
Considerations About Consistency Management for

Industrial Model-Based Development

Robbert Jongeling
robbert.jongeling@mdh.se

Mälardalen University
Väster̊as, Sweden

Abstract

Model-based development of complex em-
bedded systems commonly leverages multiple
models to describe systems at different lev-
els of abstraction and from different view-
points. Inconsistencies between these models
may cause delays or late changes throughout
system design, development and maintenance.
Therefore, an efficient model-based develop-
ment practice requires support for managing
consistency between different models. This is
complicated in practice because these models
are possibly created in several different mod-
elling languages and modelling tools. Fur-
thermore, in order to be suitable for indus-
trial adoption, consistency checking support
must fit within current development processes
and environments. This extended abstract de-
scribes a model-based development scenario
from which a need for consistency checking
emerges, followed by a discussion of require-
ments for consistency checking from a devel-
opment process point of view. We also include
a brief summary of early work on a prototype
tool addressing these requirements.

1 Introduction

In model-based development (MBD), models are used
as primary development artifacts in the specification,
design, and implementation of systems [13]. For sound

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org/

development, multiple models representing the same
system should not contradict each other, i.e., they
should be consistent. We refer to these models as
heterogeneous since they may be expressed in differ-
ent modelling languages and created in different tools.
Keeping consistency between heterogeneous models is
one of the challenges towards more industrial adoption
of modelling practices, as commonly agreed on in the
literature [10, 11, 12].

Complete consistency throughout development is
not possible and not desired, since that would only
hinder development [4]. Therefore, rather than ensur-
ing consistency, the focus of a consistency checking ap-
proach should be to detect inconsistencies and notify
developers of them. A plethora of consistency check-
ing approaches have been proposed, mostly presenting
technical frameworks that allow automatic detection
of inconsistencies and sometimes also their automatic
resolution.

Many of these approaches are demanding because
the user needs to define and maintain many complex
consistency definitions. Furthermore, they may re-
quire heavy changes to the development process and
thereby discourage industrial adoption. To promote
industry usage of a proposed consistency checking ap-
proach it is imperative that its design considers this
process view [14]. In particular, usability of the ap-
proach for the target industry users. This extends
to other factors such as the time and place of defin-
ing, maintaining, executing and resolving consistency
checks in the development process.

In this extended abstract, we focus on what creat-
ing a consistency checking approach suitable for adop-
tion in our target industrial contexts entails. We con-
sider several aspects of the process view of consistency
checking approaches and then summarize earlier re-
sults presenting a lightweight consistency checking ap-
proach in a specific MBD scenario. Creating such an
approach requires us to find answers to the following

1



research questions:

1. What are the types of inconsistencies users should
be notified about?

2. What lightweight mechanism can detect the re-
quired inconsistencies?

3. How can this mechanism be made to fit in with ex-
isting development processes and environments?

2 Model inconsistencies in industry

In this section, we describe a model-based development
scenario and the accompanying challenge of keeping
heterogeneous models consistent. Using a running ex-
ample, we then discuss the different aspects of a con-
sistency checking approach designed to overcome this
challenge.

2.1 Model-Based Development Scenario

In this scenario, we consider the model-based devel-
opment of software for complex embedded systems.
Models are used in the design and specification of the
system and can be roughly divided into categories of
high-level and low-level models. High-level models,
e.g., SysML, AUTOSAR, or AADL models, describe
the system design or architecture. Low-level models
describe the software implementation, e.g., models in
Simulink or executable UML. In some cases, develop-
ment of the software implementation is done directly
in code. Therefore, we also consider the scenario of the
low-level models being code, e.g., C/C++. In general,
we can describe the high-level and low-level models
as pertaining to the system view and software view of
the system respectively. In this scenario, the high-level
model does not contain detailed enough information to
enable automatic generation of code or low-level mod-
els. Models of both levels describe the same system
but do so at different levels of abstraction. It is said
that the low-level models are a refinement of the high-
level models [12].

Adopting modern development practices, the mod-
els are developed in parallel and in short iterations.
Work on high-level and low-level models thus happens
in parallel and small increments. Typically, different
engineers are responsible for the creation of the differ-
ent models and they are possibly located in different
teams and at different locations.

To illustrate the different aspects of the problem
and to sketch the proposed approach towards a so-
lution, we use a running example of a specific MBD
scenario throughout the remainder of this paper. Con-
sider the development of the braking system of a car.
As part of the system model, there will be a SysML

description of the anti-lock braking system (ABS), ex-
pressed in structure diagrams. This part of the system
is then further refined and implemented in a Simulink
model, which contains a detailed model for simula-
tion and code generation. Now, consider the situation
in which a design change to the ABS is made. In
particular, we consider a change that makes the high-
level system model and the low-level (Simulink) model
inconsistent, for example, because of a difference in
the assumed values for the car’s total weight, or the
amount of grip of the wheels.

2.2 Consistency Checking

We now describe the scope of the consistency checking
challenge in the aforementioned MBD scenario. Multi-
ple aspects of the challenge are considered. First, why
inconsistency detection is needed and what inconsis-
tencies an approach should be able to detect. Then,
how inconsistencies can be detected. The method or
mechanism by which inconsistencies are discovered is
only a first part of a complete approach towards man-
aging inter-model consistency. An often-overlooked as-
pect of proposed consistency checking approaches in
the literature is its place in the engineering process.
When, by whom and where the consistency checks
should be created, maintained, executed, and resolved
in the development process are also important aspects
to consider for an approach to be suitable for industrial
adoption. Any consistency checking approach should
be designed with also these aspects in mind. They are
also each discussed in this section.

2.2.1 Why do we need consistency checking?

Consider a single high-level model and several low-level
models refining it. Let the models be consistent after
iteration ih of the high-level model and iteration il
of the low-level models. When the high-level model
undergoes iteration ih + 1, it is likely that the low-
level models, in il, are no longer consistent with it.
For example, new functionality is added that is not yet
implemented in low-level models, or existing function
definitions are changed, requiring updates to the low-
level models. In our running example, the high-level
model is the system model expressed in SysML.

Each of these inconsistencies should to some extent
be allowed, since disallowing inconsistency completely
is detrimental to development [4]. On the other hand,
if an inconsistency goes unnoticed for too long, it may
cause severe problems. In general, in engineering, the
earlier problems are detected, the cheaper they are to
resolve. This is no less true for inter-model incon-
sistencies. When discovered late they can incur late
changes and delays to development. When they are

2



not discovered at all, they can result in incorrect im-
plementation.

For example, consider a change in the high-level
model requiring a number of changes and additions
in low-level models. In our running example, this in-
deed happens, the system model is changed, requiring
some changes in the Simulink model. The inconsis-
tency is introduced immediately after the changes to
the high-level model and should be tolerated, at least
temporarily. This is important since the system design
can be created ahead of the software design. They
do not need to be created simultaneously, so forbid-
ding them would hamper development. But at some
point the inconsistency should be resolved in order to
prevent propagation of inconsistencies through multi-
ple models used to describe the system. For example,
when required changes to one of the low-level models
are not yet made and other low-level models start rely-
ing on this, now inconsistent, low-level model. In the
running example, not updating the Simulink model of
the ABS might result in its incorrect implementation.
A consistency check would have shown the inconsis-
tency between the models after the change to the high-
level model and in general, throughout development.
It would also have given the developers a chance to re-
solve it before depending on the inconsistent low-level
model and thus introducing more inconsistency.

2.2.2 What types of inconsistencies should be
checked for?

In the described scenario, high-level models do not in-
clude low-level (software design) information such as
algorithm descriptions. Rather, the similarities be-
tween the models at the different levels are structural.
For example, part of the high-level model may define
the structure of the required software, but with its
most detailed elements being “black boxes”, represent-
ing some particular functionality that is described in
more detail in refining low-level models. Thus, the
models are related, since they describe the same sys-
tem but at different levels of abstraction.

In this scenario, a type of inconsistency helpful to
know about is between model structures, i.e., the low-
level models should indeed contain representations of
what is described in the high-level models, even if that
description is just a black-box. For example, consider
a high-level model containing a definition for several
software interfaces. Then, inconsistencies can exist
when the low-level model implements more than, less
than required, or different from the specified interface.
Note that a difference can be seen as a combination of
implementing less than required (the correct thing is
missing) and more than required (the incorrect thing
is done in place of the correct thing). The type of con-

sistency checking in this setup is commonly referred to
as vertical inter-model consistency checking [6].

Another type of inconsistency regards shared val-
ues between models. In the running example, if the
system model and Simulink model assume a different
total mass of the car, this inconsistency could result
in an incorrect ABS. Several other types of inconsis-
tencies exist and could be relevant to detect, we plan
an industrial empirical study to derive a set of most
relevant consistency types and scenarios.

2.2.3 How can inconsistencies be detected and
resolved?

In the running example, a consistency check between
the SysML model and the Simulink model could have
detected the introduced inconsistency. Such a check
should have been defined earlier in the development
process and be automatically evaluated upon changes
to either model.

There are numerous published approaches that al-
low for automatically detecting inconsistencies and
sometimes also automatically resolving them. A con-
siderable portion of work on consistency checking has
focused specifically on UML models [9]. In our MBD
scenario, we are not limited to UML but consider
checking consistency between models in different mod-
elling languages and tools.

Essentially, detecting inconsistencies between two
different models requires two pieces of information.
The first piece indicates the specific model elements
that should be compared to each other and the second
piece defines when those compared elements should be
considered consistent. When defined in enough detail,
for example, by using Triple Graph Grammars [2] or
Link Models [3], the second part can be used to auto-
matically resolve inconsistencies. This has the down-
side of needing a mapping between any two metamodel
elements that need to be compared. To alleviate this,
other approaches convert models to a common nota-
tion and detect inconsistencies in this common format,
for example, through graph comparisons [5]. Another
type of approach to detecting inconsistencies evaluates
rules over multiple models. These rules can be ex-
pressed in, e.g., EVL [8], but possibly in any language
that allows that can be automatically evaluated [1].
When considering applications in industrial contexts
though, an important factor is the maintenance ef-
fort that consistency checks themselves introduce. If a
consistency checking mechanism is heavy and labour-
intensive to set-up and maintain, it is not likely to be
used in industrial practice.

Several approaches have aimed at automatically re-
solving detected inconsistencies, e.g., in the context of
inconsistencies between UML diagrams [15]. In our

3



development scenario, automatic resolution of incon-
sistencies is improbable. Firstly, because inconsisten-
cies might indicate missing information which has to
be newly created through manual implementation (a
black-box can of course not be implemented automat-
ically). Secondly, because it cannot always be deter-
mined which of the models should be changed if two
are inconsistent. Sometimes functionality should be
added in the one model and other times it should be
removed from the other.

2.2.4 When to define and execute consistency
checks?

Enabling the automatic detection of inconsistencies re-
quires some initial definition of what elements to check
and what to consider consistent. Depending on the
approach parts of the initial definition could be made
prior to development, or be implicit. For example, a
logical rule could be defined stating that each class
in a UML class diagram must be represented in at
least one UML sequence diagram in the same model.
This rule implicitly contains the specific mapping be-
tween model elements as each pair of class diagrams
and sequence diagrams. When creating rules pertain-
ing to specific model elements, they can typically not
be created completely in advance. The definition of
new consistency checks should therefore be possible
throughout development.

During the system development, the design and im-
plementation undergo numerous iterations, in each of
which inconsistencies can be introduced and resolved.
Furthermore, newly created model elements may in-
cur the need for new or changed consistency checks.
Therefore, the initial definitions should be able to be
maintained, i.e., changed, added to, or removed from.
The purpose of this maintenance is then to sharpen
consistency check definitions and make their results
more relevant.

Another aspect then concerns when in time to ex-
ecute the consistency checks. Although several au-
thors have argued for executing consistency checks
continuously (e.g. [1]), this might not be suitable for
a development scenario in which inconsistencies are
unavoidable, since it would generate a large amount
of trivial false positives, e.g., notifying the engineer
of an inconsistent refinement immediately after creat-
ing the model element in the high-level model. The
other extreme is naturally bad as well: when consis-
tency checks are executed too infrequently, they can-
not notify developers of inconsistencies early. An ex-
ample middle ground is providing checks that are able
to be executed on-demand by developers. Such on-
demand checks might lead to missed inconsistencies,
for instance, when they are not integrated well in the

development process and therefore not executed fre-
quently enough. A check at regular intervals in the
process safeguards this problem while keeping the bal-
ance between being executed too frequently and not
frequent enough. An example time to execute con-
sistency checks is after each completed development
iteration, in a continuous integration (CI) process. In
our running example, this would detect the inconsis-
tency between the models when the changes to the sys-
tem models are integrated, avoiding many trivial no-
tifications of inconsistency during the making of those
changes.

Finally, we must consider when to resolve identified
inconsistencies. This is very much related to the time
of detecting the inconsistencies, and the person respon-
sible for resolving them. Furthermore, acceptable re-
solving times depend on the specific project and the
further development plans. In general, inconsistencies
should be resolved as soon as possible, but depending
on the exact situation, it may be acceptable to leave
some inconsistencies exist for a longer time. In ei-
ther case, this is up to the developers and an approach
should appropriately support either choice.

In our running example, the definition of consis-
tency checks should have been done prior to this oc-
currence of the inconsistency (or it would not be de-
tected). The execution should be done some time after
the introduced change to the model. As argued above,
there is a fine balance between too frequent and too
infrequent checks. The resolution of the inconsistency
is then up to the developer, that can now decide a best
time to resolve the problem before it spreads to other
components.

2.2.5 Who defines and maintains consistency
checks and who acts on detected incon-
sistencies?

Apart from the time of definition, maintenance and
execution of consistency checks, of course an approach
should consider which developers, in which roles, will
create the checks. Defining sensible consistency checks
requires knowledge of models at both abstraction lev-
els. This implies the need for an approach providing
these checks to be accessible to any involved developer
in the project.

An important additional aspect concerns the re-
sponsibility of resolving detected inconsistencies. It is
likely that an inconsistency caused by changes in the
high-level should be resolved by changes in the low-
level models. But this is not necessarily true. Changes
in the high-level model might trail changes in the
low-level models and therefore need updating. In the
running example, consider instead that the Simulink
model was updated first to reflect a redesign of the

4



system. Now it is inconsistent with the system model,
but we would not want to revert the changes just made
to the Simulink model in order for them to be again
consistent. In either case, it is likely that the inconsis-
tencies found by making changes at one level should
be resolved at the other level and therefore by another
engineer or group of engineers. In order not to raise
more need for communication than it helps remove, a
consistency checking approach should allow developers
from both abstraction levels to view and understand
results of consistency checks.

2.2.6 Where should consistency checks be de-
fined and executed?

Similar to the when and who, an important aspect to
consider is where in the development environment to
define, maintain, and view results of executed consis-
tency checks. To promote industrial adoption, a con-
sistency checking approach should be accessible to all
developers at all times throughout development. At
the same time, it needs to fit in with existing develop-
ment processes and tooling environments.

Indeed, including a consistency checking approach
within an existing complex tooling environment is
not straightforward. Integrating a new separate tool,
apart from the technical challenges of interacting with
the other existing tools, risks never being looked at
since it is not part of any existing development work-
flow. Another placement of a consistency checking ap-
proach could be as a plug-in or extension to an existing
modelling tool. While integrating an approach in one
of the modelling tools has the advantage of develop-
ers using it without leaving their development environ-
ment, access to consistency checks is limited to users of
that tool. This downside can be resolved by integrat-
ing consistency checks in a tool that is already part of
the development process and accessible to all potential
users, e.g., a version control system, an issue tracker,
or a continuous integration (CI) server.

2.3 Requirements

We aim for a pragmatic approach to consistency check-
ing that is applicable in industrial practice. The
essence of any approach is to notify developers of
detected inconsistencies. Furthermore, an approach
suitable in practice requires considering the process
aspects of MBD in industry. Given the described
MBD scenario in Section 2.1, a consistency checking
approach is required that is generic, i.e. applicable
to models conforming to various different modelling
languages. Additionally, the consistency aspects dis-
cussed in Section 2.2 show the need for an approach
to consistency management to be lightweight, i.e., easy

to use and minimally interfering with existing devel-
opment processes and environments.

3 Proposed Approach

In this section we describe previously published early
research results [7], as well as planned continuation
and evaluation of that work. The early results present
a lightweight consistency checking approach suitable
for a scenario similar to what is described in Section 2,
focusing on the structures of the high-level and low-
level models.

3.1 Overview

Our early results focus on checking vertical inter-model
consistency between heterogeneous models [7]. In par-
ticular, the approach allows checking for structural
equivalence, i.e., checking that two model elements
have the same structure, and structural refinement,
i.e., one model element contains at least elements cor-
responding to similar ones as represented in the other
model. It thus focuses only on the structural type of
inconsistencies and not yet on other possible types. To
this end, a common tree structure is created through
model transformations. This tree represents the struc-
tures of the involved models. The approach focuses on
being lightweight in use through a separation of con-
cerns in the definition of consistency checks. Specifi-
cally, the two parts of our consistency checks are: 1) a
global mapping between meta-model elements of dif-
ferent modelling languages, and 2) a user-defined map-
ping between model elements of different models. The
“lightweight-ness” of the approach is ensured by hav-
ing the user only being concerned with part 2: indicat-
ing which model elements across heterogeneous models
should be consistent. Given this indication, checks are
generated that detect inconsistencies throughout evo-
lution of the involved models.

The two mappings are called a language consistency
mapping (LCmap), and a model consistency mapping
(MCmap). A LCmap describes how meta-model ele-
ments of different modelling languages are mapped to
a tree structure and what elements are not mapped to
it. For example, subsystems in Simulink models are
mapped to nodes in the tree but more detailed blocks,
for example describing mathematical operations, are
not. In this way, the LCmap is global. It is defined
once and reused for all consistency checks. A consis-
tency check compares the trees created from models
conforming to a particular language by invoking the
corresponding LCmap. Note that the representation of
models in the common format in comparison between
common formats reduces the number of required map-
pings between metamodels. In a scenario where direct
transformations exist between any two metamodels,

5



for a total of n metamodels, n(n−1)
2 (bi-directional)

transformations are required, whereas in this case, n
suffice.

A MCmap defines the specific model elements in
specific models between which consistency should be
checked. Consider a SysML model, and a set of
Simulink models refining different parts of it. To cre-
ate a consistency check for this case, the user selects a
block in the SysML model and a Simulink model and
indicates what type of consistency should be checked
between them (refinement in this case). This consti-
tutes the MCmap.

A complete run of a consistency check then consists
of the following steps:

1. A MCmap between element e1 of model M1 in
language L1 and a model element e2 of model M2

in language L2 is evaluated.

(a) The LCmap between L1 and L2 consists of
two defined transformations, building tree
representations T1 from M1 and T2 from M2.

(b) Now, T1 and T2 contain e1 and e2 respec-
tively. Let Te1 and Te2 be the subtrees start-
ing at e1 and e2 respectively.

2. Now, a comparison algorithm is executed (de-
pending on the choice between refinement and
equivalence in MCmap)

(a) The algorithm compares Te1 and Te2.

(b) The result is pass or fail. In case of fail
a detailed description of the difference be-
tween Te1 and Te2 causing the comparison
algorithm to report a failure.

3. The user sees the result of all evaluated MCmaps

and can modify their definitions, including op-
tions to mute the check (do not show unless the
result changes) and skip the check (do not show
until re-enabled). Of course, MCmaps can also be
deleted and new ones can be added.

The approach is implemented as a plug-in for Jenk-
ins1, an automation server often used for CI pipelines.
This is a design choice partly motivated by the re-
quirements as outlined in Section 2. The placement
in the CI pipeline allows for frequently defining and
maintaining of multiple MCmaps. Furthermore, con-
sistency checks are automatically executed after each
integration, when models are typically internally con-
sistent, thus avoiding very temporary and other un-
interesting inconsistencies from being reported. Run-
ning checks at each integration seems like a reasonable
frequency, not too frequent and therefore tedious but

1https://jenkins.io

frequent enough to detect meaningful inconsistencies
early. When already in place in a project, adding the
plug-in to the CI pipeline entails minimal overhead.
It is also a place independent of modelling tools and
centrally accessible for viewing results and maintain-
ing checks. Since our approach does not aim to au-
tomatically resolve detected inconsistencies but rather
at making developers aware of them, it is important
that results of checks are easily visible.

3.2 Planned generalizations

The approach presented in [7] is focused on finding
structural differences between high-level and low-level
models. Its prototype implementation focuses in par-
ticular on SysML and Simulink models. Note that the
approach does not depend on the chosen modelling
languages. It also does not depend on the chosen in-
termediate tree structure as a representation for the
models. To allow for a greater set of detectable in-
consistencies, a more generic data structure can be
chosen to represent the models. For example, mod-
els could be expressed as graphs, allowing checking of
relationships between model elements other than hier-
archical ones. In more general terms, we aim to design
a metamodel allowing for expressing elements of many
heterogeneous models, such that they can be compared
and consistency can be checked between them. Thus,
different formalisms can be envisioned as defining the
LCmaps, the core idea of the approach is separating
the consistency check definition in LCmap and MCmap

and requiring the end-user only to define a very simple
MCmap.

To make the approach even more lightweight, we
envision using higher-order transformations (HoT) to
derive the LCmap transformations from similar user
actions as used to define the MCmap. In that case,
the user-input to LCmap definitions would be limited
to pointing to different modelling language concepts
that can be compared to each other. The HoTs would
then generate the model transformations required to
represent the models in a tree, or other intermediate
data structure.

3.3 Limitations

As said, the main limitation of the proposed approach
is that it aims at comparing the structures of mod-
els. When we consider the generalized case, in which
we have found a comparison metamodel, a remaining
limitation is the local view on consistency checking.
In essence, our approach is rule-based and comparing
specific model elements.

Another fundamental limitation to our approach is
that we limit ourselves to detecting inconsistencies,
rather than attempting automatic resolution. We also

6



do not yet automatically propose ways to fix detected
inconsistencies. Currently the limit of our approach is
that it can provide a reason why the consistency check
fails.

In terms of execution of the consistency checks, our
approach assumes executing batches of checks at e.g.
every integration. To limit the execution time, we aim
to limit the amount of checks that are executed by
running only those checks for which one of the involved
models has changed since the last execution. Still, the
approach is not checking for inconsistency in real-time,
which is a design decision as explained in Section 2.

The strength of our approach with respect to ex-
isting approaches is mainly aimed to be that it is
lightweight in usage. Where other approaches require
complex rule definitions, for example in first-order
logic or by means of bidirectional transformations, our
approach requires of users only a model consistency
mapping and a globally reusable language consistency
mapping. Since the mainly considered scenario of ap-
plying this approach is in development and mainte-
nance of complex systems, having a simple way of
defining consistency checks is imperative.

3.4 Planned evaluation

In addition to the three research questions posed in
Section 1, the required evaluation can be summarized
in the following questions.

1. Can the proposed consistency checking approach
detect the required inconsistencies?

2. Is the proposed consistency checking approach
suitable for industrial practice?

The first question is commonly considered in re-
lated work. Almost all approaches, including our own
as presented in [7], show an evaluation based on an
example to showcase what inconsistencies can be de-
tected. In their further evaluation, most publications
focus on performance aspects such as computation
time required and the scalability of their approach on
larger models. These evaluations much less frequently
include the usage of proposed consistency checking
mechanism.

Some evaluations of approaches consider part of this
process view. For example, Feldmann et al. [3] perform
a small controlled user experiment to evaluate the ease
of definition of consistency checks in their approach
versus EVL. Egyed presents an approach that is user-
friendly by being agnostic of the format of consistency
rules, i.e., capable of handling consistency rules in any
formalism [1]. In our proposed approach, the user does
not define the semantics of consistency rules, but in-
stead only points at model elements across heteroge-
neous models that should be checked for inconsistency.

An industrial evaluation of our approach requires
a more mature tool and an implementation of the
planned generalizations. The planned evaluation of
our consistency checking approach then has two parts,
corresponding to the two evaluation questions. First,
we evaluate its suitability to detect the types of incon-
sistencies that should be detected. This evaluation is
envisioned to be performed as a case study on a set of
industrial models. The case study should show that
the approach indeed detects the required inconsisten-
cies and can do so in a reasonable amount of time, also
when applied to models of scales commonly seen in in-
dustry. Second, an evaluation of the suitability of the
approach in industrial practice is foreseen. Currently,
we envision this evaluation as performing structured
interviews with developers after they have been able
to use our tool for some time.

As a first step towards performing this evaluation,
we plan to work closely together with our industrial
partners to get an answer to the question posed in
Section 2: “What types of consistency should be
checked?” So what types of inconsistencies occur in
practice between what types of artifacts. The second
step is then to investigate different ways of defining
consistency checks and compare them with respect to
the criteria we have specified here. An evaluation of
the first question can then be done by using the tool
on realistic industrial models. The evaluation of the
second question can be done either by means of user
experiments, or by evaluating the features of the ap-
proach with respect to requirements as defined by in-
dustrial practitioners, e.g. the requirement that the
tool should be able to detect inconsistency between
heterogeneous models.

4 Summary

Many published approaches consider the technical
challenge of creating consistency checks with a focus
on a specific set of requirements, but largely ignore the
practical aspects of defining, maintaining, and execut-
ing them. In general, consistency checking work as-
sumes the importance of checking consistency (why),
explains the scope of the inconsistencies checked by
their approach (what), and explains the mechanism
devised to satisfy the approach (how). We have argued
in this work the importance of additionally consider-
ing the engineers defining and maintaining the checks
as well as responding to their results (who), the place-
ment of definitions of the checks and execution in the
development process (when), and the suitable place for
tool support for defining and creating them (where).

In particular, we have considered three research
questions towards a consistency checking approach
suitable for industrial adoption. These questions have

7



been discussed in the context of a specific MBD sce-
nario. Further, early work was presented towards
lightweight consistency checking. The approach re-
quires only the selection of model elements between
which to check consistency and then uses a global con-
sistency mapping between the modelling languages to
generate and execute checks. For now, the approach
is targeted to a limited scenario in which consistency
between the structure of models is checked. In order
for our consistency checking approach to be applica-
ble in practice, we need a more definitive answer to
the first two research questions, generalize our pro-
posed approach to answer the third, and evaluate that
approach to verify that it is indeed beneficial to the
development process.

Acknowledgement

This work is supported by Software Center.2

References

[1] A. Egyed. Automatically detecting and tracking
inconsistencies in software design models. IEEE
Transactions on Software Engineering, 37(2):188–
204, 2011.

[2] H. Ehrig, K. Ehrig, and F. Hermann. From
model transformation to model integration based
on the algebraic approach to triple graph gram-
mars. Electronic Communications of the EASST,
10, 2008.

[3] S. Feldmann, K. Kernschmidt, M. Wimmer, and
B. Vogel-Heuser. Managing Inter-Model Inconsis-
tencies in Model-based Systems Engineering: Ap-
plication in Automated Production Systems En-
gineering. Journal of Systems and Software, 2019.

[4] A. C. Finkelstein, D. Gabbay, A. Hunter,
J. Kramer, and B. Nuseibeh. Inconsistency han-
dling in multiperspective specifications. IEEE
Transactions on Software Engineering, 20(8):569–
578, 1994.

[5] S. Herzig, A. Qamar, and C. Paredis. An ap-
proach to identifying inconsistencies in model-
based systems engineering. Procedia Computer
Science, 28:354–362, 2014.

[6] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sour-
rouille. Consistency problems in UML-based soft-
ware development. In International Conference
on the Unified Modeling Language, pages 1–12.
Springer, 2004.

2www.software-center.se

[7] R. Jongeling, F. Ciccozzi, A. Cicchetti, and
J. Carlson. Lightweight Consistency Checking for
Agile Model-Based Development in Practice. In
15th European Conference on Modelling Founda-
tions and Applications (ECMFA), 2019.

[8] D. Kolovos, R. Paige, and F. Polack. Detect-
ing and repairing inconsistencies across heteroge-
neous models. In 2008 1st International Confer-
ence on Software Testing, Verification, and Vali-
dation, pages 356–364. IEEE, 2008.

[9] F. J. Lucas, F. Molina, and A. Toval. A sys-
tematic review of UML model consistency man-
agement. Information and Software Technology,
51(12):1631–1645, 2009.

[10] A. M. Madni and M. Sievers. Model-based sys-
tems engineering: motivation, current status, and
needed advances. In Disciplinary Convergence
in Systems Engineering Research, pages 311–325.
Springer, 2018.

[11] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel,
B. H. Cheng, P. Collet, B. Combemale, R. B.
France, R. Heldal, J. Hill, et al. The relevance of
model-driven engineering thirty years from now.
In International Conference on Model Driven En-
gineering Languages and Systems, pages 183–200.
Springer, 2014.

[12] M. Persson, M. Törngren, A. Qamar, J. West-
man, M. Biehl, S. Tripakis, H. Vangheluwe, and
J. Denil. A characterization of integrated multi-
view modeling in the context of embedded and
cyber-physical systems. In 2013 Proceedings of
the International Conference on Embedded Soft-
ware (EMSOFT), pages 1–10. IEEE, 2013.

[13] D. C. Schmidt. Model-driven engineering. IEEE
Computer, 39(2):25, 2006.

[14] G. Spanoudakis and A. Zisman. Inconsistency
management in software engineering: Survey and
open research issues. In Handbook of Software
Engineering and Knowledge Engineering: Volume
I: Fundamentals, pages 329–380. World Scientific,
2001.

[15] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Take-
ichi, and H. Mei. Supporting automatic model
inconsistency fixing. In Proceedings of the the 7th
joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering,
pages 315–324. ACM, 2009.

8

www.software-center.se

	Introduction
	Model inconsistencies in industry
	Model-Based Development Scenario
	Consistency Checking
	Why do we need consistency checking?
	What types of inconsistencies should be checked for?
	How can inconsistencies be detected and resolved?
	When to define and execute consistency checks?
	Who defines and maintains consistency checks and who acts on detected inconsistencies?
	Where should consistency checks be defined and executed?

	Requirements

	Proposed Approach
	Overview
	Planned generalizations
	Limitations
	Planned evaluation

	Summary

