
The Relation between Software Maintainability and

Issue Resolution Time: A Replication Study

Joren Wijnmaalen
University of Amsterdam

Amsterdam, The Netherlands
j.wijnmaalen@protonmail.com

Cuiting Chen
Software Improvement Group
Amsterdam, The Netherlands

c.chen@sig.eu

Dennis Bijlsma
Software Improvement Group
Amsterdam, The Netherlands

d.bijlsma@sig.eu

Ana-Maria Oprescu
University of Amsterdam

Amsterdam, The Netherlands
a.m.oprescu@uva.nl

Abstract

Higher software maintainability comes with
certain benefits. For example, software can be
updated more easily to embrace new features
or to fix bugs. Previous research has shown
that there is a positive correlation between
the maintainability score measured by the SIG
maintainability model and shorter issue reso-
lution time. This study, however, dates back
to 2010. Eight years later, the software indus-
try has evolved with a fast pace, as well as the
SIG maintainability model. We would like to
rerun the experiment to test if the previously
found relations are still valid.

When remeasuring the maintainability of the
systems with the new version of the SIG main-
tainability model (2018), we find that major-
ity of the systems score lower maintainability
ratings. The overall maintainability correla-
tion with defect resolution time decreased sig-
nificantly while the original system properties
correlate similar with defect resolution time
compared to the original study.

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

1 Introduction

The definition for software quality has been standard-
ized by the International Organization for Standard-
ization (ISO) since 2001 in their document ISO 9126
[ISO11b]. Since then, the definition has undergone a
variety of changes as it has been revised into the ISO
25010 in 2011 [ISO11a]. The standard decomposes
software quality into a set of characteristics. Software
maintainability is one of such characteristics.

Research has shown the importance of high software
maintainability. Bakota et al. found an exponential re-
lationship between maintainability and cost [BHL+12].
Bijlsma and Luijten showed a strong positive correla-
tion between software maintainability and issue reso-
lution time [BFLV12]. Maintenance activities largely
involve solving issues that arise during development
or when the product is in-use. A better maintainable
code base decreases the amount of time needed to re-
solve such issues.

However, the study by Bijlsma and Luijten dates
back to 2012. To assess the maintainability of sys-
tems, they made use of the maintainability model de-
veloped by the Software Improvement Group (SIG),
dating back to 2010. This model refers to ISO 9126
for their definition of software quality, more specifi-
cally, maintainability. Over the years the SIG main-
tainability model has been evolving (a new model has
been announced in 2018 [sig]), implementing a vari-
ety of smaller changes along the new software quality
definition as documented in ISO 25010. Furthermore,
the software industry has been evolving at a fast pace.
The oldest systems Bijlsma and Luijten assessed for
their empirical results date back to the beginning of

1

the 2000s. A lot has changed in the software indus-
try since then. Both the landscape of technologies has
changed, as well as the processes around software. For
example, DevOps has emerged since the mid 2010s, in-
troducing concepts such as continuous integration and
delivery. These concepts, potentially, change the way
how issues are being resolved as integration is being
largely automated instead of being a manual action.

Around the broader question: ”What is the relation
between software maintaina bility and issue resolution
time?”, we propose the following research question:

• RQ1.1 Does the previously found strong correla-
tion between maintainability and issue resolution
time still hold given the latest (2018) SIG main-
tainability model?

2 Background

2.1 The SIG Maintainability Model

The ISO 25010 standard defines Software Quality
through a range of quality characteristics. Each of
these characteristics is further subdivided into a set
of sub-characteristics. Software maintainability is one
of such characteristics and is further subdivided into
the following sub-characteristics: analyzability, mod-
ifiability, testability, modularity and reusability. The
standard, however, does not provide how to directly
measure the various quality characteristics and sub-
characteristics. Instead, the Software Improvement
Group (SIG) provides a pragmatic model to directly
assess maintainability through the static analysis of
source code [HKV07]. The SIG maintainability model
lists a set of source code metrics, also called soft-
ware product properties. The following software prod-
uct properties are measured: volume, duplication,
unit size, unit complexity, unit interfacing, module
coupling, component balance and component indepen-
dence. These product properties are then mapped to
the sub-characteristics as defined in the ISO 25010
standard. These mappings, what product properties
influence what characteristics, are based on expert
opinion. Table 1 illustrates these mappings.

To calculate the maintainability rating of a sys-
tem, the model first measures the product proper-
ties. These raw measures are converted to a star
based rating based on a benchmark internal to SIG
(1 to 5 stars, where 3 stars is the market average).
Note, the stars do not divide the distribution of sys-
tems into even buckets, instead 5% of systems are as-
signed one star, 30% two, 30% three, 30% four and 5%
five stars. Secondly, the product property ratings are
aggregated into the maintainability sub-characteristic
ratings based on the relations as defined in Table 1. Fi-
nally, the sub-characteristics ratings are all aggregated

into a single final maintainability rating.

Table 1: Relationship between software product
properties and the ISO 25010 maintainability sub-
characteristics. Data taken from SIG/TViT Evalu-
ation Criteria Trusted Product Maintainability [Vis18]

V
ol

u
m

e

D
u

p
li

ca
ti

o
n

U
n

it
S

iz
e

U
n

it
C

o
m

p
le

x
it

y

U
n

it
In

te
rf

a
ci

n
g

M
o
d

u
le

C
o
u

p
li

n
g

C
o
m

p
o
n

en
t

B
a
la

n
ce

C
o
m

p
o
n

en
t

In
d

ep
en

d
en

ce

Analyzability X X X X
Modifiability X X X
Testability X X X
Modularity X X X
Reusability X X

Evolution of the SIG Maintainability Model

Both Bijlsma and Luijten assessed the maintainabil-
ity characteristic of software quality as described by
the ISO 9126 standard using the SIG maintainability
model. Since the ISO 9126 standard has been revised
into the ISO 25010 standard, the SIG maintainability
model has evolved accordingly, as is part of the motiva-
tion for this replication study. In order to reason about
the results of this replication study, the differences be-
tween the ’modern’ SIG maintainability model (here-
inafter referred to as the new model) and the model
used by Bijlsma and Luijten (hereinafter referred to as
the old model) need to be highlighted.

Compared to ISO 9126, ISO 25010 adds the sub-
characteristic modularity to maintainability. Mod-
ularity is defined as ”The degree to which a sys-
tem or computer program is composed of discrete
components such that a change to one component
has minimal impact on other components.” [ISO11a].
In order to account for this new sub-characteristic,
two new system properties were introduced in the
new model: component balance and component inde-
pendence. Apart from accounting for the new sub-
characteristic, these properties were expected to stim-
ulate discussions about the architecture of systems and
to incorporate a common viewpoint in the assessment
of implemented architectures, as mentioned by Bouw-
ers et al. in their evaluation of the SIG maintainability
model metrics [BvDV13].

Introduction of these properties also raises ques-
tions on the definition for a component. Visser defines

2

the term component as the following in his technical
report: ”A component is a subdivision of a system in
which source code modules are grouped together based
on a common trait. Often components consist of mod-
ules grouped together based on a shared technical or
functional aspect” [Vis18]. In practice, this definition
still deems too vague. It introduces the need for an
external evaluator to point out the core components
of any specific system, based on their perception on
how functionality is grouped and it’s granularity.

2.2 Issue Resolution Time

Both Luijten and Bijlsma look at issue resolution time
in their studies. Bijlsma defines issue resolution time
as ”the total time an issue is in open state. [...] Resolu-
tion time is not simply the time between the issue be-
ing reported and the issue being resolved.” [BFLV12]
Instead, Bijlsma illustrates the life cycle of an issue
using Figure 1. Bijlsma measured the highlighted pe-
riod of time in the Figure for his study. Even though
it would seem better to start measuring when the sta-
tus of an issue is set to assigned, this was realistically
not a possibility for the data Bijlsma obtained. Many
projects Bijlsma analyzed were inconsistent in using
the assigned property in their Issue Tracking Systems
(ITS), making it impossible to accurately determine
when a developer started working on an issue.

Next to the issue resolution time life cycle, there
is also the notion of issue types. Various issue track-
ing systems use different terms to denote the variety
in issues. Bijlsma defined the following types: defect,
enhancement, patch and task. A defect, according to
Bijlsma, is a ”problem in the system” [BFLV12]. An
enhancement can be ”the addition of a new feature,
or an improvement of an existing feature”. Tasks and
patches are ”usually one time activities” and unify var-
ious other issue types with a range of urgencies. The
tools Bijlsma and Luijten used in their experiment nor-
malized all issues obtained from the various ITS’s to-
wards these four types only. Luijten originally focussed
on issues of type defect, where Bijlsma expanded with
issues of type enhancement.

Figure 1: The issue resolution time (in green) as mea-
sured by Bijlsma and Luijten [BFLV12]

2.3 Issue Resolution Quality Ratings

Given the definition for the issue resolution time met-
ric, both Luijten and Bijlsma collected measurements
from various projects. In order to compare these res-
olution times on a project level, the resolution times
per issue need to be aggregated. Intuitively, statistical
properties such as the mean come to mind. However,
as Luijten points out, the resolution times collected
are not normally distributed [Lui10]. Therefore, Lui-
jten created various risk categories, such that the issue
resolution distribution is divided into buckets, choos-
ing thresholds such that the buckets are filled equally.
Table 2 illustrates the risk categories with their thresh-
olds as defined by Luijten for issues of type defect.
Similar thresholds are defined for issues of type en-
hancement.

Based on these categories Luijten continues to de-
fine quality ratings, to further align with the rating sys-
tem the SIG maintainability model implements. Table
3 shows the mapping between risk categories and qual-
ity ratings. The thresholds are chosen such that 5% of
the systems will receive a 5-star rating, 30% four stars,
30% three, 30% two, and 5% one star (the same distri-
bution as the SIG maintainability model uses, Section
2.1). For measurement purposes, these star ratings
are interpolated between the interval [0.5, 5.5], as is
standard in the SIG maintainability model as well.

Table 2: Luijten’s risk categories for issues of type de-
fect [Lui10]. Lower risk means faster issue resolution
times

Category Threshold(days)

Low 0 - 23.6
Moderate 23.6 - 68.2
High 68.2 - 198
Very High 198+

Table 3: Luijten’s rating thresholds for issues of type
defect [Lui10]. Higher ratings means faster issue
resolution time.

Rating Moderate High Very High

***** 7% 0% 0%
**** 25% 25% 2%
*** 43% 39% 13%
** 43% 42% 35%

3 Method

This replication study aims to discover if the rela-
tionship between maintainability and issue resolution

3

times still hold using the new SIG maintainability
model to assess maintainability. Therefore, the same
systems and issue tracking data will be used as in Bi-
jlsma’s experiment. Bijlsma assessed 10 open source
systems looking at multiple snapshots situated in var-
ious points of time of the systems lifespan. Given the
definition for issue resolution time, and the concept of
issue resolution time quality ratings, as described in
Section 2.3, ratings are calculated per snapshot. For
each snapshot, Bijlsma and Luijten consider all issues
that are closed and/or resolved between that snap-
shot and the next as relevant for that snapshot [Lui10].
These ratings are directly re-used in this experiment
as calculated by Bijlsma, as they were archived and
directly ready for use.

Table 4 shows the systems assessed by Bijlsma.
Since the original snapshots Bijlsma used in his
study were not archived, the snapshots had to be re-
obtained. For every snapshot Bijlsma listed a version
and a date. Using this data we were able to retrieve
all snapshots by using the following two methods for
retrieval:

• Official System Archives Some systems main-
tain an official archive. Snapshots matching date
and version number are directly retrieved from
these archives. For a small amount of snapshots
the date Bijlsma listed deviate a couple of days
from the date coupled with the version number in
the archive. These snapshots were still retrieved
as it was assumed that deviation in dates was
caused by human error.

• Version Control Systems (VCS) If a systems
organization stopped hosting, or does not have
an archive containing older versions, the snapshot
was retrieved by traversing the system’s respec-
tive VCS. The majority of the systems assessed
by Bijlsma make use of Subversion as their main
VCS. Subversion, by default, contains the root
folders ’/trunk’, ’/branches’ and ’/tags’. Where
trunk is the directory where the main develop-
ment takes place and branches contain the fea-
tures that parallel main development, the tags
directory is specifically interesting as it contains
read only copies of the source code in a specified
set of time.

Note that the Subversion repositories default to
the trunk, branches and tags directories but are
not limited to this structure. For example, We-
bkit adds the ’/releases’ directory to the reposito-
ries root, containing all major releases (where tags
are of a finer granularity). In this case, both the
tags and releases are navigated to find the right
snapshot.

In a small amount of cases the matching snap-
shots were not listed in the tags, releases or other
archiving Subversion root directories. In that
case, the Subversion trunk directory was checked
out at the revision closest to the date listed by
Bijlsma.

For every snapshot new maintainability ratings are
calculated. These ratings are obtained using the SIG
software analysis toolkit (SAT). The SAT implements
the latest (2018) version of the SIG maintainability
model. It provides the final maintainability rating,
along with its sub-characteristics as described by the
ISO 25010 standard.

3.1 Data Acquisition

In order to replicate Bijlsma’s original study, the same
data is needed. We assume, since the snapshots were
retrieved from the official system archives or version
control systems, that the contents of the snapshots
retrieved are the same. The only other metric provided
by Bijlsma to verify this assumption is the size of the
snapshot in LOC. Figure 2 compares the snapshot sizes
as found by Bijlsma against the snapshot sizes found
by us. It can be immediately seen that the blue and
red graphs do not align. This behaviour is expected,
however, as these numbers are retrieved after the SAT
analysis.

The SAT requires a scoping definition per system
in order to function. Scoping is the process of deter-
mining what parts and files of the system should be
included in the calculation. For example, source files
in a ’/libs/’ folder should not be included in the calcu-
lation as they are external dependencies and are not
maintained by the development team directly. Ideally,
the scoping per system should be exactly the same
as Bijlsmas original scoping when rerunning the SAT.
However, scoping files were not documented in Bijls-
mas study, so we had to do our own scoping. Luckily,
Bijlsma provided feedback in person to check if the
scoping files were roughly the same.

Given the scoping differences, a slight deviation in
SAT considered lines of code for the calculation can be
explained. We do expect, however, that the newly ac-
quired snapshots follow the same trend line as the old
snapshots. For the majority of the systems listed in
Figure 2 this is the case (e.g. abiword, ant, argouml,
checkstyle), but some other systems stand out. We-
bkit, for example, only has a third of the original size
(in KLOC). The cause for this large difference remains
unknown to us, as running the SAT with all junk files
included doesn’t come near the originally reported size
numbers. As such, the newly measured Webkit main-
tainability numbers can not be compared against the
old, and will impact the correlation results.

4

LOC (Latest)

System Main Language Replication Original Snapshots

Abiword C++ 427,885 415,647 3
Ant Java 101,647 122,130 20
ArgoUML Java 155,559 171,402 20
Checkstyle Java 38,685 38,654 22
Hibernate-core Java 114,953 145,482 5
JEdit Java 109,403 100,159 4
Spring-framework Java 98,141 118,833 21
Subversion C 192,620 218,611 5
Tomcat Java 158,881 163,589 19
Webkit C++ 425,929 1,255,543 1
Total 120

Table 4: Systems assessed by Bijlsma.

Figure 2: Comparing system sizes per snapshot (KLOC). Each point represents a snapshot of the given system,
ordered by increasing date. Each snapshot is represented by two points, size in KLOC as found by Bijlsma
(Red) and us (Blue).

3.2 Method Differences

To summarize, some elements of the original study’s
method have been kept exactly the same while other
elements have been changed.

Differences

Since the original snapshots were not archived, the
snapshots had to be reacquired. This results in small
data inconsistencies for most systems and for large in-
concistencies for one systems in particular (Webkit).
Additionally, as is the purpose of this study, the new
SIG maintainability model is used to measure main-
tainability as opposed to the original SIG maintain-
ability model dating from 2010.

Equalities

Given the concept of issue resolution time and is-
sue resolution time quality ratings, these ratings for
all snapshots and systems have been re-used directly.
The respective issue tracking systems were not mined
again. Furthermore, the correlations are calculated in
the same manner.

4 Results

4.1 Comparing Maintainability

Maintainability ratings are directly compared between
the old and the new model to gain a better understand-
ing to how the SIG maintainability model evolved. It
also serves as a validation step to see if the new main-

5

tainability ratings are reasonable within expectation
compared to the old ones. Figure 3 gives a high level
overview on how the maintainability ratings per sys-
tem (distributed over all snapshots) compare between
the old and the new SIG maintainability model. We
observe for the majority of the systems (ant through
tomcat) new maintainability ratings are lower com-
pared the the old model. This behaviour is expected
because the SAT uses benchmark data to determine
the thresholds of the rating buckets and has been rising
over the years (See Section 5 for further elaboration).
Note that, even though plotted, maintainability can-
not be compared for webkit as the reacquired snapshot
has over 500 KLOC less than the original.

The maintainability rating calculated by the SIG
maintainability model is composed by a double aggre-
gation. Figure 3 adds another aggregation on top of
this, combining multiple maintainability ratings per
system into a single boxplot. The figure provides a
high level overview, but in order to discover the other
factors that cause the deviation in maintainability rat-
ings we need to zoom in on the low level metrics. Fig-
ure 4 illustrates all unit complexity ratings of all sys-
tems ordered by snapshot date. The figure shows how
in general the new ratings follow the same trend as
the old ratings, but on a slightly lower rating alto-
gether. Specifically the systems ant, jedit, tomcat and
springframework show this behaviour well. The lower
rating can again be explained by the rising benchmark
thresholds. Webkit consistently rates higher for all
system metrics, but are insignificant due to the large
deviation in reacquired snapshot sizes. ArgoUML con-
sistently shows lower ratings for the original system
properties (without the modularity system properties),
but shows a higher rating in overall maintainability
(Figure 3).

4.2 Comparing Correlations

Bijlsma and Luijting classified four types of issues: de-
fect, enhancement, patch and task. Bijlsma and Lui-
jten investigated issues of type defect and enhance-
ment. Tables 5 and 6 illustrate the new correlations
found for these two types of issues. Every correlation
is tested for significance, given the following set of hy-
potheses H0{ρ = 0} and HA{ρ > 0}. For the zero
hypothesis to be rejected, a confidence threshold of
5% is used.

Given the new defect correlations, the correlations
of the original system properties are comparable, ex-
cept for module coupling which shows a significant
drop from 0.55 to 0.36. The other surprising result
is the large drop of maintainability from 0.64 to 0.33.
The negative correlation of modularity is surprising,
as it goes against our intuition. Intuitively, modular

systems should be easier to modify than systems with
huge, monolithic, components. Further, unit interfac-
ing has vastly decreased in significance, from 0.042 to-
wards 0.640.

Table 6 shows the same comparison of correlations
as Table 5, but for enhancement resolution speed.
The difference in maintainability correlations is a lot
smaller compared to the difference found in the defect
correlations. The modularity correlations also stand
out, since both the coefficients of modularity and com-
ponent balance cannot be assumed given their p-values
being larger than 0.05. The decrease in significance is
specifically interesting compared to the defect correla-
tions in Table 5.

5 Discussion

5.1 Comparing Maintainability

One explanation for the lower maintainability is the
calibration of benchmark thresholds to determine the
ratings. Over the years new systems that are mea-
sured are added to the SAT benchmark. The observa-
tion is that the distribution of quality ratings in the
benchmark, over time, shifts towards a higher aver-
age. In order to compensate for this phenomenon, SIG
calibrates the thresholds for all ratings (both system-
properties and characteristics) yearly. This means
that the thresholds (for most of the characteristics)
have become stricter. This is also documented in the
’Guidance for Producers’ documents, which SIG re-
leases yearly. For example, in their 2018 document
it is mentioned for unit complexity that ”To be eli-
gible for certification at the level of 4 stars, for each
programming language used the percentage of lines of
code residing in units with McCabe complexity num-
ber higher than 5 should not exceed 21.1%” [Vis18]
while their 2017 document states the same but with
a threshold of 24.3% [Vis17]. Remeasuring the same
systems again with the stricter benchmark thresholds
results in overall lower maintainability scores.

This expected behaviour of lower maintainability
ratings is consistent for eight out of ten systems. The
systems Abiword and Webkit stand out as they both
score higher compared to the original rating.

Webkit can be considered an outlier. The system is
composed by a single snapshot that consistently scores
higher for all system properties and aggregated rat-
ings. This may be the result of the re-acquisition of the
snapshot, as the newly obtained snapshot has roughly
500 KLOC less than documented by Bijlsma.

Abiword, however, does follow the expectations of
lower ratings for system metrics. The overall higher
maintainability score can be speculated by the new
properties introduced in the new model (component
balance and component independence). Specifically

6

Figure 3: Snapshot maintainability distribution per system. Each system contains two boxplots, the maintain-
ability ratings as obtained by Bijlsma (red) and the maintainability ratings obtained by the 2018 version of the
SIG maintainability model (blue), distributed over all the snapshots of the system.

Figure 4: Unit complexity ratings per system. Each point represents a snapshot of the given system, ordered
by increasing date. Each snapshot is represented by two points, unit complexity of the old model (red) and the
new model (blue).

7

Table 5: Defect resolution time correlations. The Table on the left shows the correlation statistics found by
Bijlsma. The Table on the right shows the correlation statistics as obtained by the replication study.

Old Correlations New Correlations

Defect resolution vs. ρ p-value

Volume 0.33 0.001
Duplication 0.34 0.001
Unit size 0.53 0.000
Unit complexity 0.54 0.000
Unit interfacing 0.19 0.042
Module coupling 0.55 0.000
Analysability 0.57 0.000
Changeability 0.68 0.000
Stability 0.46 0.000
Testability 0.56 0.000
Maintainability 0.64 0.000

Defect resolution vs. ρ p-value

Volume 0.39 0.000
Duplication 0.38 0.000
Unit size 0.53 0.000
Unit complexity 0.50 0.000
Unit interfacing 0.05 0.640
Module coupling 0.36 0.000
Analyzability 0.33 0.002
Modifiability 0.59 0.000

Testability 0.49 0.000
Maintainability 0.33 0.001

Modularity -0.30 0.004
Reusability 0.46 0.000
Component balance -0.34 0.001
Component independence 0.16 0.201

Table 6: Enhancement resolution time correlations. The Table on the left shows the correlation statistics found
by Bijlsma. The Table on the right shows the correlation statistics as obtained by the replication study.

Old Correlations New Correlations

Enhancement resolution vs. ρ p-value

Volume 0.61 0.000
Duplication 0.02 0.448
Unit size 0.44 0.000
Unit complexity 0.48 0.000
Unit interfacing 0.10 0.213
Module coupling 0.69 0.000
Analysability 0.44 0.000
Changeability 0.46 0.000
Stability 0.50 0.000
Testability 0.47 0.000
Maintainability 0.53 0.000

Enhancement resolution vs. ρ p-value

Volume 0.58 0.000
Duplication 0.09 0.499
Unit size 0.45 0.000
Unit complexity 0.47 0.000
Unit interfacing -0.20 0.132
Module coupling 0.67 0.000
Analyzability 0.22 0.096
Modifiability 0.52 0.000

Testability 0.68 0.000
Maintainability 0.47 0.000

Modularity -0.09 0.513
Reusability 0.37 0.004
Component balance -0.29 0.023
Component independence 0.34 0.039

because the component independence scores for the
Abiword snapshots read 5.23, 5.23 and 2.50 ordered
by date respectively.

5.2 Comparing Correlations

Since the original system properties are similar, it
seems like the added maintainability sub-characteristic

modularity with its system properties component bal-
ance and component independence are the biggest
causing factor for the maintainability correlation to
drop from 0.64 to 0.33. The negative correlation for
modularity and component balance is surprising as it
goes against our intuition. Overall one would assume a
modular program would help defect and enhancement

8

issue resolution time instead of the opposite. However,
perhaps the results make an argument for the way
modularity is assessed currently. The performance of
component balance, for example, has been debated be-
fore [BvDV13] (specifically, the discussion around the
optimal number of components and the performance
on smaller systems).

5.3 Threats to Validity

One of the main threats to validity is the variety in
SAT scoping. In order to get accurate replication re-
sults, ideally, the scoping per system should be exactly
the same as Bijlsma’s original scoping when rerunning
the SAT. As a consequence, results obtained may de-
viate slightly. However, given that the SIG maintain-
ability model uses two level aggregation to compute
the final maintainability score, small deviations in re-
sults should not affect the final maintainability score
by a large margin.

An additional difference in scoping is the com-
ponent depth property, which was introduced when
evolving according the new ISO 25010 standard (as
described in section 2.1). This property needs to be
set to show were the highest level components in the
directory of a system reside. This is needed in order to
calculate the modularity system properties. The ambi-
guity of the component definition requires an external
validator to check for correctness. In our case, given
the age of the systems, no external validator was ap-
proached to check if we defined the right highest level
components. The component depth property was set
in accordance with our own interpretation of the sys-
tem.

6 Conclusion

In order to answer the research question: What is
the relation between software maintainability and issue
resolution time?, in this paper we provide answers to
the sub-question: ”Does the previously found strong
correlation between maintainability and issue resolu-
tion time still hold given the latest (2018) SIG main-
tainability model?”. The experiment to find correla-
tions between maintainability (as assessed by the SIG
maintainability model) and issue resolution time, as
originally defined and executed by Bijlsma and Luijten
in 2012 [BFLV12] has been replicated. The experiment
was run on the same, reacquired (with small devia-
tions), snapshots of systems as in the original study
with the new (2018) version of the SIG maintainabil-
ity model.

Many similar correlations are observed between the
2010 and 2018 maintainability ratings versus the res-
olution time of defects and enhancements. However,

regarding two new metrics in the 2018 model: (1) com-
ponent balance does not correlate as expected, and (2)
component independence correlates only in cases en-
hancements are considered.

Our next steps are to investigate the cause of the
observed differences and further validate the underly-
ing data. Additionally we would like to extend the
data set to modern software systems.

7 Future Work

The system property component balance and its as-
sociated quality characteristic modularity can be con-
sidered a reason why the overall defect maintainability
correlation is much lower than in the original study.
Future work can expand in this direction, research-
ing the effect of modularity on issue resolution time.
Specifically, does the modularity coefficient look any
different when the enhancement results are significant?

Next to expanding in the direction of modularity,
more questions need to be answered in order to fully
show the relation between maintainability and issue
resolution time. Does the previusly found relation still
hold when tested against modern systems? Further-
more, Bijlsma analyzed mainly Java systems. How
does this extend towards other languages? In this
paper we tested against maintainability as assessed
by the SIG maintainability model. However, in or-
der to make the concept of maintainability more gen-
eralizable, do the correlations still hold when tested
against other maintainability implementations (e.g.
the maintainability index as proposed by Oman et al.
[CALO94])?

References

[BFLV12] Dennis Bijlsma, Miguel Alexandre Fer-
reira, Bart Luijten, and Joost Visser.
Faster issue resolution with higher techni-
cal quality of software. Software quality
journal, 20(2):265–285, 2012.

[BHL+12] Tibor Bakota, Peter Hegedus, Gergely
Ladányi, Peter Kortvelyesi, Rudolf Ferenc,
and Tibor Gyimóthy. A cost model based
on software maintainability. In Software
Maintenance (ICSM), 2012 28th IEEE In-
ternational Conference on, pages 316–325.
IEEE, 2012.

[BvDV13] Eric Bouwers, Arie van Deursen, and Joost
Visser. Evaluating usefulness of software
metrics: an industrial experience report.
In 2013 35th International Conference on
Software Engineering (ICSE), pages 921–
930. IEEE, 2013.

9

[CALO94] Don Coleman, Dan Ash, Bruce Lowther,
and Paul Oman. Using metrics to evalu-
ate software system maintainability. Com-
puter, 27(8):44–49, 1994.

[HKV07] Ilja Heitlager, Tobias Kuipers, and Joost
Visser. A practical model for measur-
ing maintainability. In null, pages 30–39.
IEEE, 2007.

[ISO11a] ISO/IEC 25010:2011, Systems and soft-
ware engineering – Systems and soft-
ware Quality Requirements and Evaluation
(SQuaRE) – System and software quality
models. Standard, International Organi-
zation for Standardization, Geneva, CH,
March 2011.

[ISO11b] ISO/IEC 25010:2011, Software engineering
– Product quality – Part 1: Quality model.
Standard, International Organization for
Standardization, Geneva, CH, March 2011.

[Lui10] Bart Luijten. Faster defect resolution with
higher technical quality of software. 2010.

[sig] Quality model 2018 announcement.
www.softwareimprovementgroup.com/news-
knowledge/sig-quality-model-2018-now-
available/. Accessed: 2018-12-20.

[Vis17] Joost Visser. Sig/tüvit evaluation crite-
ria trusted product maintainability: Guid-
ance for producers. Software Improvement
Group, Tech. Rep., page 7, 2017.

[Vis18] Joost Visser. Sig/tüvit evaluation crite-
ria trusted product maintainability: Guid-
ance for producers. Software Improvement
Group, Tech. Rep., page 7, 2018.

10

