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Abstract

We propose a combined approach that permits automated formal verification
to be spread across the pre- and post-deployment phases of a system development,
with the aim of calibrating the management of the verification burden. Our
approach combines standard model checking methods with runtime verification, a
relatively novel formal technique that verifies a system during its execution. We
carry out our study in terms of the Hennessy-Milner Logic, a branching-time logic
for specifying reactive system correctness. Whereas we will be mainly concerned
with limiting the model checking verification burden, runtime verification has been
shown to handle a strict subset of the expressible properties in our logic of study,
posing constraints on what can be shifted to the post-deployment phase. We
present a solution, based on modal transition systems and modal refinement, for
the fragment of the Hennessy-Milner Logic devoid of recursion, i.e., without least
and greatest fixpoint operators.

Introduction Model checking (MC) [17] is a widely accepted pre-deployment verification technique that
checks whether a system satisfies or violates a property by potentially analysing all the possible system
behaviours. By contrast, runtime verification (RV) [30, 11] is a lightweight verification technique aimed
at mitigating scalability issues, such as the state explosion problem, typically associated with traditional
verification techniques like MC. RV attempts to infer the satisfaction (or violation) of a correctness
property from the analysis of the current execution of the system under scrutiny using monitors [22, 23]. It
is thus performed post-deployment (on actual system execution), which is appealing for component-based
applications (parts of which may not be available for analysis pre-deployment), as well as for dynamic
settings such as mobile computing (where components are downloaded and installed at runtime). The
technique has fostered a number of verification tools, e.g., [9, 10, 18, 20, 27, 29, 32, 7, 8, 34] to name but
a few, and has proved effective in various real-world scenarios [14, 37, 21].

Despite its advantages, RV is limited when compared to verification techniques such as MC because
certain correctness properties cannot be verified at runtime [31, 33, 16, 26, 2, 3, 4]. For instance, MC
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makes it possible to check for both safety and liveness properties, by providing either a positive or a
negative answer, according to whether the system conforms with the specifications; RV, on the other
hand, can only return a positive verdict for certain liveness properties (called co-safety properties [15, 4])
or a negative one for safety conditions. Moreover, RV induces a runtime overhead over the execution of a
monitored system, which should ideally be kept to a minimum [30, 11].

Syntax

ϕ, φ ∈ µHML ::= tt (truth) | ff (falsehood)
| ϕ∨φ (disjunction) | ϕ∧φ (conjunction)
| 〈α〉ϕ (possibility) | [α]ϕ (necessity)
| minX.ϕ (min. fixpoint) | maxX.ϕ (max. fixpoint)
| X (rec. variable)

Semantics

Jtt, ρK def= Sta Jff, ρK def= ∅
Jϕ1∨ϕ2, ρK

def= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK
def= Jϕ1, ρK ∩ Jϕ2, ρK

J〈α〉ϕ, ρK def=
{
s | ∃r.s α−→ r and r ∈ Jϕ, ρK

}
J[α]ϕ, ρK def=

{
s | ∀r.s α−→ r implies r ∈ Jϕ, ρK

}
JminX.ϕ, ρK def=

⋂
{S ∈ Sta | Jϕ, ρ[X 7→ S]K ⊆ S} JmaxX.ϕ, ρK def=

⋃
{S ∈ Sta | S ⊆ Jϕ, ρ[X 7→ S]K}

JX, ρK
def= ρ(X)

Monitorable Fragments

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

Figure 1: µHML Syntax and Semantics

Hennessy-Milner Logic with Recursion (µHML) RV’s limits in terms of verifiable properties is
evidenced more for branching-time logics, that are able to express properties describing behaviour over
multiple system executions. In recent work [25, 26, 1, 3], one such branching-time logic called µHML
[13, 5] is studied from an RV perspective. Figure 1 outlines the syntax of the logic µHML, along with its
semantics, defined over a Labelled Transition System (LTS), i.e., triples 〈Sta,Act,−−→〉 consisting of a
set of states s, r ∈ Sta, a set of actions α ∈ Act, and a transition relation between states labelled by
actions, s α−→ r; as in [5, 26], the semantic definition employs an environment from µHML logical variables,
Vars, to sets of states, ρ ∈ (Vars ⇀ P(Sta)) (see Figure 1). One of the main contributions of [25] is the
identification of an expressively maximal, runtime-verifiable subset of the logic, reported in Figure 1 as the
grammar for sHML and cHML (see also [26, 24]); the authors show how these classes provide an easy
syntactic check for determining whether a property satisfaction (or violation) can be determined using the
RV technique. The cHML (resp., sHML) fragment of µHML is said to be positively monitorable (resp.,
negatively monitorable) [26, 4].

Extending the applicability of monitoring towards a combined verification We build on the
findings of [25], with the aim of extending the applicability of RV to a larger class of µHML properties
other than sHML ∪ cHML from Figure 1. Specifically, we propose a combined approach that permits
automated formal verification to be spread across the pre- and post-deployment phases of a system
development, with the aim of calibrating the management of the verification burden while combining the
strengths of MC with those of RV. As an illustrative example, consider the µHML property (1) below,
describing systems that can perform action a, prefix 〈a〉(. . .), and reach a state from where they can either
perform action b, subformula 〈b〉tt, or else can never perform action c, subformula [c]ff.

〈a〉(〈b〉tt∨ [c]ff) (1)
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According to Figure 1, (1) turns out not to be runtime-verifiable because of the subformula [c]ff; intuitively,
whereas a system execution exhibiting action a followed by action b suffices to prove that the system satisfies
(1), an RV monitor cannot determine whether a system can never produce action c after performing action
a from the observation of only a single system execution [25]. However, property (1) can be expressed as
the (logically equivalent) formula

(〈a〉〈b〉tt) ∨ (〈a〉[c]ff) (2)

whereby we note that the subformula 〈a〉〈b〉tt is runtime verifiable, according to [25, 26, 3]. We argue that
reformulations such as (2) allow for a combined approach to verification, where part of the property, e.g.,
the (smaller) subformula 〈a〉[c]ff, can be checked prior system deployment using MC, and the remaining
part of the property, e.g., 〈a〉〈b〉tt, can be runtime-verified during system execution.

We therefore aim to devise general analysis techniques that reformulate any µHML formula into
either conjunctions or disjunctions, i.e., ϕRV ∧ ϕMC or ϕRV ∨ ϕMC, where ϕRV and ϕMC denote the
runtime-verifiable and model-checkable formula components, respectively. From a software engineering
perspective, we envisage at least two ways how this decomposition between pre- and post-deployment
verification can be fruitful:

1. The ensuing combined approach may be used as a means to minimise the verification effort required
prior to the deployment of a system. E.g., in the case of (2), the model-checked subformula
ϕMC = 〈a〉[c]ff is smaller than the full formula (1), since we would be offloading a degree of
verification onto the runtime phase when runtime-verifying for ϕRV = 〈a〉〈b〉tt. Moreover, for
disjunction decompositions such as (2), the satisfaction of ϕMC prior to deployment obviates the
need for any runtime analysis, minimising runtime overheads (a dual argument applies for conjunction
decompositions and ϕMC violations).

2. In settings where software correctness is desirable but not essential, a combined approach can be
used as a means to circumvent full-blown MC. Specifically, instead of model-checking for (1), a
system may be runtime-verified for ϕRV = 〈a〉〈b〉tt during its pilot launch, acting as a vetting phase:
if ϕRV is satisfied during RV, this means that, by (2), (1) is satisfied as well; if not, we then proceed
to model-check the system offline wrt. ϕMC = 〈a〉[c]ff.

A partial solution based on modal transition systems and modal refinement From a technical
point of view, the problem amounts, to computing the maximal monitorable semantic fragment of a given
µHML formula ϕ, that is, the formula ψ such that

• ψ ∈ cHML (ψ is positively monitorable),

• JψK ⊆ JϕK (every process that satisfies ψ also satisfies ϕ, i.e, ψ is a semantic fragment of ϕ),

• for every ψ′ ∈ cHML, we have that Jψ′K ⊆ JϕK implies Jψ′K ⊆ JψK (ψ is maximal)

Dually, for the case of negatively monitorable formulas (fragment sHML), we are interested in the minimal
monitorable formula of which ϕ is a semantic fragment; we focus on the former formulation only since the
latter one can be solved by exploiting the duality between the two fragments (as in [2]).

Instead of trying to obtain the desired formula through syntactic transformations, we adopt a semantic
approach that proved itself successful for the logic HML, i.e., the fragment of µHML devoid of fixpoint
operators. We first transform the input formula into a modal transition system (MTS) [12], which can be
thought of as graphical representations of formulas: MTSs suit our purpose particularly well because they
are amenable to manipulations while preserving the information about the meaning of the formula. By
using this technique, we can inherit known results from concurrency theory, such as the characterization
and classification of several process semantics [19, 35, 36]. In particular, back and forth translations
between HML formulas and MTSs are known [12], and a preorder over MTSs, called modal refinement, has
been defined that captures the semantic relationship between HML specifications: an MTS M1 precedes
another MTS M2 in this modal refinement preorder whenever the set of processes that satisfy ϕM1 (the
translation of M1 into an HML formula) contains set of processes that satisfy ϕM2 . Using such results we
are able to identify the class of MTSs corresponding to the monitorable fragment of HML and to single out
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the MTS corresponding to the maximal monitorable semantic fragment of a given HML formula. Then,
by employing the translation from MTSs back to HML formulas, we obtain the monitorable specification
that we are looking for.

Future directions Extending our approach to the full µHML remains an open issue: for this purpose,
MTSs should be extended with cycles so as to enable them to “mimic” fixpoint operators, which somehow
correspond to recursion. Once this obstacle is solved, we can also investigate the application of our
methods to the linear-time setting, where there are still formulas that are not monitorable [3, 4].

Another direction we intend to pursue is that of extending our techniques to settings with enriched
monitoring capabilities. A number of these settings have recently been investigated for the logic µHML
in the work [2] by considering monitoring setups with the ability to recognize when a process terminates,
or the ability to infer the possible (1-step) actions from a specific state (even though the computation will
then continue executing along only one of these actions). Using some of the aforementioned results from
the field of concurrency theory and process semantics, our approach should extend in a straightforward
manner to cope with the enhanced monitoring capabilities. More importantly, this study marries well
with our aims for a multi-pronged verification methodology along the lines advocated in [6, 21, 28].
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