
Towards a Naming Quality Model

Sander Meester BSc.
University of Amsterdam /

Software Improvement Group
Sander.meester@student.uva.nl

Sanne Bouwmeester MSc.
Sanne.g.j.bouwmeester@gmail.com

Dr. Ana Maria Oprescu
University of Amsterdam
A.M.Oprescu@uva.nl

Dr. Magiel Bruntink
Software Improvement Group

m.bruntink@sig.eu

Abstract

Having highly maintainable software de-
creases the time spent on development. Al-
though various research efforts show that the
names of identifiers play a large role in the
readability and maintainability of code, code
quality assessments often do not take these
names into account. Although developers can
usually quickly assess the quality of a name,
the abstract nature of names makes a fully
automated assessment difficult.

This research investigates the creation of a
general naming quality model. Our proposed
model assesses: a) the syntactic quality of
Java method names, b) how well a method
body matches its name semantically. We as-
sess this using 1) a set of guidelines from liter-
ature, 2) a machine learning algorithm trained
on AST representations of method bodies.

Initial results show that the combination of
a rule-based approach and a deep learning
model can correctly indicate what names need
attention. By inspecting the names flagged as
a violation by both approaches we found that
the combination of syntactic and semantic in-
formation yields better results than either of
them by themselves. Further validation ex-
periments on a Github commit dataset show
that the model can distinguish between good

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on
Advanced Techniques Tools for Software Evolution, Bolzano,
Italy, July 8-10 2019, published at http://ceur-ws.org/

and bad names, but still has room for improve-
ment.

1 Introduction

Software quality plays a crucial role in the field
of software engineering [ISO10]. Higher quality
software enables developers to implement new fea-
tures and changes faster, lowering the development
cost [HKV07]. Maintainability is one of the factors
that defines the quality of the software, which is fur-
ther divided into modularity, re-usability, analysabil-
ity, modifiability, and testability [ISO10]. This re-
search will be related to the analysability and mod-
ifiability factors of the source code. Although source
code properties that define these factors have been de-
scribed [HKV07], the names used in the code are not
yet used to influence these properties, although they
play a significant role in it.

Making code easily understandable by using proper
names influences the analysability and modifiability
of code, and therefore the maintainability of a code-
base [Mar08; McC04]. Every variable, class, argument,
method, file and directory is named by the developer.
Well thought names are the first step in aiding the de-
veloper to gain an understanding of the code [Mar08;
McC04]. If a developers chooses bad identifier names
the functionality of the code is heavily obfuscated.
For example, if a method is named ‘b’, no devel-
oper can guess the intention of it. When it is named
‘calculateMedian’ however, its functionality is clear
from just the name.

The importance of naming is supported by Lawrie
et al. [Law+06], who state that next to the com-
ments, the developer is almost exclusively dependent
on the naming of identifiers to understand the code.
According to Murphy-Hill et al. renaming is the

1



most commonly occurring refactoring done in code-
bases [MPB12]. Research has also shown that low
quality identifiers can be related to lower quality code
[But+10; But+09; Law+06; LFB06; LFB07; Rel04]

Despite the relevance of naming quality there is cur-
rently a lack of maintainability models and code qual-
ity analysis tools that take identifier naming into ac-
count. To overcome this we investigate the creation
of a naming quality model that can improve maintain-
ability models and that can be used in quality analysis
software.

Names are harder to validate than other code met-
rics, since good names must be accurate abstraction
of the source code it represents (its context). This ab-
straction of context reflects the meaning of the code,
which we will refer to as the semantics of a name. To
verify whether a name matches its context some under-
standing of the source code is necessary, which is easy
to assess for a human but difficult in an automated as-
sessment. In contrast to this are the syntactic qualities
of a name, characteristics of the name itself, such as
spelling and structure, which are more easily verified.

To do naming quality assessment we will employ a
combination of a ruleset and machine learning model
learned on code representations, which combines the
syntactic and semantic aspects a name should adhere
to.

Syntactic aspects of a name are well-researched and
guidelines to which good names should adhere to can
be found in literature [Rel04; But+09; Abe+09]. How-
ever, as stated before, to improve comprehensibility of
code it is also essential that the method name correctly
represents its method contents.

To achieve this, machine learning is employed to as-
sess the semantics of the name. To train this model,
it receives a large number of method names and their
bodies as input. The names are represented as natural
language, and method bodies as an Abstract Syntax
Tree (AST). From these examples, the model learns
code embeddings, which are numeric vector represen-
tations, for both the names and bodies. This results
in similar method bodies having similar vector values,
which also applies to method names.

We can then infer from this model what method
body embeddings are often found with what method
name embeddings, and base a prediction on what name
would fit a body on this [APS16; Pen+15; Liu+19;
Alo+19; ALY18]. Comparing this name to the ac-
tual name can inform us how well the real name fits
the method. This semantic check can then be used in
combination with a syntactic check, which will result
in a more complete naming quality assessment.

1.1 Research goal and contributions

In this study we build upon existing research in naming
quality to close the gap in software quality analysis by
including a naming quality assessment. To achieve this
goal we propose a model that uniquely combines syn-
tactic and semantic information. Syntactic informa-
tion is used since the guidelines and regulations code
should adhere to are a tested and proven contribu-
tor to naming quality [But+09; But+10]. We improve
on these known syntactic guidelines by introducing se-
mantic information into the quality analysis model,
which allows us to assess how well a method name fits
the body. Semantic information has been extracted
from code before but it has not been used to assess
naming quality.

We validate this proposed naming quality model by
building a proof-of-concept implementation that uses
these concepts to generate a quality overview for a
project.

Not only do we create a naming quality model and
a proof of concept implementation, we also relate the
assessment of a codebase using this model to other
code metrics showing the relevance of the model and
naming in general. Lastly, we contribute to a line of
research combining expert knowledge with statistical
machine learning approaches.

Initially this research will target method identifier
quality, as this is the smallest abstraction unit with
significant context, and is essential for understanding
the code. Also, we build our tool to work for Java as a
start since it one of the most widely used programming
languages.

Ideally, the final model can be employed by devel-
opers to quickly assess the general naming quality of
their codebase and compare it to other codebases. Ad-
ditionally, it allows them to find occurrences of names
that need attention to improve the maintainability of
their code. The quality assessment performed by our
proof-of-concept model will be validated by inspection,
comparing it to other code metrics such as readability,
and by running it on datasets with justified naming
quality.

In this research we aim to answer the following re-
search questions, focused towards investigating, vali-
dating, and improving the proposed model.

• RQ1: How well does the proposed model per-
form.

• RQ2: How does the syntactic correctness checker
compare against the semantic correctness checker.

• RQ3: Can we improve the semantic model using
the syntactic knowledge.

2



2 Background and Related Work

To create a naming quality model we have to be able
to infer if the name itself is syntactically correct, and if
it accurately reflects the context the identifier is used
in (semantics), which for method names we define as
the method body. We first analyse research conducted
on assessing the syntactic quality of names in code,
and then dive into research using a combination of
natural language processing and machine learning to
analyse source code, which is what we will use to assess
the semantic quality of names. The section ends with
an overview of how a naming quality model could be
validated based on related approaches.

2.1 Syntactic quality assessment

A common approach to checking identifier syntax is to
define rules that define what good quality identifiers
need to adhere to [DP06; But+11; Esh+11; CT99;
Abe+09]. These rules usually only focus on checking
the structure of the name itself.

An example of using rules to define naming quality
can be found in the studies by Butler et al. [But+10;
But+09]. They used a list of twelve identifier guide-
lines aimed at the contents of the name itself, such as
maximum words used in the identifier, or encodings in
the name. They show that adherence to these guide-
lines can be related to less bugs. In contrast, Lawrie
et al. [Law+06; LFB07] define good identifier quality
based on the quality of just the words the name con-
sists of. They collected a dictionary of English words,
which had known abbreviations added, and argue that
if the words in the name are not in this dictionary, the
name does not have a clear meaning.

A different approach focuses on a set of consistency,
conciseness, and composition rules [DP06]. Although
useful in some cases, these rules are only applicable
on 10% of all identifier names according to the re-
sults. To work well they also need developers to keep
an identifier dictionary during development, contain-
ing all identifiers. Their rules are therefore hard to
include in a fully automated and general assessment
of naming quality and has a limited application area.

Other work has been done on investigating the iden-
tifiers used in the code. These attempts are however
aimed on a very small syntactic aspect of naming (e.g.
only that not both CamelCase and snake case are be-
ing used, or only detecting homonyms), do not take
semantic context into account, or do not do a qual-
ity assessment. [DP06; CT99; CT00; Abe+09; AT13;
Arn+10; Esh+11; HØ09; All+14; All+15; Liu+19].

The most complete overview of what encompasses
naming quality was defined by Abebe et al. [Abe+09]
who defined so called lexicon bad smells, which, ac-
cording to the authors, are indications of deeper code

problems, just as normal code smells are. From this
research, as well as the other studies, we collected a set
of guidelines on the syntax of method names to use in
our syntactic checker.

2.2 Semantic quality assessment

To compare a name and its context semantically in an
automated assessment, both the name and the context
need to be represented in the same space. These repre-
sentations can then be compared against each other to
calculate similarity and possibly indicate where names
differ greatly from the context they represent.

2.2.1 Creating similar representations

One method of matching an identifier and its context
focuses on treating the words in both the identifier
name and the context around it as English sentences
[DDO11; Sri+10; AT10]. Representing both a method
and a name as an English sentence effectively places
the problem in the Natural Language space. This
method assumes that: a) the vocabulary used in both
the name and its context are similar; b) the structure
of the code is not necessary to accurately assess the
context of a name. The advantage of this language-
based method is that we can lean on extensive research
in comparing the semantics of English sentences. How-
ever, a lot of code specific information is lost when
translating code to an English sentence, making this
method of representing code and names unfit for our
purposes.

Another method of representing information, which
is widely used, is representing things as a numeric vec-
tor called an embedding. The idea is that semantically
similar objects are mapped to similar vectors, which
allows for comparison.

The first approaches in this area were on natural
languages, not on source code [Mik+13]. These ap-
proaches use neural networks to create word embed-
dings based on the words that are around the word
of interest, effectively representing a word as a vec-
tor of the words it co-occurs with. These embeddings
are then used for a plethora of applications, such as
machine translation.

New approaches then tried to create these embed-
dings from source code to try and leverage general-
isable concepts from code. It is hypothesised that
since software is made by humans, the language used
has similar statistical properties as natural languages.
We can use this approach to represent both the name
and the method as a vector so they can be compared.
Transforming input into a vector is usually done by
training a machine learning model on a large amount of
data, which then learns which input data corresponds
to what vector. Research has shown that is is possible

3



to train probabilistic models from existing code that
can reason about code not seen before [All+18].

Some approaches transform the source code into a
token stream and use it as input for the machine learn-
ing model [All+15; APS16], where others attempts
build an Abstract Syntax Tree (AST) out of the source
code and use that as input [Pen+15; Liu+19; Alo+19;
ALY18]. This input is then fed into a machine learning
model to create numeric vector representations. These
approaches were tested with a method name prediction
task, where a model performs good when it predicts
the exact name of a method body based on its vector.
The second approach (AST based) achieves better re-
sults in terms of precision and recall on this task.

To evaluate whether method bodies and names
match, we can use these vector representations as cre-
ated by a machine learning model to compare them.

2.2.2 Comparing a method name to its body

After transforming both the method name and body
into a similar representation, there are multiple ways
to use them to do a naming quality assessment. The
simplest approach is calculating the similarity between
a name and a body and using that as a measure.

A language-based approach to this is taken by Ar-
naoudova et al. [Arn+10] who take identifiers and
comments from the body of a method and calculate
the textual similarity between them. De Lucia et al.
[DDO11] take it one step further and convert the ex-
tracted words in a vector representation so the vectors
spaces of both methods and names be compared. Srid-
hara et al. [Sri+10] use a Software Word Usage Model
(SWUM) to extract the action, theme and arguments
of a given Java method. They are then able to generate
a single English sentence that reflects what the method
does. Such a method can be used to extract a sentence
that should represent the method body, and compare
it with the actual name. The biggest problem with
these approaches in relation to our envisioned model
is the fact that we only have a very limited amount
of text when we look at method identifiers. The sim-
ilarity between a large amount of text extracted from
an entire method including comments is not that ac-
curately comparable to just a name.

Other approaches make use of machine learning to
train a model to recognise similar representations. Ad-
vantages of this are that more complex statistical re-
lations can be modelled.

Liu et al. [Liu+19] use paragraph vectors and con-
volutional neural networks to extract embeddings of
method names and bodies that can be used as input
to train a deep learning model. For each method name
and body name, their model selects all other names
and bodies that are close in the vector space of embed-

dings. When the name and the body have no overlap
in their respective space, they are considered inconsis-
tent, and names of other methods that are close (i.e.
that are very similar to the snippet of code) are sug-
gested.

Although their goal is similar to ours, no quality
assessment of any kind is being performed, which is
the area we want to apply the models knowledge.

We can however perform a quality assessment by
using a model that was introduced by Alon et al.
[Alo+19]. They trained a neural machine learning
model to predict the name of a method based on AST-
based representations. Since the code2vec model by
Alon et al. is completely open source, it can be em-
ployed by us to take it one step further and relate the
output of the model to naming quality.

2.3 Model validation

To assess the performance of our model, we want to
validate whether the names indicated by our model as
low quality decrease the maintainability of the code,
and that the names not flagged as violations do not de-
crease it. This is applicable to both the syntactic and
semantic approach. On the one hand we need to re-
late our syntactic guidelines to improved code quality,
and on the other hand we want to relate our semantic
quality assessment to improved code quality.

To show the effect of low-quality identifiers Butler et
al. have done two different empirical studies that show
that syntactically flawed identifiers have a negative in-
fluence on code quality [But+10; But+09]. Although
their guidelines are very basic and do not reflect the
entirety of naming quality, they have shown that al-
ready neglecting these basic guidelines relates to more
code quality issues reported by a static code analysis
tool called FindBugs. To test whether guidelines help
developers create better names, Relf [Rel04] identified
a set of twenty-one guidelines and did a small study
with developers. In this study developers were asked
to accept or discard the guidelines provided. All guide-
lines except one were confirmed by the developers as
helpful in creating more descriptive identifiers. These
two findings combined show that guidelines do indeed
lead to improved naming quality.

When looking at the semantic assessment, we need
some other model or code metric to compare the
output to. General code readability models only
take structural aspects into account [Dor12; PHD11;
BW10]. Structural aspects for example are number of
comments or the length of a line, in other words syn-
tactic aspects. Scalabrino et al. [Sca+16] show that
adding textual aspect such as contents of comments
and identifiers would improve those models. To do
this, they add multiple textual aspects to the model.

4



These aspects are comments and identifiers consis-
tency, the number of dictionary terms in identifiers,
hypernym density, textual coherence, comments read-
ability, and number of meanings of a snippet.

The metrics used by both Scalabrino et al. [Sca+16]
and Buse et al. [BW10] to define code readability can
be used by us to compare the assessed naming qual-
ity. They also have both created an annotated dataset
of methods with readability scores. This readability
score was obtained by letting computer science stu-
dents and developers go over files and awarding them
a score. Although this score is clearly not a perfect
truth, significant similarity between the scores from
the assessors and the scores from our model can indi-
cate our model approaches comprehensibility in a cor-
rect way. The biggest problem is that the assessment
is done on readability of the code snippets, and not
on the quality of the names. The scores are given for
readability of the code, not the names. Even though
naming is a big part of readability the scores are not
exclusively a naming quality metric.

Beside relating the model to readability scores one
could also evaluate a model by comparing it to a
dataset of known good and bad names. Unfortunately,
there is no gold standard of high-maintainable and
readable code to compare a model against. To evalu-
ate their model, Liu et al. [Liu+19] collected a dataset
of methods whose names were changed in a GitHub
commit whereas the body remained the same. The
names before the change are considered inconsistent
with their body, and the names after the commit con-
sistent. This dataset can be employed by us to test
whether our model also flags the pre-commit names as
being low quality more often.

3 Naming Quality Model

In this study we assess naming quality in two ways,
syntactic correctness and semantic correctness. The
model we porpose consists of two different parts, both
having the objective to assess naming quality. The
first part does a syntactic quality analysis based on
literature guidelines, whereas the second part does a
semantic analysis of the method name and body. The
output of both parts, as well as the complete model, is
mapped to a binary assessment (“violation”/“no vio-
lation”) per name so that the results are comparable.

Our intuition is that the combined model will
achieve better results in detecting low quality names
than both approaches by themselves can. Next steps
in combining the two approaches are described in more
detail in Section 7.1.

An overview of the proposed model can be found in
Figure 1. Each of the following sections highlights a
part of the setup.

3.1 Source code parsing

To create a naming quality model we first need to be
able to extract the relevant pieces of information from
the source code. With the use of JavaParser1 we cre-
ate an AST representation of the source code which
we can traverse to collect the info we needed. For
the syntactic analysis, we parse the source code into a
Java HashMap containing the file a method is in, the
method name, and the return type.

For the semantic analysis, we need the output of the
parser to match the input the code2vec neural models
expects. Code2vec takes an AST as input, and gener-
ates all possible paths and their embeddings for it, see
also Section 3.3. For this reason, we pass the entire
AST to both approaches.

3.2 Syntactic quality assessment

We analyse the information retrieved from the parser
using two different approaches. The first approach
uses a rule-based model that checks the method name
itself for violation of guidelines. As we concluded in
our background section, research has been done that
assesses the source code lexicon and indicates what
high-quality identifiers should adhere to to increase
readability and understandability. This research shows
that a syntactic quality assessment is possible and ben-
eficial. From the literature we collected a method nam-
ing ruleset that method identifiers should adhere to to
be considered of high-quality, as shown in Table 1.

To check the source code for adherence to these
guidelines, the output of the Java Parser is written
to a file and read by a Python script. This script goes
over all method names to check their adherence to the
guidelines. The result is an overview of which method
violates which guideline, and a total number of vio-
lations per guideline. Thereby laying the foundation
of further experiments relating syntactic to semantic
assessments.

Based on preliminary experiments some adjust-
ments were made in the guidelines. We removed guide-
line two: “A method name should be composed of
words found in the dictionary, and abbreviations and
acronyms that are more commonly used than the un-
abbreviated form” since every new project introduced
new abbreviations that were clear in their context, and
as stated before, when an abbreviation is ’known’ or
more commonly used than its non-abbreviated form is
hard to assess.

3.3 Semantic quality assessment

The second approach to assess naming quality revolves
around learning a neural model on the extracted source

1https://javaparser.org/

5



Figure 1: Architectural overview of proposed naming quality model

ID Description Source

0
A method name should not be composed entirely
of non-alphabetic characters.
- e.g. www

[But+09; Rel04; Abe+09]

1
Identifiers should be composed of between two and four words.
This prevents too general names.
- e.g. handle, calculate

[But+09; Rel04]

2
Identifier names should be composed of words found in the dictionary and abbreviations,
and acronyms, that are more commonly used than the unabbreviated form.
- e.g. createWTT, fooFlip

[Abe+09; But+09; Rel04]

3
Identifier duplication, differentiated only by a digit
- e.g. create tree, create tree2

[Rel04]

4
A method name that start with has/contains/is/check should return bool, and vice-versa
A method that start with get/return/find should return non-bool and non-void

[Rel04; Abe+09]

5 Method identifiers should follow the following convention: <verb> NotVerb* [Abe+09]

6
A method name should not employ both CamelCase and SnakeCase
- e.g. create newHouse

[Rel04]

7
Identifiers should not be composed entirely of numeric words or numbers.
- e.g. 42, two

[But+09; Rel04]

8
A method name should start with an alphabetic character
- e.g. 1createHouse, 2createHouse

[Rel04; But+09; Abe+09]

9
A method name should end with an alphanumeric character
- e.g. createHouse!

[Rel04; Abe+09]

10
A method name should not contain two underscores in succession
- e.g. create new house

[But+09]

Table 1: Literature identifier quality guidelines to improve code comprehension.

6



code data, and allowing it to assess what name would
best fit a code snippet based on learned experience.
This predicted name is then compared to the actual
name.

Recent work by Alon et al. [Alo+19] resulted in
a neural attention model that maps a method body
onto a method name. This model takes an AST rep-
resentation of a method body as input and returns
an estimation of the name it predicts the body has,
with different predictions and the confidence for each
prediction. The attention mechanism of their model
allows us to inspect how the model comes to its pre-
dictions and could teach us how to improve the model.

From the AST representation, each possible path
through the AST is saved in a so called path-context
containing the starting token, the terminal token,
and nodes between these two tokens (e.g “x = 7”
would become: 〈x, (NameExpr ↑ AssignExpr ↓
IntegerLiteralExpr), 7〉 [Alo+19]). As seen in the ex-
ample, the nodes are saved as a simplified representa-
tion, and arrows between the nodes denote if the next
node is a parent or child node.

An example of the models output can be found in
Figure 2 and 3, with the first example showing an
example where the model correctly predicts the real
name, and a second example where the model has more
trouble predicting what the name should be.

Figure 2: Example of correct model prediction

Figure 3: Example of less correct model prediction

We adapted the code2vec model to generate a large
number of expected names for method bodies, and
compared these expected names to the real names us-
ing natural language similarity methods.

To detect names that “violated” the ML model, we
calculated the textual similarity between the guessed
name and the real name using the Jaro-Winkler dis-
tance, putting more emphasis on the start of the name
since this is defining for its functional intention. If the
similarity was lower than .6 we considered the name
to be too far off from the prediction, and counted it as
a violation.

As described above we use this machine learning ap-
proach to validate the semantic integrity of a method
name and the body it represents. In this study we
compare this approach to the syntactic approach us-
ing guidelines from literature, as well as combine them
to validate the structural and syntactic integrity of a
name. Together they form the basis of our naming
quality model.

4 Experimental Setup

In this Section we describe the experimental setup used
to answer the research questions. Experiment 1.1 and
1.2 are aimed towards assessing the performance of
the model using different approaches, and Experiment
2 aims to answer how the syntactic and semantic ap-
proach differ.

4.1 Experiment 1: Performance of the model

To assess the performance of the model and answer
RQ1, we need an oracle that allows us to evaluate the
output. This oracle should tell us how often the model
is correct and how often it is not. Having this will also
allow us to set a baseline to compare future improve-
ments and iterations of the model to. To achieve this,
we performed two experiments to try and validate the
performance of the model.

7



4.1.1 Experiment 1.1: Readability assessment

As a first validation attempt, we looked into the
dataset made by Scalabrino et al. [Sca+18] and the
dataset made by Buse et al. [BW10]. Both datasets
contain a variety of Java code snippets with readabil-
ity assessment scores of that snippet done by students
and developers. For each snippet, we let both models
check for violations and compared it to the average
readability score given by the assessors.

If we can relate it to the readability assessments
this could show that by our model highly-evaluated
snippets are also considered highly readable by their
model. Every new snippet can then be validated as ei-
ther high or low quality considering their names based
on the readability score. This could then represent our
oracle that we base the models performance on.

Next to their datasets, we can use to readability
score calculation tool as developed by Scalabrino et
al. [Sca+18] that uses textual aspects to calculate a
readability score for a snippet. If these score can be
related to the amount of violations found by the model,
we can use it as an oracle to define whether the model
is correct.

4.1.2 Experiment 1.2: Github commit dataset

As a second validation, we looked into the approach
taken by Liu et al. [Liu+19] as explained in Sec-
tion 2.3. They propose a dataset of method names
that were changed in a commit where the body re-
mained the same. They reason that since the name is
changed while the body is not this indicates a change
was needed to better reflect the body, meaning the old
name did not reflect the content of the body. There-
fore the names before the commit are seen as flawed
names, and the names after the commit as not flawed.

From their dataset we removed duplicate method
names which would skew the results, since the names
all either do violate or do not violate the guideline,
as the bodies are nearly equal. If the model happens
to perform well in those occasions the overall perfor-
mance seems better than it would on a more varied
dataset. The resulting dataset contains 1597 methods.

For our experiment, we compare the assessment of
our model on these names and their respective bod-
ies to this qualification. Ideally, all pre-commit names
should be indicated by our models as flawed, whereas
all after-commit names should not be indicated as
such. The underlying assumption made here is that
no pre-commit names were already of high-quality and
that every post-commit name is of high-quality.

4.2 Experiment 2: Comparing the semantic
to the syntactic checker

Comparing the two different approaches tells us how
they differ, what benefits and disadvantages each ap-
proach has, and how each approach performs. To an-
swer RQ2, we investigated the output of both parts of
the model both by looking at the number of flagged
violations. We also performed an in-depth analysis of
the models outputs to see what names they flag as
violations and what names they do not.

A first experiment to compare the syntactic checker
to the semantic checker was done by running the model
over different Java projects and outputting the num-
ber of methods that each approach flags as a violation.
This gives us insight in the difference between the se-
mantic and the syntactic model, allowing a first answer
to RQ2.

For this analysis the codebases Hadoop-
MapReduce2, Presto3 and Cassandra4 were used.

We report the number of methods that each model
flags as a violation. The rule-based model outputs
whether or not a name violates at least one of the
guidelines. For the neural model we used the textual
similarity between the actual name and the predicted
name as explained in Section 3.3 to flag a name as a
violation or not.

Besides plain numbers an in-depth qualitative anal-
ysis of the output will be reported, which further an-
swers RQ2.

5 Results and Interpretation

The following section shows the results from the exper-
iments explained in Section 4, and what we can learn
from the resulting data. We also relate the results
back to the research questions, evaluating whether a
semantic analysis is possible and how the results differ
from a syntactic analysis.

5.1 Experiment 1: Model validations

To evaluate the performance of the model, we per-
formed two experiments with different datasets to see
how well they are usable as a validation.

5.1.1 Experiment 1.1: Readability assess-
ments

The results of this experiment are shown in Table 2,
where “at least one violation” indicates that there was
at least one method in the snippet that violated both
models. The snippets were overall small of size and
mostly only contained a single method, so at least one

2https://github.com/apache/hadoop
3https://github.com/prestodb/presto
4https://github.com/apache/cassandra

8



method in most occasions is identical to all methods
in the snippet.

Dataset Scalabrino Buse
Snippets 200 58
Average readability score
of snippets with
at least one violation

3.54 3.32

Average readability score
of snippets with
zero violations

3.6 3.22

Table 2: Overview of readability scores related to the
naming quality model.

The results show that there is no clear relation
between the readability scores given be the assessors
and the violations indicated by the model. This can
be explained by the assessors not taking the name
itself too heavily into account when assessing the
readability.

Readability calculation tool
The readability calculation tool from Scalabrino et al.
[Sca+18] was also used to assess whether these scores
could be related to the naming quality model. This
tool uses linguistic metrics of the source to calculate
a readability score for a code snippet. It was how-
ever found that the impact of names on the readability
tool was not in line with standard coding guidelines of
our own tool. As an example we take the code snip-
pet as shown in Listing 1, but with different names.
Changing the name from ’median’ to ’b’ changes
the readability from 0.508 to 0.531, indicating an in-
crease in the readability according to the readability
model. Changing it again to ’calculateMedian’ gave
a readability of 0.466, lowering the readability score
even more. This shows that a change in the name of a
method does not translate that well to the readability
measurements.

These readability assessments therefore were
deemed unfit to base our validation on. These results
also again show that validating the quality of a name
used for a method is a difficult thing to do.

public Integer median() {
if(p1.size()==p2.size())

return (p1.peek() + p2.peek())/2;
return p1.size()>p2.size() ?

p1.peek() : p2.peek();
}

Listing 1: Code snippet uses to assess the influence of
the name on the readability score as calculated by the
tool from Scalabrino et al.

5.1.2 Experiment 1.2: Github commit dataset

The result of the analysis can be found in Table 3.

Number of methods
Pre-commit
name

Post-commit
name

Total 1597 1597
Violated both models
- similarity score <0.6
- violated at least one rule

644 (40%) 399 (25%)

Violated at least one rule 937 (59%) 647 (41%)
Similarity score <0.6 968 (61%) 776 (49%)

Table 3: Overview of commit change dataset related
to the naming quality model.

From this data we can see that the number of old
names that violated the model is significantly higher
than the number of new names. If both the dataset
and the model were perfect however, then the re-
sult should be 100% and 0%. Not every name in
the dataset is actually improved after the change,
or is improved but still flawed. Examples can be
found in ‘‘read self" being changed into ‘‘self

read" or ‘‘get current size" into ‘‘size", and
new names being ‘‘forcibly refresh all cluster

state slow" or ‘‘point num bytes". These entries
in the dataset result in the model flagging some new
names as flawed, which is not surprising as these names
can be considered flawed. This does however not
make up for the entire difference between ideal re-
sults and achieved results, as the model is also not
perfect. These results set a baseline for this version
of the model, which we can compare further iterations
of our model to. An improvement on the assessment
done on the dataset indicates that the model is bet-
ter capable at distinguishing between good and flawed
method names, which allows us to answer RQ3 in the
future.

5.2 Experiment 2: Syntactic versus semantic
approach

The results of experiment 2 are shown in Table 4.

9



Number of methods
Hadoop Presto Cassandra

Total 1017 14449 13684
Violating
both models

149 2508 4177

Violating
semantic check
(Similarity <0.6)

389 6360 8078

Violating
syntactic check

328 5250 7005

Table 4: Distribution of methods based on their vio-
lations

As seen in the table, both approaches find around
the same number of methods violating the set restric-
tions. From all names detected as flawed by each ap-
proach, about half of each is also flagged by the other.
The absence of a ground truth makes it difficult to as-
sess the number of false positives and negatives. The
low overlap is in part caused by the distinct nature
of both approaches. Where the rule-based model as-
sesses the syntactic integrity, the neural model focuses
on semantic similarity.

These results indicate that improvements can be
achieved when combining the semantic and syntactic
information instead of using either. Almost half of the
violations found by each checker are not flagged by the
other. This shows that using only a guideline based ap-
proach achieves different results than a semantic anal-
ysis, giving an initial answer to RQ2, although the
exact way they differ is not yet clear. Additionally, we
see a significant difference in the percentage of meth-
ods found violating both checkers, showing that a dif-
ference in naming quality between projects could be
indicated.

5.2.1 Qualitative analysis

To gain a feel for what kind of names each approach
assessed as low quality, where they differ and whether
semantic analysis is possible, we performed a manual
qualitative inspection. This inspection gives us more
insight into RQ2. In this analysis, we went over the
output of the model consisting of method names and
bodies, the predicted name and the similarity score,
and the list of guideline violations.

When looking at the syntactic analysis, we found
that guidelines 1, 4, 5 and 6 were often violated (>10%
of names), where the other guidelines were only vio-
lated sporadically (<1%).

Among the names inspected that violated both
models, no names were found that according to our
opinion should not be improved. For example, the
name ‘‘capacity" was predicted by the ML model
as ‘‘get starts" (similarity: 0.3166) and violating

both rule 1 and 5. This indicates that both the syn-
tactic and semantic quality were low.

Names that violated only the guidelines were often
single-word method name, which violate guideline 1,
but were not found by the ML model. For example
method name “handle”: was predicted to be “handle
and thus had a similarity score of 1, even though the
name is not very informative. This is likely caused by
pollution of the training data of the code2vec model
[Alo+19].

Names that violated only the ML prediction seemed
to be a false positive in at least one in four inspected
violations. This was caused by the predicted names
being of low quality themselves. A correct example
is method name ‘‘double who am i" which was pre-
dicted to be named ‘‘test login". ‘‘double who

am i" is not a very descriptive name and even though
‘‘test login" is not perfect either, the fact that
they are very different is important for our assessment.
Other violation indications were less correct, as for
example method name ‘‘decode initial context

token" was predicted to be ‘‘put". Although their
textual similarity is low and therefore should indicate
a name not correctly describing the intention, the orig-
inal name is actually quite descriptive and looks right,
while the predicted name is uninformative and even
violates the set guidelines. Investigating what causes
this might lead us to being able to improve to model
and prevent these mistakes from happening.

We found no names that violated neither of the
models but could still be considered low quality names.
Although this does not proof the model had no false
negatives, it shows promising indications that the
model can detect low-quality names using a combina-
tion of both approaches, without missing out on many
low-quality names.

6 Discussion on current work

The results indicate that a naming quality model that
uses both syntactic content and semantic context to
assess the quality of identifiers is possible for the case
of Java methods. We can positively answer RQ1 since
from the output we see that the model seems to be able
to detect what names need attention. The model also
finds far more violations in pre-commit names com-
pared to post-commit names, which also should be of
higher quality.

When looking at the results of Experiment 2, we can
see that the syntactic and semantic approach differ in
what names they flag as violations. This provides an
answer to RQ2, as well as indicate that there is benefit
to be gained by combining both approaches.

The results also show that the model has room for
improvement. As stated in Section 5.2.1, the machine

10



learning model sometimes predicts names that are in
conflict with the guidelines itself, which shows that
sometimes a disparity between the predicted name and
the real name does not tell us much about the quality
of the name. The model is also sometimes simply not
capable of accurately estimating the name the method
should have.

These flawed predictions can be due to the fact that
machine learning model used to assess the similarity
between a method’s name and its contents is based on
the assumption that the names in the training data
are consistent with the body they represent. If the
training data is flawed and contains a lot of names
that do not reflect their body well, the output of the
model on new data will be influenced by it. Since
we have no large dataset of verified high-quality and
low-quality names, this is unavoidable. A perfect as-
sessment therefore seems not achievable, although our
model does produce useful findings.

6.1 Threats to validity

Although the initial results are promising, there are
some issues we would like to address.

It was mentioned earlier that the dataset based on
commits as described in Section 5.1.2 is not a per-
fect truth. The degree to which a disparity between
the expected ideal output of our model and the actual
output can be addressed to either is hard to assess.
Names could be changed in a commit due to other rea-
sons than it not reflecting the body, such as adherence
to naming conventions. To validate the correctness of
the dataset, a manual evaluation by a group of pro-
fessional developers could help, but a perfect yes/no
golden dataset cannot be achieved since a ’good’ name
is not a binary metric. This also shows why a good
naming quality model would be valuable.

The number of names indicated by the semantic
model to be inconsistent with their body, which are not
actually inconsistent, form a big threat to the models
performance. This namely means that the machine
learning model is not always predicting high-quality
names itself, which is an assumption the quality as-
sessment is based on. We address this issue Section
6.2.

Another point we want to address is that the qual-
itative analysis was done by the authors, instead of a
group of volunteers, which might have led to bias in
the interpretation of the models output. Another val-
idation of the model done with a group of volunteers
should help remedy this threat, although subjective
opinion will always play a role in manual assessments.

The last issue is the fact that there is exists large
number of naming guidelines, which only a subset of is
employed by this research. Although these guidelines

have been validated by other research, including other
guidelines might influence the results. A complete list
of all guidelines in existence is not feasible, but a more
extensive list than currently employed could be bene-
ficial in the future to achieve better results.

6.2 Future Work

Although the current implementation of the proposed
model shows promising results, there are different pos-
sible changes that can be made that might lead to
better performance, which are addressed in this sub-
section.

The way the similarity between the predicted name
and the actual name is calculated can be done in many
different ways, and investigating the impact of differ-
ent approaches could lead to increases performance.
At the moment, a Jaro-Wrinkler textual similarity is
being used, whereas one could also use code or word
embeddings to calculate how similar both vectors are
in their embedding space.

There are other machine learning approaches that
also generate a descriptive name or sentence based on
the contents of a method body. These approaches for
example use a token stream instead of an AST-based
approach. Although the code2vec model by Alon et
al. [Alo+19] achieved the best recall and precision,
this was based on predicting the correct names, while
for quality assessment other approaches might work
better, making it worthy of investigation.

Even though the model achieves good results for as-
sessing the quality of Java method names, one could
also include other abstraction units such as classes in
our assessment. This extra context knowledge could
lead to better prediction of names and less false-
positives.

It is also interesting to investigate how well the
model applies to other programming languages. In
theory, the model is generally applicable and can be
extended to other languages, but it is worthy of inves-
tigation to see how the results differ.

So far, a golden dataset with annotated naming
quality has not been found, making precision and recall
no viable option for accuracy measurements. Finding
one would make more extensive validation possible,
so the search for one is still beneficial. Additionally,
manual assessment of a the quality of a large part of
methods by a group of developers could be done to
create one ourselves.

7 Conclusion

To automatically assess the quality of identifier nam-
ing to enhance maintainability assessments, this re-
search proposed a naming quality model that employs
both a naive ruleset to check the syntactic quality of

11



method names, and a Neural Language Model to check
the semantic quality.

To answer RQ1: “How well does the proposed model
perform.” we employed readability scores, which were
inconclusive, and the Github commit dataset, which
seemed to be useable for validation. This second
experiment gave insight into the performance of the
model, showing that the model finds less violations in
the pre-commit names compared to the post-commit
names, which is in line with the expectation that pre-
commit names are of lower quality.

For RQ2: “How does the syntactic correctness
checker compare against the semantic correctness
checker.” we compared the output of the semantic
model to a syntactic one. From the names flagged as
violations by the semantic model, about half are also
flagged by the syntactic quality model, and vice versa,
giving a first answer to RQ2. A more in depth analysis
of the output has shown that a combination of both
approaches seems to lead to the best results, as names
flagged by both approaches were found to be of low-
quality. By itself the semantic model suffers from a lot
of false positives where the original name is a good one
and the predicted name is not. This results in names
being flagged as a non-descriptive while they actually
are descriptive. By combining the semantic and syn-
tactic checker the number of false positives seems to
go down. This does lead to less low-quality names be-
ing found, but does indicate what names most need
attention.

Initial validation attempts by relating it to other
metrics show that a combination of both models seems
to catch a lot of names that need attention, but the
number of false positives and negatives is still signif-
icant. Validating the quality of a name is a difficult
task, but our current approach is a step in a promising
direction.

7.1 Next steps

As explained above the machine learning model is not
always predicting high-quality names. This is an as-
sumption the quality assessment is based on, and vital
for the performance. To overcome this and to answer
RQ3: “Can we improve the semantic model using the
syntactic knowledge.” we will try to infuse the neural
model with rule-based knowledge.

Rules in combination with a deep learning model
show results that exceed using only either one [Vil+11;
GAS16]. We could use our ruleset to instead of just
checking the name beforehand, allow it to influence
the training of the neural model. The model would
then adjusts its prediction based on the guidelines and
optimise towards high-quality names as well; instead
of just predicting the right name. This could help

the predicting of low-quality names that itself violate
the guidelines set by literature. This deeper integra-
tion of the guidelines would theoretically decrease the
false positives from the neural model, and answer RQ3.
This will be our first step towards attempting to im-
prove the models capability of distinguishing between
good and flawed method names. Uniquely this would
combine literature-based approaches with deep learn-
ing approaches to assess the quality of names used in
a project.

References

[Abe+09] Surafel Lemma Abebe et al. “Lexicon bad
smells in software”. In: Reverse Engineer-
ing, 2009. WCRE’09. 16th Working Con-
ference on. IEEE. 2009, pp. 95–99.

[All+14] Miltiadis Allamanis et al. “Learning nat-
ural coding conventions”. In: Proceedings
of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software
Engineering. ACM. 2014, pp. 281–293.

[All+15] Miltiadis Allamanis et al. “Suggesting Ac-
curate Method and Class Names”. In: Pro-
ceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering.
ESEC/FSE 2015. Bergamo, Italy: ACM,
2015, pp. 38–49. isbn: 978-1-4503-3675-8.
doi: 10 . 1145 / 2786805 . 2786849. url:
http://doi.acm.org.proxy.uba.uva.

nl:2048/10.1145/2786805.2786849.

[All+18] Miltiadis Allamanis et al. “A survey of
machine learning for big code and nat-
uralness”. In: ACM Computing Surveys
(CSUR) 51.4 (2018), p. 81.

[Alo+19] Uri Alon et al. “code2vec: Learning dis-
tributed representations of code”. In: Pro-
ceedings of the ACM on Programming
Languages 3.POPL (2019), p. 40.

[ALY18] Uri Alon, Omer Levy, and Eran Yahav.
“code2seq: Generating sequences from
structured representations of code”. In:
arXiv preprint arXiv:1808.01400 (2018).

[APS16] Miltiadis Allamanis, Hao Peng, and
Charles Sutton. “A convolutional atten-
tion network for extreme summarization of
source code”. In: International Conference
on Machine Learning. 2016, pp. 2091–
2100.

12



[Arn+10] Venera Arnaoudova et al. “Physical and
conceptual identifier dispersion: Measures
and relation to fault proneness”. In: Soft-
ware Maintenance (ICSM), 2010 IEEE In-
ternational Conference on. IEEE. 2010,
pp. 1–5.

[AT10] Surafel Lemma Abebe and Paolo Tonella.
“Natural language parsing of program
element names for concept extraction”.
In: Program Comprehension (ICPC), 2010
IEEE 18th International Conference on.
IEEE. 2010, pp. 156–159.

[AT13] Surafel Lemma Abebe and Paolo Tonella.
“Automated identifier completion and re-
placement”. In: Software Maintenance and
Reengineering (CSMR), 2013 17th Euro-
pean Conference on. IEEE. 2013, pp. 263–
272.

[But+09] Simon Butler et al. “Relating identifier
naming flaws and code quality: An empiri-
cal study”. In: Reverse Engineering, 2009.
WCRE’09. 16th Working Conference on.
IEEE. 2009, pp. 31–35.

[But+10] Simon Butler et al. “Exploring the influ-
ence of identifier names on code quality:
An empirical study”. In: Software Main-
tenance and Reengineering (CSMR), 2010
14th European Conference on. IEEE. 2010,
pp. 156–165.

[But+11] Simon Butler et al. “Mining java class
naming conventions”. In: Software Main-
tenance (ICSM), 2011 27th IEEE Interna-
tional Conference on. IEEE. 2011, pp. 93–
102.

[BW10] Raymond PL Buse and Westley R Weimer.
“Learning a metric for code readability”.
In: IEEE Transactions on Software Engi-
neering 36.4 (2010), pp. 546–558.

[CT00] Bruno Caprile and Paolo Tonella. “Re-
structuring Program Identifier Names.”
In: icsm. 2000, pp. 97–107.

[CT99] C Caprile and Paolo Tonella. “Nomen est
omen: Analyzing the language of func-
tion identifiers”. In: Reverse Engineering,
1999. Proceedings. Sixth Working Confer-
ence on. IEEE. 1999, pp. 112–122.

[DDO11] Andrea De Lucia, Massimiliano Di Penta,
and Rocco Oliveto. “Improving source
code lexicon via traceability and in-
formation retrieval”. In: IEEE Transac-
tions on Software Engineering 37.2 (2011),
pp. 205–227.

[Dor12] Jonathan Dorn. “A general software read-
ability model”. In: MCS Thesis available
from (http://www. cs. virginia. edu/˜
weimer/students/dorn-mcs-paper. pdf)
(2012).

[DP06] Florian Deissenboeck and Markus Pizka.
“Concise and consistent naming”. In: Soft-
ware Quality Journal 14.3 (2006), pp. 261–
282.

[Esh+11] Laleh M Eshkevari et al. “An exploratory
study of identifier renamings”. In: Pro-
ceedings of the 8th Working Conference on
Mining Software Repositories. ACM. 2011,
pp. 33–42.

[GAS16] Marta Garnelo, Kai Arulkumaran, and
Murray Shanahan. “Towards deep sym-
bolic reinforcement learning”. In: arXiv
preprint arXiv:1609.05518 (2016).

[HKV07] Ilja Heitlager, Tobias Kuipers, and Joost
Visser. “A practical model for measur-
ing maintainability”. In: null. IEEE. 2007,
pp. 30–39.

[HØ09] Einar W Høst and Bjarte M Østvold.
“Debugging method names”. In: European
Conference on Object-Oriented Program-
ming. Springer. 2009, pp. 294–317.

[ISO10] ISO/IEC. ISO/IEC 25010 System and
software quality models. Tech. rep. 2010.

[Law+06] D. Lawrie et al. “What’s in a Name? A
Study of Identifiers”. In: 14th IEEE Inter-
national Conference on Program Compre-
hension (ICPC’06). June 2006, pp. 3–12.
doi: 10.1109/ICPC.2006.51.

[LFB06] Dawn Lawrie, Henry Feild, and David
Binkley. “Syntactic identifier conciseness
and consistency”. In: null. IEEE. 2006,
pp. 139–148.

[LFB07] Dawn Lawrie, Henry Feild, and David
Binkley. “Quantifying identifier quality: an
analysis of trends”. In: Empirical Software
Engineering 12.4 (2007), pp. 359–388.

[Liu+19] Kui Liu et al. “Learning to Sport and
Refactor Inconsistent Method Names”. In:
41st ACM/IEEE International Conference
on Software Engineering (ICSE). IEEE.
2019.

[Mar08] Robert C. Martin. Clean Code: A Hand-
book of Agile Software Craftsmanship.
1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2008.

13



[McC04] Steve McConnell. Code Complete, Second
Edition. Redmond, WA, USA: Microsoft
Press, 2004.

[Mik+13] Tomas Mikolov et al. “Efficient estima-
tion of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781
(2013).

[MPB12] Emerson Murphy-Hill, Chris Parnin, and
Andrew P Black. “How we refactor, and
how we know it”. In: IEEE Transac-
tions on Software Engineering 38.1 (2012),
pp. 5–18.

[Pen+15] Hao Peng et al. “Building program vec-
tor representations for deep learning”.
In: International Conference on Knowl-
edge Science, Engineering and Manage-
ment. Springer. 2015, pp. 547–553.

[PHD11] Daryl Posnett, Abram Hindle, and
Premkumar Devanbu. “A simpler model
of software readability”. In: Proceedings
of the 8th working conference on mining
software repositories. ACM. 2011, pp. 73–
82.

[Rel04] Phillip Anthony Relf. “Achieving software
quality through source code readability”.
In: Quality Contract Manufacturing LLC
(2004).

[Sca+16] Simone Scalabrino et al. “Improving code
readability models with textual features”.
In: Program Comprehension (ICPC), 2016
IEEE 24th International Conference on.
IEEE. 2016, pp. 1–10.

[Sca+18] Simone Scalabrino et al. “A comprehensive
model for code readability”. In: Journal
of Software: Evolution and Process 30.6
(2018), e1958.

[Sri+10] Giriprasad Sridhara et al. “Towards auto-
matically generating summary comments
for java methods”. In: Proceedings of the
IEEE/ACM international conference on
Automated software engineering. ACM.
2010, pp. 43–52.

[Vil+11] Julio Villena-Román et al. “Hybrid ap-
proach combining machine learning and a
rule-based expert system for text catego-
rization”. In: Twenty-Fourth International
FLAIRS Conference. 2011.

14


