
On the Semantic Equivalence of
Language Syntax Formalisms

Samuele Buro and Isabella Mastroeni

Department of Computer Science, University of Verona,
Strada le Grazie 15, 37134 Verona, Italy

{samuele.buro,isabella.mastroeni}@univr.it

Abstract. Several formalisms for language syntax specification exist in
literature. In this paper, we prove that longstanding syntactical transfor-
mations between context-free grammars and algebraic signatures give rise
to adjoint equivalences that preserve the abstract syntax of the generated
terms. The main result is a categorical equivalence between the categories
of algebras (i.e., all the possible semantics) over the objects in these
formalisms up to the provided syntactical transformation, namely that all
these frameworks are essentially the same from a semantic perspective.

Keywords: Syntax specification · Algebraic signatures · Context-free
grammars · Equivalence

1 Introduction

Several formalisms for language syntax specification exist in literature [19]. Among
them, formal grammars [3,5,12] and algebraic signatures [4,10,7] have played
and still play a pivotal role. The former are widely used to define syntax of
programming languages [17], notably due to compelling results on context-free
parsing techniques [5,18,13]. The latter provide an algebraic approach to syntax
specification, and they are ubiquitous in the fields of universal algebra [4], model
theory [2], and logics in general.

In this paper, we narrow the focus to three different syntax formalisms:
context-free grammars (Grm), many-sorted signatures (Sig), and order-sorted
signatures (Sig≤). The aim is to provide mappings between these frameworks
(see Figure 1) able to translate language syntax specifications from one formalism
to another without altering their classes of semantics. Put differently, if A is a
semantics for an object X and ΥX is its conversion to another formalism, we
shall find a semantics B for ΥX such that for each term t in X , JtKA = JΥ (t)KB

holds, where Υ (t) is the conversion of the term t from X to ΥX .
Formally, this requires two constraints: (1) each syntactical transformation Υ

shall preserve the abstract syntax of terms, and (2) it must exist a categorical
equivalence between the categories of algebras Alg(X) and Alg(ΥX).

Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

2 S. Buro and I. Mastroeni

Grm Sig Sig≤
∆

V∇

Λ

Fig. 1. An informal overview of the mappings between the different syntax formalisms.

The mathematical links between these different frameworks have already
been partially studied in literature. Goguen et al. [8] provide a definition of
∆ : Grm→ Sig that yields an isomorphism between the sets of terms (i.e., the
term algebras) over G and its conversion to many-sorted signature ∆G, and
conversely the definition of ∇ : Sig→ Grm that makes the term algebras over
S and ∇S isomorphic (the proofs are outlined in detail in [20]). Other results on
the subject are given in [7]. The authors provide a definition of Λ : Sig≤ → Sig
that gives rise to an equivalence between the categories of algebras over an
order-sorted signature S and its many-sorted conversion ΛS. Both these results
of [8,7] are an instance of the aim of this paper, as we will prove later.

In the following sections, we unify and broaden such results in a more general
settings. We model Grm, Sig, and Sig≤ as the categories whose objects are
grammars, many- and order-sorted signatures, respectively (Sections 2.1 and 2.2).
Arrows between objects in the same category are morphisms preserving the
abstract syntax [14]. This is a fundamental point: According to [6], “the essential
syntactical structure of programming languages is not that given by their concrete
or surface syntax [. . .]. Rather, the deep structure of a phrase should reflect
its semantic import”. This viewpoint is also made explicit in [8,15] where the
semantics of a language is defined by the unique homomorphism from the initial
algebra (i.e., the abstract syntax) to another algebra in the same category.

The mappings from one formalism to another are therefore defined in terms
of functors between the respective categories. Since the naturality of such con-
structions, the adjoint nature of these functors is then investigated, discussing
their semantic implications over the categories of algebras (Sections 3 and 4).

Contributions. The first contribution of this paper is the categorical equivalence
of three different formalisms for syntax specification. In particular, we prove that
some longstanding syntactical transformations between context-free grammars
and many-sorted signatures and between many-sorted signatures and order-sorted
signatures give rise to adjoint equivalences that preserve the abstract syntax of
the generated terms (Theorems 1 and 4). Moreover, we broaden some already
known results of [8,7,20] and show that the aforementioned syntactical transfor-
mations preserve — up to an equivalence1 — the categories of algebras over the
objects in their respective formalisms (Theorems 2, 3, and 5). The conclusion is
twofold: Every categorical property and construction can be shifted between these
frameworks; and all these formalisms are essentially the same from a semantic
perspective.

1 Some of these equivalences are presented as isomorphisms of categories. It is well-
known that an isomorphism of categories is a strong notion of categorical equivalence
where functors compose to the identity.

On the Semantic Equivalence of Language Syntax Formalisms 3

2 Formalisms for Language Syntax Specification

In this section, we provide a brief presentation of the three syntax formalisms
discussed in the rest of the article. Their technical aspects are deferred to the
next subsections.

The most popular formalism to specify languages are context-free grammars.
They enable language designers to easily handle both abstract and concrete
aspects of the syntax by combining terminal symbols with syntactic constituents
of the language through production rules. Several definitions of context-free
grammars exist in literature [20,16]. Here, we are following [8] (or, the so-called
algebraic grammars in [16]) and, for the sake of succintness, we sometimes refer
to them simply as grammars.

Although grammars are an easy-to-use tool for syntax specification, signatures
provide a more algebraic approach to language definition. The concept of many-
sorted signature arose in [10] in order to lift the theory of (full) abstract algebras
in case of partially defined operations. From the language syntax perspective,
signatures allow the specification of sorted operators, which in turn provide a
basis for an algebraic construction of the language semantics. In the rest of the
paper, we follow the exposition of [8] and [1] on this subject.

The last formalism considered here are order-sorted signatures [7]. They are
built upon many-sorted signatures to which they add an explicit treatment of
polymorphic operators. Their main aim is to provide a basis on which to develop
an algebraic theory to handle several types of polymorphism, multiple inheritance,
left inverses of subsort inclusion (retracts), and complete equational deduction.

Basic Notions and Notations. If f : A → B is a function defined by cases, we
sometimes use the conditional operator f(a) = (P (a) ? b1 : b0) as a shorthand
for f(a) = b1 if the predicate P holds for a and b0 otherwise. If A and B are two
sets and f : A→ B is a function, we denote by f∗ : A∗ → B∗ the unique monoid
homomorphism induced by the Kleene closure on the sets A and B extending the
function f , i.e., f∗(a1 . . . an) = f(a1) . . . f(an). Given a set of sorts S, an S-sorted
set A is a family of sets indexed by S, i.e., A = {As|s ∈ S}.2 If A is an S-sorted set,
we denote by

⋃
A the union of all its sorted components, i.e.,

⋃
s∈S As. Similarly,

an S-sorted function f : A→ B is a family of functions f = {fs : As → Bs|s ∈ S}
In addition, if A is an S-sorted set and w = s1 . . . sn ∈ S+, we denote by Aw
the cartesian product As1 × · · · × Asn . Likewise, if f is an S-sorted function
and ai ∈ Asi for i ∈ {1, . . . , n}, then the function fw : Aw → Bw is such that
fw(a1, . . . , an) = (fs1(a1), . . . , fsn(an)). Moreover, if g : A→ B is a function, we
still use the symbol g to denote the direct image map of g (also called the additive
lift of g), i.e., the function g : ℘(A)→ ℘(B) such that g(X) = {g(a) ∈ B|a ∈ X}.
Analogously, if ≤ is a binary relation on a set A (with elements a ∈ A), we
use the same relation symbol to denote its pointwise extension, i.e., we write
a1 . . . an ≤ a′1 . . . a′n for a1 ≤ a′1, . . . , an ≤ a′n.

2 If the name of an S-sorted set contains a subscript, we shift it to a superscript when
denoting its sorted components. For instance, if An is an S-sorted set, its elements
are denoted by Ans1 , Ans2 , etc.

4 S. Buro and I. Mastroeni

2.1 Context-Free Grammars

A context-free grammar [8] (or, a CF grammar) is a triple G = 〈N,T, P 〉,
where N is the set of non-terminal symbols (or, non-terminals), T is the set
of terminal symbols (or, terminals) disjoint from N , and P ⊆ N × (N ∪ T)∗ is
the set of production rules (or, productions). If (A, β) is a production in P , we
stick to the standard notation A→ β (although some authors [20] reverse the
order and write β → A to match the signature formalism). If α, γ ∈ (N ∪ T)∗,
B ∈ N , and B → β ∈ P , we define αBγ ⇒ αβγ the one-step reduction
relation on the set (N ∪ T)∗. The language L(G) generated by G is the union
of the N -sorted family LN (G) = {LA(G) | A ∈ N}, i.e., L(G) =

⋃
LN (G),

where LA(G) = {t ∈ T ∗ | A ⇒∗ t} and ⇒∗ is the reflexive transitive closure
of ⇒. The non-terminals projection nt: N ∪ T → N ∪ {ε} on G is defined
by nt(x) = (x ∈ N ? x : ε). In the following, we implicitly characterize the
function nt according to the subscript/superscript of G, namely, if G′, G1, etc. are
grammars, we denote by nt′, nt1, etc. their non-terminals projections, respectively.

An abstract grammar morphism (henceforth morphism, when this terminology
does not lead to ambiguities) f : G1 → G2 is a map between two grammars G1 =
〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉 that preserves the abstract structure of the
generated strings. Formally, f is a pair of functions f0 : N1 → N2 and f1 : P1 → P2

such that f1(A→ β) = f0(A)→ β′ ∈ P2, where nt∗2(β′) = (f0 ◦ nt1)∗(β).
The identity morphism on an object G = 〈N,T, P 〉 is denoted by 1G and

is such that (1G)0 = 1N and (1G)1 = 1P . The composition of two grammar
morphism f : G1 → G2 and g : G2 → G3 is obtained by defining (g ◦ f)0 = g0 ◦ f0
and (g ◦ f)1 = g1 ◦ f1.

Proposition 1. The class of all grammars and the class of all abstract grammar
morphisms form the category Grm.

The following section makes clear the semantic implications that a grammar
morphism f : G1 → G2 induces on the categories of algebras over G1 and G2.
The insight is that preserving the abstract syntax of G1 into G2 ensures the
possibility to employ G2-algebras in order to provide meaning to G1-terms.

Algebras over a Context-Free Grammar The algebraic approach applied
to context-free languages is introduced in [9,15]. The authors exploit the theory
of heterogeneous algebras [1] to provide semantics for context-free grammars
(see also [8]). The algebraic notions that lead to the category of algebras over a
context-free grammar are here summarized.

Let G = 〈N,T, P 〉 be a grammar. A G-algebra [9,8] is a pair A = 〈A,FA〉,
where A is an N -sorted set of semantic domains (or, carrier sets) and FA ={
JC → δKA : Ant∗(δ) → AC | C → δ ∈ P

}
is a set of interpretation functions.

A G-homomorphism [9,8] h : A → B between two G-algebras A = 〈A,FA〉 and
B = 〈B,FB〉 is an N -sorted function h : A→ B such that JC → δKB ◦ hnt∗(δ) =
hC ◦ JC → δKA for each production C → δ ∈ P .

It is well-known [8,9] that the class of all G-algebras and the class of all
G-homomorphisms form a category, denoted by Alg(G). The initial object in

On the Semantic Equivalence of Language Syntax Formalisms 5

Alg(G) is the term algebra (or, initial algebra) and it is denoted by T. Specifically,
the carrier sets TC of T are inductively defined as the smallest sets such that,
if C → δ ∈ P and nt∗(δ) = ε, then C → δ ∈ TC , and, if nt∗(δ) = C1 . . . Cn and
ti ∈ Ci for i ∈ {1, . . . , n}, then C → δ(t1, . . . , tn) ∈ TC .3 Then, the interpretation
functions are obtained by defining JC → δKT = C → δ, if nt∗(δ) = ε, and
JC → δKT(t1, . . . , tn) = C → δ(t1, . . . , tn), if nt∗(δ) = C1 . . . Cn and ti ∈ Ci for
i ∈ {1, . . . , n}.

Intuitively, the initial algebra T carries the terms over G (the programs), and
the semantic function h : T→ A provides the unique meaning of each term t in T
in the algebra A (the semantics).

We now show the semantic effects that grammar morphisms induce on the
respective categories of algebras. Let G1 = 〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉 be
two context-free grammars. Suppose that f : G1 → G2 is a grammar morphism
and let A = 〈A,FA〉 be a G2-algebra. We can make A into a G1-algebra ξfA =
〈ξfA, ξfFA〉 by defining (ξfA)C = Af0(C) for each C ∈ N1, and JC → δKξfA =
Jf1(C → δ)KA for each C → δ ∈ P1. Moreover, if h : A→ B is aG2-homomorphism,
then (ξfh)C = hf0(C) is G1-homomorphism from ξfA to ξfB.

Proposition 2. The map ξf : Alg(G2) → Alg(G1) induced by the abstract
grammar morphism f : G1 → G2 is a functor.

The next proposition provides an isomorphism between the categories of
algebras under a grammar isomorphism.

Proposition 3. If f : G1 → G2 is an abstract grammar isomorphism, then

ξf−1 ◦ ξf = 1Alg(G1) and ξf ◦ ξf−1 = 1Alg(G2)

Therefore, ξf−1 = ξ−1f and hence Alg(G1) and Alg(G2) are isomorphic.

In other words, isomorphic grammars give rise to isomorphic categories of algebras,
implying that f does not lose any (semantic relevant) information.

Example 1 (Deriving a Compiler). In this example, we show how a grammar morphism
f : G1 → G2 induces a compiler w.r.t. the semantic functions in Alg(G2). Consider the
following grammar specifications G1 = 〈N1, T1, P1〉 (left) and G2 = 〈N2, T2, P2〉 (right)
in the Backus-Naur form:

n ::= +n n | 0 | 1 | 2 | · · · p ::= (p +p) | even | odd

(Here, we have just specified the productions; terminals and non-terminals can be
easily recovered from such specifications assuming no useless symbols in both sets). Let
f : G1 → G2 be the grammar morphism that maps n to p, n→ +n n to p→ (p +p),
and each production n → n̄ to p → p̄, where n̄ ∈ {0, 1, 2, . . .} and p̄ = even if n̄
represents an even natural number, and p̄ = odd otherwise. Suppose that A = 〈A,FA〉
is the G2-algebra such that Ap = {0, 1}, Jp → evenKA = 0, Jp → oddKA = 1, and

3 The parentheses that occur in terms definition are not to be intended as those for the
function application. For this reason, we use the monospaced font to disambiguate
these two different situations.

6 S. Buro and I. Mastroeni

Jp→ (p +p)KA(p1, p2) = (p1 + p2) mod 2. Let T1 and T2 denote the G1- and G2-term
algebras, respectively. Thanks to the initiality of T2, there exists a unique homomorphism
h2

A : T2 → A, i.e., the language semantics over G2 to A. Applying the functor ξf to h2
A

yields the following commutative diagram† (due to the initiality of T1) in Alg(G1):

T1

ξfT2 ξfA

h1
ξfT2

h1
ξfA

ξfh
2
A

† h1
ξfT2

and h1
ξfA are the unique ho-

momorphisms leaving T1.

In this case, the commutativity has an interesting meaning: h1
ξfT2

is the compiler

w.r.t. the semantic function h2
A under the morphism f . Indeed, for instance, let + 5 3

denotes the T1-term n→ +n n(n→ 3,n→ 5). If we apply the compiler h1
ξfT2

to + 5

3, we obtain a T2-term which h2
A-semantics agrees with h1

ξfA, i.e.,
(
h1
ξfT2

)
n
(+ 5 3) =

(odd + odd) where (odd + odd) denotes the T2-term p → (p +p)(p → odd,p →
odd), and (

h2
A

)
p
((odd + odd)) = 0 =

(
h1
ξfA

)
n
(+ 5 3)

2.2 Many-Sorted and Order-Sorted Signatures

A many-sorted signature [8] (or, an MS signature) is a pair S = 〈S,Σ〉, where
S is a set of sorts and Σ is a disjoint family of sets Σw,s such that w ∈ S∗ and
s ∈ S. As in the case of context-free grammars, we suppose that S ∩

⋃
Σ = ∅. If

σ ∈ Σw,s, we call σ an operator symbol (or simply, an operator), and we write
σ : w → s as a shorthand. Moreover, if w = ε, we say that σ is a constant symbol
(or simply, a constant) and we write σ : s instead of σ : ε → s. Finally, given
σ : w → s, we define ar(σ) = w the arity, srt(σ) = s the sort, rnk(σ) = (w, s) the
rank of σ.

A many-sorted signature morphism f : S1 → S2 is a map between two many-
sorted signatures S1 = 〈S1, Σ1〉 and S2 = 〈S2, Σ2〉 that preserves the underlying
graph structure4 of S1 in S2, in the following sense: f is a pair of functions
f0 : S1 → S2 and f1 :

⋃
Σ1 →

⋃
Σ2 such that f1(σ) : f∗0 (w) → f0(s) in S2 for

each σ : w → s in S1.
The identity arrow on S = 〈S,Σ〉 is denoted by 1S and is such that (1S)0 and

(1S)1 are the set identity functions on their domains, and the composition of two
morphisms f : S1 → S2 and g : S2 → S3 is obtained by defining (g◦f)0 = g0◦f0
and (g ◦ f)1 = g1 ◦ f1, which is trivially a morphism from S1 to S3.

Proposition 4. The class of all many-sorted signatures and the class of all
many-sorted signature morphisms form the category Sig.

Similarly, we introduce the theory of order-sorted signatures. An order-sorted
signature [7] (or, an OS signature) is a triple S = 〈S,≤, Σ〉, where 〈S,≤〉 is a
poset of sorts and Σ is an (S∗ × S)-sorted family of sets Σw,s such that satisfies
the following condition: If σ ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2, then s1 ≤ s2.

4 The graph similarity is obtained by considering an operator σ : w → s as a σ-labeled
edge from w to s.

On the Semantic Equivalence of Language Syntax Formalisms 7

Note that S and Σ play the same role as before, except for the fact that
Σ is no more required to be a disjoint family, thus enabling the definition of
polymorphic operators. Furthermore, we extend to the order-sorted signatures
the terminology that was introduced for the many-sorted case.

An order-sorted signature morphism f : S1 → S2, where S1 = 〈S1,≤1, Σ1〉
and S2 = 〈S2,≤2, Σ2〉, is formed by the two components f0 and f1. The former
component f0 is a function between S1 and S2. The latter is a family of functions
f1 = {f1w,s : Σ1

w,s → Σ2
f∗0 (w),f0(s)

| w ∈ S∗1 ∧ s ∈ S1} that preserves the sorted

structure of the signature.5 The ordering on the sorts is not preserved by f0 for
the simple reason that it does not play any role in the abstract syntax of the
terms (a discussion on this is given when discussing the future works).

The identity morphism 1S over an order-sorted signature S is defined by
taking (1S)0 and each component (1S)1w,s of (1S)1 the set-theoretic identities on
their domains. The composition g ◦ f of two order-sorted signature morphisms
f : S1 → S2 and g : S2 → S3 is obtained by defining (g ◦ f)0 = g0 ◦ f0 and
(g ◦ f)1w,s = g1f∗0 (w),f0(s)

◦ f1w,s for each w ∈ S∗ and s ∈ S.

Proposition 5. The class of all order-sorted signatures and the class of all
order-sorted signature morphisms form the category Sig≤.

Algebras over a Signature In this section, we prove the same results developed
in Section 2.1 for the classes of algebras over a many-sorted and order-sorted
signature. Again, we provide the basic algebraic notions required to build the
category of algebras over a given signature, and we redirect the reader to [7] for
a thorough exposition of the following concepts.

Many-Sorted Algebra. Let S = 〈S,Σ〉 be a many-sorted signature. A many-
sorted S-algebra [7] is a pair A = 〈A,FA〉, where A is an S-sorted set of semantic
domains (or, carrier sets) and FA =

{
JσKA : Aw → As | σ ∈ Σw,s

}
is the set of

interpretation functions (we use the same terminology adopted for an algebra over
a context-free grammar). A many-sorted S-homomorphism [7] h : A→ B between
two many-sorted S-algebras A = 〈A,FA〉 and B = 〈B,FB〉 is an S-sorted function
h : A → B such that JσKB ◦ hw = hs ◦ JσKA for each σ ∈ Σw,s. The category of
all S-algebras and S-homomorphisms is denoted by Alg(S). The many-sorted
term S-algebra T is the initial algebra in its category (i.e., the initial object) and
it is obtained in an analogous way to the term algebra over a grammar [7].

Order-Sorted Algebra. If S = 〈S,≤, Σ〉 is an order-sorted signature, an order-
sorted S-algebra [7] is a pair A = 〈A,FA〉 where A is an S-sorted set and
FA = {JσKw,sA : Aw → As | σ ∈ Σw,s}. Moreover, the following monotonicity
conditions must be satisfied:

(i) σ ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2 implies JσKw1,s1
A (a) = JσKw2,s2

A (a) for each
a ∈ Aw1 ; and

(ii) s1 ≤ s2 implies As1 ⊆ As2 .

5 One can check this definition collapses to that in the many-sorted case when there
are no polymorphic operators in Σ.

8 S. Buro and I. Mastroeni

An order-sorted S-homomorphism h : A→ B between two order-sorted S-algebras
A = 〈A,FA〉 and B = 〈B,FB〉 is an S-sorted function h : A→ B such that

(i) JσKw,sB ◦ hw = hs ◦ JσKw,sA for each σ ∈ Σw,s; and
(ii) s1 ≤ s2 implies hs1(a) = hs2(a) for each a ∈ As1 .

The category formed by S-algebras and S-homomorphisms is denoted by Alg(S).
The order-sorted term S-algebra T is guaranteed to be initial only if S is regular
(see [7] for the regularity definition and for details on the construction of T in
the order-sorted case).

We now have all the elements to show the semantic effects induced by a many-
sorted signature morphism f : S1 → S2, where S1 = 〈S1, Σ1〉 and S2 = 〈S2, Σ2〉.
As in the case of context-free grammars, we can build a mapping from the
category of algebras Alg(S2) to Alg(S1), in order to employ S2-algebras to
provide meaning to S1-terms: Let A = 〈A,FA〉 be an S2-algebra. We can make
A to a S1-algebra ζfA = 〈ζfA, ζfFA〉 by defining (ζfA)s = Af0(s) for each s ∈ S1

and JσKζfA = Jf1(σ)KA for each σ ∈
⋃
Σ1. Moreover, given a S2-homomorphism

h : A → B, we can define the S1-homomorphism ζfh : ζfA → ζfB such that
(ζfh)s = hf0(s). The very same construction can be applied to the order-sorted
case, namely, if g : S1 → S2 is an order-sorted signature morphism, the map
ψg : Alg(S2)→ Alg(S1) is defined analogously to ζf .

Proposition 6. The maps ζf : Alg(S2)→ Alg(S1) and ψg : Alg(S2)→ Alg(S1)
induced by the signature morphisms f : S1 → S2 and g : S1 → S2, respectively,
are functors.

Again, we can prove that isomorphic signatures lead to isomorphic categories
of algebras:

Proposition 7. If f : S1 → S2 and g : S1 → S2 are isomorphism, then

ζf−1 ◦ ζf = 1Alg(S1) ψg−1 ◦ ψg = 1Alg(S1)

ζf ◦ ζf−1 = 1Alg(S2) ψg ◦ ψg−1 = 1Alg(S2)

Therefore, ζf−1 = ζ−1f and ψg−1 = ψ−1g , and thus ζf and ψg are isomorphisms.

3 Equivalence between MS Signatures and CF Grammars

In this section, we generalize the results of [8] by proving the conversion of a
grammar into a signature and vice versa can be extended to functors that give
rise to an adjoint equivalence between Grm and Sig. The major benefit of such
new development is the preservation of all the categorical properties (such as
initiality, limits, colimits, . . .) from Grm to Sig, and vice versa. A concrete
example is provided at the end of the section.

The map ∆ : Grm → Sig transforms a grammar G = 〈N,T, P 〉 to the
signature ∆G = 〈SG, ΣG〉, where SG = N and ΣG

w,s = {A → β ∈ P | A =
s ∧ nt∗(β) = w}, and a grammar morphism f : G1 → G2 to the signature
morphism ∆f such that (∆f)0 = f0 and (∆f)1 = f1.

On the Semantic Equivalence of Language Syntax Formalisms 9

Proposition 8. ∆ : Grm→ Sig is a functor.

Similarly, we define ∇ : Sig→ Grm that maps objects and arrows between
the specified categories. The conversion of a signature S = 〈S,Σ〉 to a grammar
∇S = 〈NS, TS, PS〉 is obtained by defining NS = S, TS =

⋃
Σ, and PS =

{s→ σw | σ ∈ Σw,s}, while a signature morphism f : S1 → S2 is mapped to the
grammar morphism ∇f such that (∇f)0 = f0 and (∇f)1(s → σw) = f0(s) →
f1(σ)f∗0 (w).

Proposition 9. ∇ : Sig→ Grm is a functor.

As underlined in [20], ∆ and ∇ are not isomorphisms. Indeed, in general,
S 6= ∆∇S and G 6= ∇∆G, and thus ∆∇ 6= 1Sig and ∇∆ 6= 1Grm. However, as
we prove in the next two propositions, there are natural isomorphisms η and ε−1

that transform the identity functors 1Sig and 1Grm to ∆∇ and ∇∆, respectively.
It follows that S ∼= ∆∇S and G ∼= ∇∆G (where ∼= means is isomorphic to).

Let S = 〈S,Σ〉 be a many-sorted signature. We denote by ηS : S→ ∆∇S
the signature morphism defined by (ηS)0 = 1S and (ηS)1(σ) = srt(σ)→ σ ar(σ).
Since in the many-sorted case the arity and the rank are fully determined by the
operator (Σ is a disjoint family of sets) the previous function is well-defined.

Proposition 10. η : 1Sig ⇒ ∆∇ is a natural isomorphism.

Similarly, let G = 〈N,T, P 〉 be a context-free grammar. We denote by
εG : ∇∆G→ G the grammar morphism defined by (εG)0 = 1N and (εG)1

(
A→

(A, β) nt∗(β)
)

= A→ β.6

Proposition 11. ε : ∇∆⇒ 1Grm is a natural isomorphism.

The previous results suggest to study if ∇ and ∆ form an adjunction.

Theorem 1. ∇ is left adjoint to ∆ and (ε, η) are the counit and the unit of the
adjunction (∇, ∆, ε, η).

Corollary 1. (∇, ∆, ε, η) is an adjoint equivalence.

Theorem 1 implies that Grm and Sig are identical except for the fact that
each category may have different numbers of isomorphic copies of the same
object. A particularly relevant consequence of this result is that we can move
categorical limits between Grm and Sig. The next example provides a definition
of coproduct in Grm able to recognize the union of two context-free languages.
As a consequence of Theorem 1, we achieve for free the same concept in Sig.

6 Note that the productions in P∆G are formed from those in P , i.e., P∆G = {A →
(A, β) nt∗(β) |A→ β ∈ P}. Therefore, when considering a general production in P∆G
derived from A→ β in P , we write A→ (A, β) nt∗(β) instead of A→ A→ β nt∗(β)
to avoid any confusion.

10 S. Buro and I. Mastroeni

Example 2 (Coproduct Preservation). Suppose to have the following notion of cate-
gorical coproduct in Grm: Given two context-free grammars G1 = 〈N1, T1, P1〉 and
G2 = 〈N2, T2, P2〉, the coproduct of G1 and G2 is defined by G1 ⊕ G2 = 〈N1]
N2, T1] T2, P1] P2〉, where] is the disjoint union of sets. The inclusion morphism
ik : Gk → G1 ⊕ G2 for k ∈ {1, 2} are defined by (ik)0 = 1Nk and (ik)1 = 1Pk . Given
two morphisms f1 : G1 → G and f2 : G2 → G, where G is a context-free grammar, one
can check that the unique morphism f that makes the following diagram commute

G

G1 G1 ⊕G2 G2

f1

i1

f
f2

i2

is obtained by defining f0(n) = (n ∈ N1 ? (f1)0(n) : (f2)0(n)) and f1(A→ β) = (A→
β ∈ P1 ? (f1)1(A→ β) : (f2)1(A→ β)). The term algebra over G1 ⊕G2 carries terms
both in G1 and G2 and recognizes the (disjoint) union of the languages over G1 and
G2. Since (∇,∆, ε, η) is an adjoint equivalence, then so is (∆,∇, η−1, ε−1). Therefore,
∆ is left adjoint to ∇ and hence it preserves colimits. Since a coproduct is a colimit,
∆(G1 ⊕G2) is the coproduct of ∆G1 with ∆G2 in Sig.

3.1 Semantic Equivalence

As mentioned in the introduction, [8] proves an equivalence between the many-
sorted term ∆G-algebra T∆G and the initial algebra TG over each grammar G.
We extend this result to the whole categories of algebras Alg(G) and Alg(∆G).

Let A = 〈A,FA〉 be a G-algebra. Then, we map A to the many-sorted ∆G-

algebra A↑ = 〈A↑, FA↑〉 such that A↑N = As for each N ∈ SG and JC → δKA↑ =
JC → δKA for each C → δ ∈

⋃
ΣG (we recall that operators in ∆G are productions

in G). Furthermore, given a G-homomorphism h : A → B, we define the ∆G-

homomorphism h↑ : A↑ → B↑ such that h↑N = hN .
Conversely, let A = 〈A,FA〉 be a ∆G-algebra. Then, we define the inverse

construction that maps A to the G-algebra A↓ = 〈A↓, FA↓〉 such that A↓s = As
and JC → δKA↓ = JC → δKA. Moreover, if h : A → B is a ∆G-homomorphism,
then h↓ : A↓ → B↓ such that h↓s = hs is a proper G-homomorphism.

Theorem 2. The inverse of ()↑ is ()↓, therefore they form an isomorphism of
categories between Alg(G) and Alg(∆G).

Since an isomorphism of categories is a strict notion of categorical equivalence,
it preserves the initial objects, and thus we have exactly the result of [8] by

applying ()↑ and ()↓ to the initial algebras, i.e., T↑G = T∆G and T↓∆G = TG.
In a similar manner, we can extend the other result of [8], i.e., the equivalence

between each many-sorted term S-algebra TS and the initial algebra T∇S over
the context-free grammar ∇S.

Let A = 〈A,FA〉 be a many-sorted S-algebra. We define the ∇S-algebra
↑A = 〈↑A, F↑A〉 where ↑As = As for each s ∈ NS and Js → σwK↑A = JσKA for
each s → σw ∈ PS. The conversion of a S-homomorphism h : A → B to a
∇S-homomorphism ↑h : ↑A→↑ B is analogous to the previous case.

On the Semantic Equivalence of Language Syntax Formalisms 11

On the contrary, if A = 〈A,FA〉 is a ∇S-algebra and h : A → B is a
∇S-homomorphism, we can obtain a many-sorted S-algebra ↓A and an S-
homomorphism ↓h : ↓A→↓ B by simply inverting the previous construction.

Theorem 3. The inverse of ↑() is ↓(), therefore they form an isomorphism of
categories between Alg(S) and Alg(∇S).

Again, the result of [8] is a special case of this last theorem by noting that
↑TS = T∇S and ↓T∇S = TS.

Example 3 (Example 2 Continued). In the Example 2, we have shown how to preserve
categorical constructions between Grm and Sig. Theorems 2 and 3 can be applied on
the top of Theorem 1 to ensure the semantic equivalence of the achieved constructions.
For instance, if the (G1 ⊕G2)-algebra A provides the semantics of the disjoint union of
languages over G1 and G2, then A↑ provides the equivalent semantics in the category
Alg(∆(G1 ⊕G2)), as a consequence of Theorem 2.

4 Equivalence between MS Signatures and OS Signatures

In this section, we show that analogous results of those in Section 3 hold for
many-sorted and order-sorted signature transformations Λ and V.

The map Λ : Sig≤ → Sig converts an order-sorted signature S = 〈S,≤, Σ〉
to the many-sorted signature SS = 〈SS , ΣS〉 defined by SS = S and ΣSw,s =
{σw,s | σ ∈ Σw,s} (such a construction is provided in [7]). The transformation
of an order-sorted signature morphism f : S1 → S2 to a many-sorted signature
morphism Λf : ΛS1 → ΛS2 is obtained by defining (Λf)0 = f0 and (Λf)1(σw,s) =(
f1w,s(σ)

)
f∗0 (w),f0(s)

.

Proposition 12. Λ : Sig≤ → Sig is a functor.

Similarly, the map V: Sig → Sig≤ maps the many-sorted signature S =
〈S,Σ〉 to the order-sorted signature SS = 〈SS,≤S, ΣS〉, where SS = S, ≤S is
the reflexive binary relation on S, and ΣS

w,s = Σw,s. Moreover, if f : S1 → S2 is a
many-sorted signature morphism, then Vf : VS1 → VS2 defined by (Vf)0 = f0
and (Vf)1w,s = f1|Σw,s is an order-sorted signature morphism.

Proposition 13. V: Sig→ Sig≤ is a functor.

As before, we can provide natural isomorphisms ϕ : 1Sig → ΛV and ϑ : VΛ→
1Sig≤ . Let S = 〈S,Σ〉 be a many-sorted signature. Then, the S-component ϕS

of ϕ is defined by (ϕS)0 = 1S and (ϕS)1(σ) = σar(σ),srt(σ).

Proposition 14. ϕ : 1Sig ⇒ ΛV is a natural isomorphism.

Conversely, if S = 〈S,≤, Σ〉 is an order-sorted signature, then the S-compo-
nent ϑS of ϑ is obtained by defining (ϑS)0 = 1S and (ϑS)1w,s(σw,s) = σ.

Proposition 15. ϑ : VΛ⇒ 1Sig≤ is a natural isomorphism.

12 S. Buro and I. Mastroeni

Theorem 4. V is left adjoint to Λ and (ϑ, ϕ) are the counit and the unit of the
adjunction (V, Λ, ϑ, ϕ).

Corollary 2. (V, Λ, ϑ, ϕ) is an adjoint equivalence.

The functor Λ gives rise to an equivalence between the categories of algebras
Alg(S) and Alg(ΛS) [7]. We now extend such a result to its left adjoint V.

Let A = 〈A,FA〉 be a many-sorted S-algebra. We define the order-sorted
VS-algebra A↑ = 〈A↑, FA↑〉 such that (A↑)s = As and JσKw,sA↑

= JσKA. Moreover,
if h : A→ B is an S-homomorphism, then h↑ : A↑ → B↑ is the ΛS-homomorphism
defined by (h↑)s = hs. Furthermore, we denote by ()↓ the inverse functor that
maps ΛS-algebras and ΛS-homomorphism to the category Alg(S).

Theorem 5. The inverse of ()↑ is ()↓, therefore they form an isomorphism of
categories between Alg(S) and Alg(VS).

5 Discussion and Concluding Remarks

We briefly discuss the obtained results with a view to providing future works.

On the Compositionality of the Results. An immediate but important consequence
of the underlying categorical model is the compositional nature of the proved
results. Indeed, we can get a free equivalence between the category of grammars
Grm and the category of order-sorted signatures Sig≤ by composing V∆ and
∇Λ. The algebraic counterpart of the same observation allows us to claim that
the composition of the functors ()↓ ◦ ()↑ gives rise to an isomorphism between
Alg(G) and Alg(V∆G) (and, of course, the dual result holds).

Future Works. Future works concern refinements of the syntactical transfor-
mations between the formalisms in order to preserve specific properties of the
concrete syntax [11]. Among them, polymorphism seems the most interesting.
Unfortunately, the composition of functors V∆ and ∇Λ yields non-polymorphic
set of operators. Another future work goes in the direction of providing syntactical
transformation from Grm to Sig≤ that yields only regular (see [7]) order-sorted
signatures. Then, studying the adjoint of such a transformation could provide
an interesting notion of regularity in the category of grammars that may be
employed to weaken the notion of ambiguity.

Conclusion. In this paper, we have provided a categorical model of three dif-
ferent syntax formalisms (context-free grammars, many-sorted signatures and
order-sorted signatures). We have shown how the extension to functors of already
existing syntactical transformations gives rise to categorical equivalences that
preserve the abstract syntax of the generated terms. Moreover, we have proved
that the categories of algebras over the objects in these formalisms are isomorphic
up to the provided transformations.

On the Semantic Equivalence of Language Syntax Formalisms 13

References

1. Birkhoff, G., Lipson, J.: Heterogeneous algebras. Journal of Combinatorial Theory
8(1), 115 – 133 (1970)

2. Chang, C.C., Keisler, H.J.: Model theory, vol. 73. Elsevier (1990)
3. Chomsky, N.: Three models for the description of language. IRE Transactions on

Information Theory 2(3), 113–124 (1956)
4. Cohn, P.M.: Universal algebra, vol. 159. Reidel Dordrecht (1981)
5. Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM

13(2), 94–102 (1970)
6. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Pro-

ceedings of the 14th Annual IEEE Symposium on Logic in Computer Science. pp.
193–202. LICS, IEEE Computer Society, Washington, DC, USA (1999)

7. Goguen, J.A., Meseguer, J.: Order-sorted algebra i: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science 105(2), 217–273 (1992)

8. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics
and continuous algebras. Journal of the ACM 24(1), 68–95 (1977)

9. Hatcher, W.S., Rus, T.: Context-free algebras. Cybernetics and System 6(1-2),
65–77 (1976)

10. Higgins, P.J.: Algebras with a scheme of operators. Mathematische Nachrichten
27(12), 115–132 (1963)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2006)

12. Knuth, D.E.: Semantics of context-free languages. Mathematical systems theory
2(2), 127–145 (1968)

13. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multiplica-
tion. Journal of the ACM 49(1), 1–15 (2002)

14. McCarthy, J.: Towards a Mathematical Science of Computation, pp. 35–56. Springer
Netherlands, Dordrecht (1993)

15. Rus, T.: Context-free algebra: a mathematical device for compiler specification. In:
International Symposium on Mathematical Foundations of Computer Science. pp.
488–494. Springer (1976)

16. Rus, T., Jones, J.S.: Multi-layered pipeline parsing from multi-axiom grammars.
Algebraic Methods in Language Processing 95, 65–81 (1995)

17. Scott, M.L.: Programming Language Pragmatics. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (2000)

18. Valiant, L.G.: General context-free recognition in less than cubic time. Journal of
Computer and System Sciences 10(2), 308–315 (1975)

19. Visser, E.: Syntax definition for language prototyping. Ponsen & Looijen (1997)
20. Visser, E.: Polymorphic syntax definition. Theoretical Computer Science 199(1-2),

57–86 (1998)

14 S. Buro and I. Mastroeni

A Proofs

In this appendix, we provide the proofs only for the non-trivial theorems and
propositions.

Proposition 8. ∆ : Grm→ Sig is a functor.

Proof. The only non-trivial fact in the proof is checking that ∆f satisfies the
signature morphism condition: Let G1 = 〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉 be
two context-free grammars, and let f : G1 → G2 be a grammar morphism. If
∆G1 = 〈SG1

, ΣG1
〉 and ∆G2 = 〈SG2

, ΣG2
〉, then given A → β : nt∗1(β) → A in

ΣG1
holds that

(∆f)1(A→ β) = f1(A→ β) = f0(A)→ β′ where (f0 ◦ nt1)∗ = nt∗2(β′)

and therefore

(∆f)1(A→ β) : nt∗2(β′)→ f0(A) . by definition of ΣG2

: (f0 ◦ nt1)∗(β)→ f0(A) . f is a grammar morphism

: (∆f)∗0(nt∗1(β))→ (∆f)0(A) . by definition of (∆f)0

Hence ∆f is a proper signature morphism from ∆G1 to ∆G2. Moreover, it is
easy to prove that ∆ satisfies the functor axioms.

Proposition 9. ∇ : Sig→ Grm is a functor.

Proof. We show that ∇f yields a proper grammar morphism: Let S1 = 〈S1, Σ1〉
and S2 = 〈S2, Σ2〉 be two many-sorted signatures, and let f : S1 → S2 be a
signature morphism. If ∇S1 = 〈NS1

, TS1
, PS1

〉 and ∇S2 = 〈NS2
, TS2

, PS2
〉,

and if nt∇1 and nt∇2 denote the non-terminals projections on ∇S1 and ∇S2,
respectively, then (∇f)1(s→ σw) = f∗(s→ σw) = f0(s)→ f1(σ)f∗0 (w) for each
s→ σw ∈ PS1

. Since the following chain of equalities holds

nt∗∇2
(f1(σ)f∗0 (w)) = f∗0 (w) = f∗0 (nt∗∇1

(σw)) = (f0 ◦ nt∇1
)∗(σw)

then ∇f is a grammar morphism from ∇S1 to ∇S2. Proving that ∇ satisfies
the functor axioms is easy and omitted.

Proposition 10. η : 1Sig ⇒ ∆∇ is a natural isomorphism.

Proof. Let S = 〈S,Σ〉 be a many-sorted signature and let σ : w → s in S. Thus,
(ηS)1(σ) = s→ σw has the same rank of σ. Since (ηS)0 is the identity on the set
of sorts, ηS satisfies the signature morphism condition. Moreover, it is easy to
prove that each component ηS is an isomorphism in Sig by defining its inverse
η−1S as (η−1S)0 = 1S and (η−1S)1(s→ σw) = σ. We complete the proof by showing
that the following diagram commutes for each signature morphism f : S→ S′:

On the Semantic Equivalence of Language Syntax Formalisms 15

S S′

∆∇S ∆∇S′

f

ηS ηS′

∆∇f

The 0-th components of the morphisms in the diagram trivially commute. As
regards the 1-th components, they commute if and only if (ηS′)1(f1(σ)) =
(∆∇f)1

(
(ηS)1(σ)

)
for each σ ∈ Σw,s:

(ηS′)1(f1(σ)) = f0(s)→ f1(σ)f∗0 (w) . f1(σ) : f0(w)→ f0(s)

= (∆∇f)1(s→ σw) . (∆∇f)1 = (∇f)1

= (∆∇f)1
(
(ηS)1(σ)

)
. σ : w → s

and hence the thesis.

Proposition 11. ε : ∇∆⇒ 1Grm is a natural isomorphism.

Proof. Let G = 〈N,T, P 〉 be a context-free grammar and let A→ (A, β) nt∗(β) ∈
P∆G. Then,

(εG)1(A→ (A, β) nt∗(β)) = A→ β and (εG)0(A) = A

and
((εG)0 ◦ nt∇∆)∗((A, β) nt∗(β)) = nt∗(β)

where nt∇∆ is the non-terminals mapping on ∇∆G. Thus, εG is a proper grammar
morphism. Moreover, εG is an isomorphism in Grm: Let ε−1G denotes its inverse
defined by

(ε−1G)0 = 1N and (ε−1G)1(A→ β) = A→ (A, β) nt∗(β)

Now one can check that εG ◦ ε−1G = 1G and ε−1G ◦ εG = 1∇∆G. In order to prove
the thesis, we show the commutativity of the following diagram for each grammar
morphism f : G→ G′:

∇∆G ∇∆G′

G G′

∇∆f

εG εG′

f

Since ∇∆f = f and (εG)0 and (εG′)0 are the identity functions, we can conclude
the commutativity of the 0-th components of the diagram. Moreover,

(εG′)1
(
(∇∆f)1(A→ (A, β) nt∗(β))

)
= (εG′)1

(
f0(A)→ f1(A→ β)(f0 ◦ nt)∗(β)

)

16 S. Buro and I. Mastroeni

for each production rule A→ (A, β) nt∗(β) in P∆G. Let G′ = 〈N ′, T ′, P ′〉. Since
f is a grammar morphism and A → β ∈ P , then f0(A) → β′ ∈ P ′ for some β′

where (nt′)∗(β′) = (f0 ◦ nt)(β). Therefore, we can continue the previous chain of
equalities:

= (εG′)1
(
f0(A)→ f1(A→ β)(nt′)∗(β′)

)
. (nt′)∗(β′) = (f0 ◦ nt)(β)

= f0(A)→ β′

= f1(A→ β) . f is a grammar morphism

= f1
(
(εG)1(A→ (A, β) nt∗(β))

)
. by definition of (εG)1

and the proof is complete.

Theorem 1. ∇ is left adjoint to ∆ and (ε, η) are the counit and the unit of the
adjunction (∇, ∆, ε, η).

Proof. We prove the following triangle equalities:

∆ ∆∇∆

∆

η∆

∆ε

∇∆∇ ∇

∇

ε∇

∇η

The 0-th components of both diagrams trivially commutes. We prove only the
commutativity of the 1-th components.

For each s→ σw ∈ PS

(ε∇S)1
(
(∇ηS)1(s→ σw)

)
= (ε∇S)1

(
(ηS)0(s)→ (ηS)1(σ)(ηS)∗0(w)

)
= (ε∇S)1(s→ (s, σw)w)

= s→ σw

For each A→ β ∈ ΣG
nt∗(β),A

(∆εG)1
(
(η∆G)1(A→ β)

)
= (∆εG)1(A→ (A, β) nt∗(β))

= (εG)1(A→ (A, β) nt∗(β))

= A→ β

Corollary 1. (∇, ∆, ε, η) is an adjoint equivalence.

Proof. ∇ is left adjoint to ∆ (Theorem 1) and η and ε are natural isomorphisms
(Propositions 10 and 11).

Proposition 14. ϕ : 1Sig ⇒ ΛV is a natural isomorphism.

Proof. For each many-sorted signature S = 〈S,Σ〉, the component ϕS at S of
ϕ is trivially an invertible many-sorted signature morphism. Thus, we only prove
the naturality, i.e., that

On the Semantic Equivalence of Language Syntax Formalisms 17

S S′

ΛVS ΛVS′

f

ϕS ϕS′

ΛVf

commutes for each many-sorted signature morphism f : S → S′. The 0-th
component of the diagram commutes because (ΛVf)0 = f . As regards the 1-th
component, we have that

(ΛVf)1(σw,s) =
(
(Vf)1(σ)

)
(Vf)∗0(w),(Vf)0(s)

= (f1(σ))f∗0 (w),f0(s) = (ϕS′)1(f1(σ))

and hence the thesis.

Proposition 15. ϑ : VΛ⇒ 1Sig≤ is a natural isomorphism.

Proof. For each order-sorted signature S = 〈S,≤, Σ〉, the component ϑS at S of
ϑ is trivially an invertible order-sorted signature morphism. Thus, we only prove
the naturality, i.e., that

VΛS VΛS ′

S S ′

∇∆f

ϑS ϑS′

f

commutes for each order-sorted signature morphism f : S → S ′. The 0-th com-
ponent of the diagram commutes because (VΛf)0 = f . As regards the 1-th
component, we have that

(ϑS′)
1
f∗0 (w),f0(s)

(
(VΛf)1w,s(σw,s)

)
= (ϑS′)

1
f∗0 (w),f0(s)

(
(Λf)1(σw,s)

)
= (ϑS′)

1
f∗0 (w),f0(s)

(
f1w,s(σ)f∗0 (w),f0(s)

)
= f1w,s(σ)

= f1w,s
(
(ϑS)1w,s(σw,s)

)
and hence the thesis.

Theorem 4. V is left adjoint to Λ and (ϑ, ϕ) are the counit and the unit of the
adjunction (V, Λ, ϑ, ϕ).

Proof. We prove the following triangle equalities (0-th component trivially com-
mutes):

Λ ΛVΛ

Λ

ϕΛ

Λϑ

VΛV V

V

ϑV

Vϕ

18 S. Buro and I. Mastroeni

For each σ ∈ ΣS
w,s

(ϑVS)1w,s
(
(VϕS)1w,s(σ)

)
= (ϑVS)1w,s

(
(ϕS)1(σ)

)
= (ϑVS)1w,s(σw,s)

= σ

For each σw,s ∈ ΣSw,s

(ΛϑS)1
(
(ϕΛS)1(σw,s)

)
= (ΛϑS)1((σw,s)w,s)

=
(
(ϑS)1w,s(σw,s)

)
w,s

= σw,s

Corollary 2. (V, Λ, ϑ, ϕ) is an adjoint equivalence.

Proof. V is left adjoint to Λ (Theorem 4) and ϑ and ϕ are natural isomorphisms
(Propositions 14 and 15).

	On the Semantic Equivalence of Language Syntax Formalisms

