
Establishing Benchmarks

For Learning Program Representations

Anjan Karmakar
Faculty of Computer Science
Free University Bozen-Bolzano

akarmakar@unibz.it

Abstract

Recent advances in the field of machine learn-
ing have shown great promise in solving vari-
ous software engineering tasks. However, un-
like machine learning techniques used in fields
such as NLP (Natural Language Processing)
where text-based tokens are used as model in-
puts, in software engineering (SE) structured
representations of source code have proven to
be more effective for various SE tasks. De-
spite the findings, structured representations
of source code are still underused. In this pa-
per, we propose to define a benchmark that
promotes the usage of structured representa-
tions of source code as model inputs, via tasks
that are explicitly defined towards that goal.

1 Introduction

With the advent of big code, applying machine learn-
ing techniques on large corpora of code have yielded
excellent results for a number of software engineer-
ing tasks. Particularly, neural networks have been
very effective since they are able to learn the fea-
tures from the input. However most of the tasks so
far use program structure in a shallow manner (name
prediction from snippets, source code summarization,
finding mappings between APIs, source code search,
etc). More recently a number of papers have utilized
the structured nature of source code and accomplished

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

state of the art results for certain software engineering
tasks.

Like natural language, source code also is structured
and repetitive [5], therefore representing instances of
the input source code effectively, while leveraging their
semantic and syntactic properties, could facilitate bet-
ter learning of machine learning models. Studies such
as [3] [1] used source code representations in the form
of ASTs, and graphs, to essentially capture the seman-
tic and syntactic properties of source code and then use
them to train their model.

Although there are a number of ways to repre-
sent source code, such as simple token-based represen-
tations, ASTs (Abstract Syntax Trees), call graphs,
bytecode, we are interested in the more structured
representations of code. Furthermore, we hypothesize
that the structured representation of source code as in-
puts to machine learning models would perform better
for a variety of software engineering tasks, including
tasks such as code completion and defect prediction.

Therefore, to evaluate our hypothesis, we aim to
propose a benchmark made up of tasks designed in
such a way that, to succeed, it is necessary to learn
more and more about the program structure. The
tasks shall be of increasing difficulty (i.e., learning
more and more of the structure is necessary to yield
desirable results). We expect that on the hardest ones,
current neural approaches will fare little better than
random chance. The tasks will be defined based on a
set of static analyses of the source code.

2 Background and Motivation

Recently, there has been an increasing interest in ap-
plying machine learning techniques to solve SE (Soft-
ware Engineering) tasks. However, most of the work
has directly tried to reuse natural language process-
ing (NLP) methods for SE tasks, mainly by treating
source code as a sequence of tokens - which ultimately

1



fail to capitalize on the unique opportunities offered
by code’s known structure and semantics [1].

Even though there are many similarities between
natural language and source code, one interesting as-
pect that differentiates source code from natural lan-
guage is that source code is highly structured, which
can be leveraged to obtain a greater understanding
of the context of the code. Owing to this structured
nature of code, program elements are usually depen-
dent on each other, and therefore when building mod-
els to predict program properties, simple sequence-
based models, which treat these program elements to
be independent aspects, fail to make use of the inter-
dependence on other code elements [7]. Also, simple
sequence-based models fail to determine which vari-
ables are in scope at any point in the program, which
can be resolved simply by embracing more structured
representations of code [6]. Some recent studies which
have utilized this structured representation of source
code have accomplished state of the art results on
many SE tasks.

For example, Alon et al. [3] introduce the use of
different path-based abstractions of the program’s ab-
stract syntax tree (AST) to represent source code. The
goal is to extract a representation that captures rel-
evant and interesting properties from the program’s
AST, while keeping the representation open for gener-
alization. One such way to produce such a represen-
tation of source code is to decompose the AST into
paths between nodes that repeat across programs but
can also discriminate between different programs.

The authors show that representing source code as
AST paths can be useful in a diverse set of program-
ming tasks such as predicting variable names, predict-
ing method names, and predicting types of variables.
Furthermore, they claim that the use of AST paths
can significantly improve the performance of the vari-
ous learning algorithms without modifying them, while
achieving state of the art results.

In yet another recent work by Zhang et al. [11],
the authors address the challenge of source code repre-
sentation, to effectively capture syntactic and seman-
tic information, with an AST-based Neural Network
(ASTNN) to learn vector representations of source
code. The model decomposes large ASTs of code frag-
ments into sequences of smaller statement trees, and
then obtains statement vectors by recursively encoding
multi-way statement trees. Based on the sequence of
statement vectors, a bidirectional RNN model learns
the vector representations of code fragments by lever-
aging the naturalness of statements, which is then eval-
uated on two tasks, namely source code classification
and code clone detection, producing state-of-the-art
results.

Allamanis et al. [1] propose a new method to repre-

sent code to capture the syntactic and semantic struc-
ture of code using graphs, and then use graph-based
deep learning methods to learn to reason over program
structures. The authors propose a new representa-
tion technique by encoding source code as graphs, in
which edges represent syntactic relationships as well
as semantic relationships. They observe that exposing
source code semantics explicitly as structured input
to a machine learning model reduces the requirements
on the amounts of training data and model capacity -
making way for solving tasks, such as variable naming
(VarNaming), and detecting instances misused vari-
ables (VarMisuse), and achieving state of the art re-
sults.

From the studies above, it is clear that structured
representations of code fare much better than simple
text-based token representations, for the tasks investi-
gated above. For our study, we are going to specifically
focus the defect prediction tasks and attempt to use
structured representations of code as input to a learn-
ing model to predict bugs. To evaluate the effective-
ness of utilizing the structured representations of code,
the task of bug prediction is particularly potent since
there is a wide range of available bug types - some are
easily detected while others require a thorough under-
standing of the syntactic formulation, semantics, and
structure of the code.

3 Benchmarking

Our intention is to build a neural network model that
is able to highlight buggy code in a given code corpus.
In order to accomplish the said goal our methodology
would require an amalgamation of different techniques
that have already been proposed in the literature for
diverse tasks. For the specific case of bug detection
task, however, the techniques need to be applied to-
gether and evaluated in the right manner, since all our
research questions are subject to experimental evalua-
tion, preferably against established benchmarks.

An established benchmark, when embraced by a
community, can have a strong positive effect on the
scientific maturity of a community [9]. Benchmarking
can result in a more rigorous examination of research
contributions and pave the way for the rapid develop-
ment and evaluation of new methods and tools.

While looking for established benchmarks in the
field, we have discovered datasets like the publicly
available PROMISE dataset [8], which also include
contributions from the NASA Metrics Data Program
[4], where a lot of defect prediction datasets are avail-
able. However, the tests conducted on these datasets
are mostly metric-based, essentially using static mea-
sures to guide software quality predictions, and are
essentially too ”coarse” meaning they often highlight

2



bugs on the file level based on the complexity mea-
sures such as essential complexity, cyclomatic com-
plexity, design complexity and lines of Code. On the
other hand, we would like to have tests which are more
”fine-grained”, in the sense that, they could not only
identify suspicious or buggy files but also highlight the
exact bug locations in the lines of code.

Thus, as a preliminary goal, we need to first deter-
mine some benchmarks that define tasks that would re-
quire a thorough understanding of the programs struc-
ture and semantics. We then need to evaluate the per-
formance of our trained model on these tasks and com-
pare it against the tasks comprising our benchmark.

An additional desirable aspect of a benchmark is
to control the difficulty of the tasks. An example in
NLP is the work of Weston et al. [10], which defines
20 NLP tasks in increasing levels of complexity. The
tasks are artificial, but establish minimum levels of
complexity that a prediction model must fulfill. While
any model that can solve these tasks is not necessarily
close to full reasoning, however, if a model fails on any
of these tasks then there are likely to fail in real-world
tasks too.

In the case of bug prediction, we would like a similar
property, but with more realism. These could range
from basic tasks for which the information is directly
accessible without needing to understand the program
structure - where sequential processing is still viable,
to more advanced tasks where understanding of non-
local and indirect structure is necessary.

To sum up, unlike existing benchmarks we need
tasks where the output is fine-grained, and where we
can control the complexity of the tasks, so that we can
provide incentives for models that leverage the pro-
gram structure. One candidate that fulfills these con-
ditions is to leverage static analysis tools. Static analy-
sis tools leverage program structure and find real bugs.
The static analyses can point out precise program loca-
tions, and the analyses vary in complexity, from simple
and local pattern matching to full-program analyses.

Therefore, we could consider proceeding in defin-
ing certain tasks which would form the benchmark to
evaluate machine learning models using the structured
nature of code. The range of tasks based on difficulty
could be categorized as:

1. “Easy” tasks: tasks for which the information
is directly accessible without needing structure.
E.g. a property of a method that can be deduced
by information in the method body.

2. “Medium” tasks: tasks for which some degree
of structure is necessary. E.g. a property of a
method or variable that can be deduced, but you
need to take the entire file context into account,
not just the method body.

3. “Hard” tasks: tasks for which non-local struc-
ture is necessary. E.g. a property of a method
that needs information from its direct callers.

4. “Very hard” tasks: tasks for which non-local
and also indirect structure is necessary. E.g. you
have to look into the callers of the callers.

5. “Inaccessible” tasks: tasks for which informa-
tion very distant from the source is necessary.
E.g., one statement in one method that is indi-
rectly called by the method, but they are 5-10
steps away.

For example, the VarMisuse task defined by Alla-
manis et al. [1] serves as a good sample task for bug
detection. The missing variables in the VarMisuse task
must be predicted properly else they risk causing sys-
tem failure, and thereby, when applied to our case our
model could highlight or detect whether a variable has
been misused and whether the module is buggy.

In essence, some variables are omitted from a given
code snippet and fed as input to Allamanis et al’s
model. The learned model from Allamanis et al.
then accurately predicts the expected variables with
a high accuracy for all the variables but the last.
Such a task could be categorized as a Medium task,
since to accurately predict the omitted variable the
model needs to take the code from the entire file into
consideration, rather than just the local method.

To successfully tackle the task of bug detection,
one needs to understand the role and function of the
program elements and understand how they relate to
each other. In the VarMisuse task discussed above,
the model learns to predict the correct variable that
should be used at a given program location. Since the
model produces near accurate results, any variable in
the code that does not match the expected variable
predicted by the model could then be a point of
inspection. This task could be complementary to our
bug detection task. Given a certain code snippet, we
must therefore ascertain whether it contains certain
buggy fragments and then we can compare our results
with the predictions made by the model proposed by
Allamanis et al. [1].

These tasks from the established benchmark will
also help us compare our results against those of static
bug finders, which use approaches ranging from simple
code pattern-matching techniques to static analyses
that process semantic abstractions of code. From the
list of tasks defined in our benchmarks, simple static
bug finders would likely be able to detect bugs ”easy”
and ”medium” tasks but fare poorly for ”hard” tasks

3



where a greater understanding of the program struc-
ture is required.

Making a direct comparison with static bug finders
against our model could reveal the effectiveness and/or
weakness of our model. We could match the high-
lighted faulty lines of code or defect locations from the
static bug finders and our model, and evaluate them
for false positives and false negatives.

There are a number of Static Bug Finders (SBF)
we could compare our results with to conclude on the
effectiveness of our model. For example, Hybrid tools
like FindBugs which incorporate both static data-flow
analysis, and pattern matching, could be a good
evaluation candidate. Also, tools like ESC-Java and
CodeSonar could be considered, since their analyses
are reportedly more effective and they could possibly
highlight bugs in ”hard” tasks.

Advanced tools like Infer could even understand the
program structure and fare better than traditional bug
detection tools, and it will be interesting to compare
their results against the set of tasks from the estab-
lished benchmarks, and whether they are able to de-
tect bugs in ”hard” and ”very hard” tasks.

4 Discussion

The eventual goal of our research is to enable learned
models to effectively detect bugs from a new corpus -
which is not an easy task. Detecting code faults is a
task that requires through understanding of the code
and reasoning about the program semantics. Even for
an experienced programmer this is a challenging task.

To allow a learning model to grasp the correla-
tions between code fragments and understand how
they work, we need a better way to map code frag-
ments instead of simple sequential token-based map-
ping. Even though code fragments have something in
common with plain texts, they should not be simply
dealt with text-based or token-based methods due to
their richer and more explicit structural information.

Recent work [2] [1] provides strong evidence that
semantic and syntactic knowledge from source code
as structured representations contributes a great deal
in modeling source code and can obtain better results
than traditional sequential token-based methods. Be-
cause of the highly structured nature of code, treat-
ing code snippets as structured representations for the
machine learning models, can capture critical seman-
tic information that reflects common code patterns,
and even significantly lessens the requirements on the
amount of training data compared to learning over se-
quential token-based representations [2], and it is still
general enough so that it can be applied to a diverse
range of tasks.

However, to measure the effectiveness of the models
based on various representations of code, and to com-
pare against the results from static analysis, we need a
set of tasks as a benchmark. Therefore, in our prelim-
inary work we attempt to define a benchmark measur-
ing the accuracy and usefulness of a model based on
certain type of representation. The tasks comprising
the benchmark would essentially test the understand-
ing of the model, starting from simple tests for which
the information is directly accessible without needing
to understand the program structure, to increasingly
difficult tests where understanding of non-local and in-
direct structure is necessary. Furthermore, this bench-
mark would also serve new models with novel repre-
sentation techniques for their evaluation purposes - to
compare against current state of the art.

Once our benchmarks are established, as a part of
our future work, we could begin our bug detection ap-
proach by first mining programs in our training set
as Abstract Syntax Trees (ASTs). Then selecting the
most effective paths in the ASTs, we could derive code
embeddings from the program as an input for our
learning model. And finally, train the learning model
with pairs of buggy and correct code, based on the vec-
tors representations of the code fragments. When the
model is trained it should be able to highlight buggy
fragments of code from the input - an unseen code
corpus. Another approach could be to mine the pro-
grams as ASTs and represent them as graphs which
could be used as a direct input to feed Graph Neu-
ral Networks. Establishing a solid benchmark for the
defect prediction task, would boost the development
and evaluation of new techniques and tools in defect
prediction, and allow for the comparison of their ef-
fectiveness. Our aim with this paper is to introduce
the notion of benchmarking for learner models based
on structured representations of code, and propose a
set of tasks categories that would evaluate the usage
of program structure specifically for the task of defect
prediction.

References

[1] Miltiadis Allamanis, Marc Brockschmidt, and
Mahmoud Khademi. Learning to represent pro-
grams with graphs. CoRR, abs/1711.00740, 2017.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and
Eran Yahav. code2vec: Learning distributed
representations of code. CoRR, abs/1803.09473,
2018.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and
Eran Yahav. A general path-based representa-
tion for predicting program properties. CoRR,
abs/1803.09544, 2018.

4



[4] Jackson W. Chapman SM., Callis P. Metrics data
program. NASA IV and V Facility, 2004.

[5] Abram Hindle, Earl T. Barr, Zhendong Su, Mark
Gabel, and Premkumar Devanbu. On the natu-
ralness of software. In Proceedings of the 34th In-
ternational Conference on Software Engineering,
ICSE ’12, pages 837–847, Piscataway, NJ, USA,
2012. IEEE Press.

[6] Chris J. Maddison and Daniel Tarlow. Structured
generative models of natural source code. CoRR,
abs/1401.0514, 2014.

[7] Veselin Raychev, Martin Vechev, and Andreas
Krause. Predicting program properties from ”big
code”. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 111–
124, New York, NY, USA, 2015. ACM.

[8] J Sayyad Shirabad and Tim J Menzies.
The promise repository of software engineering
databases. School of Information Technology and
Engineering, University of Ottawa, Canada, 24,
2005.

[9] S. E. Sim, S. Easterbrook, and R. C. Holt. Using
benchmarking to advance research: a challenge to
software engineering. In Proceedings of the 25th
International Conference on Software Engineer-
ing, ICSE ’03, pages 74–83, May 2003.

[10] Jason Weston, Antoine Bordes, Sumit Chopra,
Alexander M Rush, Bart van Merriënboer, Ar-
mand Joulin, and Tomas Mikolov. Towards ai-
complete question answering: A set of prerequi-
site toy tasks. arXiv preprint arXiv:1502.05698,
2015.

[11] Zhang H Sun H Wang K Liu X Zhang J., Wang X.
A novel neural source code representation based
on abstract syntax tree. In Proceedings of the 41st
International Conference on Software Engineer-
ing, ICSE ’19, May 2019.

5


