi2∪MvTi3) = ∅ ∈ {∅} = Mvx.

Thus, the arbitrariness of i ∈ {1, . . . ,m} together with Mvx ∈MvX yields that
the induced set assignment Mv satisfies ΦF .

(Sufficiency). Next, let us assume that the MST(\,∈)-conjunction ΦF corre-
sponding to F is satisfiable, and let M be a set assignment over its variables



12 Domenico Cantone and Pietro Maugeri

that satisfies it, so that Mx ∈MX holds. We define the Boolean valuation vM ,
induced on P1, . . . , Pn by M , by setting vM (Pk) := M(x ∈ Xk) and prove that
it satisfies the 3-SAT instance F . Thus, let i ∈ {1, . . . ,m}. Since M |= ΦF , it
holds that M |= X \ Ti1 \ Ti2 \ Ti3 and therefore

MX \ (MTi1 ∪MTi2 ∪MTi3) = MX \MTi1 \MTi2 \MTi3 ∈Mx ∈MX.

Hence, the well-foundedness of ∈ yields that Mx /∈MX \ (MTi1∪MTi2∪MTi3)
must hold, so that Mx ∈ MTi1 ∪MTi2 ∪MTi3 must hold as well. From the
latter, it follows that vM (Li1 ∨ Li2 ∨ Li3) = t. Finally, by the arbitrariness of
i ∈ {1, . . . ,m}, we have that vM (F ) = t, proving that F is satisfiable.

Since the formula ΦF can be constructed in time O(|F |), for any given 3-SAT
instance F , from the previous theorem we immediately conclude that

Lemma 4. The satisfiability problem for MST(\,∈), is NP-complete.

\ ∪ ∩ ∈ /∈ Complexity

? ? NP-complete

? ? ? NP-complete

? ? ? O(n)

? ? ? O(n2)

? ? ? ? constant

Table 1. Maximal polynomial and minimal NP-complete fragments of MST(\,∪,∩,∈, /∈)

5 Conclusions

With in mind applications in automated proof checking with verifiers based on
the set-theoretic formalism, in this paper we identified the maximal polyno-
mial and the minimal NP-complete sublanguages of the fragment of set theory
MST(∪,∩, \,∈, /∈), as reported in Table 1. These allow one to easily pinpoint
the 14 polynomial fragments (of which 2 are quadratic, 4 are linear, and 8 are
constant) and the 10 NP-complete fragments among the 24 sublanguages of
MST(∪,∩, \,∈, /∈).

We plan to extend our analysis when also the singleton operator {·}, the
Boolean relators ⊆, 6⊆,=, 6=, and the predicates ‘· = ∅’ and ‘Disj(·, ·)’ (both
affirmed and negated) are allowed. A library of the related polynomial decision
tests will then be implemented and integrated within the inferential core of the
ÆtnaNova proof-checker.
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