
Detecting and Correcting Typing Errors in
DBpedia

Daniel Caminhas, Daniel Cones, Natalie Hervieux, and Denilson Barbosa

University of Alberta
Edmonton, AB, Canada

{caminhas,dcones,nhervieu,denilson}@ualberta.ca

Abstract. DBpedia has long been one of the major hubs of the Linked
Open Data ecosystem. It is built by a largely automated process that uses
many extractors and manually curated mappings to read information
from infoboxes on Wikipedia. Given the complexity of the task, it is not
surprising that DBpedia contains different kinds of errors, ranging from
mistakes in the source text to errors in the extractors themselves (or in
the order in which they are applied). Of particular importance are typing
errors in which an entity is assigned a type from the DBpedia ontology
to which it does not belong. These errors propagate very far, given the
modern practice of relying on Knowledge Graphs (KGs) such as DBpedia
for obtaining training data through distant supervision. We posit a way
to correct these errors is through a post factum analysis of the KG. Thus,
we introduce and evaluate a KG refinement approach that uses binary
classifiers that rely on semantic embeddings of the entities to detect and
remove incorrect type assignments. Our initial evaluation is done using
a highly curated gold standard of 35 types from the DBpedia ontology
and shows the method is very promising.
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1 Introduction

Knowledge Graphs (KGs) built from Web sources have been found effective for
end-user applications such as question answering (e.g., YAGO [14] used in the
IBM Watson System [4]) and data interlinking in the Linked Open Data (LOD)
ecosystem. Moreover, such KGs are the primary source of training data for NLP
applications following the distant supervision paradigm. Many approaches exist
for building and maintaining KGs: they can be manually curated; collaboratively
edited, like Freebase [1] and Wikidata [17]; or automatically extracted, like DB-
pedia [6]. Many companies have their own proprietary KGs, including Facebook,
Google, Microsoft, and Diffbot, to mention a few.
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Table 1. Number of inconsistencies on DBpedia identified using disjointness axioms.

Disjointness Axiom Number of Entities

Place and Person 1761
Software and Company 1004
Person and University 1014
Person and Company 3892

Manually curated KGs tend to have high precision, often at the expense
of coverage, while KGs automatically derived from Web sources have a high
coverage but are susceptible to systematic errors. These errors may impact public
image when manifested in user-facing applications such as web or social media
search and can have far-reaching consequences as they propagate. Detecting and
fixing these errors depends on the processes used and level of human involvement
in creating the KGs.

Despite DBpedia’s importance as a general use KG as well as its crucial
role for the LOD movement, about 12% of DBpedia triples have some quality
issues [19]. Most triples in DBpedia come from parsing the infoboxes of articles
in Wikipedia. In principle, the infoboxes should follow strict templates with a
list of attributes for the type of entity described in the article (e.g., person,
organization, etc.). However, adherence to templates and editorial practices is
hard to enforce, especially over time.

Typing Errors. One particularly problematic error in DBpedia concerns en-
tity types. For example, at the time of writing, DBpedia says that the en-
tity dbr:Egypt is a dbo:MusicalArtist. Similarly, dbr:United Nations and
dbr:European Union are, among other things, also classified as a dbo:Country,
together with another 7,106 entities, which seems unreasonably high, even ac-
counting for entities that were historically identified as such. Table 1 shows
other examples of type inconsistencies that can be identified using disjointness
axioms [7]. Besides incorrect type assignments, DBpedia also suffers from the
problem of missing types for some entities. For example, 27% of the 30935 enti-
ties classified as a dbo:University are not classified as an dbo:Organization.

We note that these errors, although problematic, are the exception instead
of the norm in DBpedia. Moreover, we posit that, given the complexity and
inherently noisy processes through which Wikipedia and DBpedia are created,
the best way to correct these errors is through a post factum analysis of the
entity types, which is what we seek to accomplish.

Throughout the paper, we use the customary dbr:, dbo:, and dbp: prefixes to indi-
cate resources (which are entities), ontological predicates (e.g., types), and proper-
ties, respectively.
Wikipedia states that the United Nations have 193 members, while there are 8 other
entities that are not members but are recognized as countries by at least one UN
member.
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Our Contribution. We propose the use of binary classifiers (one per type)
to predict the type(s) of DBpedia entities. The classifiers rely on two kinds
of semantic embeddings of the entities. From the Wikipedia text, we derive
word2vec-like embeddings, while from DBpedia itself, we use PCA [16] to embed
the entities based on their ontological properties. We test our method using a
manually curated partial gold standard with 3876 entities of 35 different types
of the DBpedia ontology. The performed experiments show that our approach
is able to automatically find errors and assign types for DBpedia entities with
over 97% accuracy.

2 Related Work

In the construction of a knowledge graph, there is a trade-off between coverage
and correctness. To address those problems, some effort has been made to refine
knowledge graphs. In contrast to the knowledge graph creation methods, the
refinement techniques assume the existence of a knowledge graph which can be
improved in a post-processing step by adding missing knowledge or identifying
and removing errors [12].

One possible approach is to validate the knowledge graph manually using
human annotators. Besides being costly, this approach is unfeasible for large
databases such as DBpedia, due to its low scalability. Because of this, most re-
searchers focus on developing automatic or semi-automatic solutions for knowl-
edge graph refinement.

Many of the proposed solutions aim finding erroneous relations (i.e., the
edges of the graph) between pairs of entities [2, 3, 5, 9, 13]. Meanwhile, others
works aim to find incorrect literal values, such as numbers and dates. Identifying
incorrect interlinks (links that connect entities representing the same concept in
different graphs) between knowledge graphs has also been attempted [11]. A
comprehensive survey on knowledge graph refinement methods is presented by
Paulheim [12].

To the best of our knowledge, Ma et al. [7] was the first attempt at identifying
incorrect type assertions. They proposed using disjointness axioms to detect
inconsistencies. To create the axioms, they used association rule mining since
it allows for the discovery of implicit knowledge in massive data. The axioms
are learned from DBpedia and tested on DBpedia and Zhishi.me [10]. Although
this approach is, in fact, able to identify several inconsistencies, it has a few
limitations. First of all, the association rules are learned from DBpedia, which is
itself a noisy dataset. Thus, there will always be some wrong axioms. Secondly,
some entities on DBpedia are assigned to a single incorrect type. For example,
the only assigned type for dbr:Nail polish is dbo:Person, which is wrong.
However, since there are no other types associated with this entity, there is no
axiom capable of identifying this error, because each rule involves two classes.

In this work, we introduce resource2vec embeddings, which are vectors, sim-
ilar to word embeddings [8], that represent entities on DBpedia. These embed-
dings are used as a feature for a set of machine learning classifiers that detect if
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the type assigned to an entity is correct. The intuition behind this approach is
that embeddings of entities of the same type will be closer to one another in an
n-dimensional continuous vector space than embeddings of entities of different
types. For example, the similarity between two vectors for entities of the type
Country (e.g., dbr:Canada and dbr:United States) will be greater than the
similarity between a vector of a country and a university (e.g., dbr:Canada and
dbr:Stanford University).

The usage of entity embedding for type detection on DBpedia was also pro-
posed by Zhou et al. [20]. One important difference between our work and the
one presented by Zhou et al. resides in the creation of the embedding. While
they only use Wikipedia to train their embeddings, our embeddings are trained
using properties from both Wikipedia and DBpedia. (as we explain in section
3). Another important difference is in the dataset used for training and testing.
Zhou et al. uses DBpedia itself to create the datasets. They query a public DB-
pedia SPARQL endpoint to select, for each DBpedia type, entities as positive
examples of that type. Negative examples are chosen from a random selection of
instances from all the remaining types. We argue that this approach will create a
noisy dataset since, as we discussed, many entities on DBpedia have incorrectly
assigned types, and that is exactly the problem that we are attempting to solve.
In this work, we use a manually curated partial gold standard for training and
testing.

3 Method

3.1 Representing DBpedia Entities

Our approach consists of creating a semantic mapping of DBpedia resources,
which is used as a feature for a set of binary machine learning classifiers. For that,
we concatenate wikipedia2vec and DBpedia2vec embeddings. The wikipedia2vec
are word2vec-like embeddings that represent Wikipedia entities. They are cre-
ated using Wikipedia2Vec [18], a tool that allows learning embeddings of words
and entities simultaneously, and places similar words and entities close to one
another in a continuous vector space.

DBpedia2vec are embeddings that help to represent a DBpedia entity. They
are created using the entity’s properties (i.e., predicates in the RDF tuples) on
DBpedia. Our intuition is that most entities of the same type share the same
properties. For example, countries usually have properties such as dbo:areaTotal,
dbo:capital, and dbo:largestCity, while people are more likely to have prop-
erties like dbo:birthDate, dbo:birthPlace, and
dbo:nationality.

To create DBpedia2vec, we create a list of all distinct properties existing
in DBpedia (ignoring properties that are common across all types on DBpedia
ontology, such as dbo:wikiPageID, dbo:wikiPageWikiLink, dbo:abstract, and
dbo:sameAs). A one-hot encoding vector is created for the entity. Each dimension
of this vector represents one of the 3480 properties of DBpedia. Then, we apply
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a probabilistic principal component analysis (PCA) [16] to linearly reduce the
dimensionality of the embeddings using Singular Value Decomposition of the
data. In this way, we are able to project the 3480-dimension embeddings to a
lower dimensional and continuous space with n2 = 300 dimensions.

3.2 Identifying and correcting erroneous types

The resource2vec embeddings are used as a feature by a binary classifier which
is trained to determine if the type assigned to a resource is correct. One classifier
is trained for each type, using resource2vec embeddings of resources that belong
to that type as positive examples and resource2vec embeddings of randomly
selected resources from all other types as negative examples.

This approach allows us to not only identify erroneous type assignments
but also to assign the correct type to any DBpedia resource for which the re-
source2vec embedding is created, even if no type has been assigned yet on DBpe-
dia. We tested the classification using three algorithms: Naive Bayes, K-nearest
neighbours (K-NN), and nearest centroids, which represents each class (i.e., each
type) by its centroid and assigns the class of the nearest centroid to test sam-
ples [15].

4 Experiment setup and Results

The experiments were performed using resource2vec embeddings created by con-
catenating 500-dimensional wikipedia2vec embeddings trained on a Wikipedia
dump extracted Feb. 2019 and 300-dimensional dbpedia2vec trained on the
2016 release of DBpedia. In an attempt to obtain high-quality embeddings, the
wikipedia2vec embeddings were trained with 10 iterations over the articles, a
windows size of 10, and a minimum number of 10 occurrences for words and 5
occurrences for entities.

Gold Standard. To better evaluate our classifiers, we created a gold stan-
dard encompassing the following 35 types from the DBpedia ontology: Air-
craft, Airline, Airport, Album, AmericanFootballPlayer, Animal, Automobile,
Bacteria, Bank, Book, Building, City, Country, Currency, Food, Galaxy, Horse-
Trainer, Language, MilitaryConflict, Murderer, MusicalArtist, MythologicalFig-
ure, Planet, Plant, President, Software, Song , Sport, Swimmer, Theatre, TimePe-
riod, Train, University, Volcano, and Weapon. We chose these types with the
goal of maximizing the diversity of entities while minimizing inter-type overlap
(which could potentially confuse our analysis and preliminary conclusions). If
the approach works well in this simplified setting, it may be worth scaling the
solution to consider all types on DBpedia.

To build the gold standard, annotators were asked to use any resources at
their disposal (e.g., Wikipedia’s own entity lists or categories) to find examples
of entities in each of the 35 types. In total, we selected 3876 entities. The number
of entities per type varied from 94 (for the types Sport and Software) to 112 (for
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Table 2. Comparison between the algorithms used for creating binary classifiers for
error detection on type assignment.

Classifier P R F1 Accuracy

Nearest Centroid 0.98 0.97 0.97 0.97
k-NN 0.95 0.95 0.95 0.95
Naive Bayes 0.89 0.89 0.89 0.89

Table 3. Estimated performance of Nearest Centroid classifiers on unseen entity-type
pairs.

Prediction
Number of Manually verified

Accuracy
predictions samples

Correct 251756 2448 0.96
Incorrect 113035 1251 0.76

the type Aircraft). All of our testing and evaluation data can be downloaded
from https://bit.ly/2FcqQQW.

The Need For Manual Annotations. An alternative to the manual annota-
tion and evaluation that we followed here would be exploiting an independent
KG (e.g., Google’s knowledge graph) for the evaluation. In principle, such an
external KG could be used to correct typing errors on its own. We attempted
such an approach but ran into several difficulties. First, there is the issue of the
incompleteness of the external KG itself. We found that generally only high-level
types are assigned to entities in the Google KG: for instance, most entities of
type Aircraft in DBpedia are labeled simply as Thing in the Google KG. Sec-
ond, DBpedia interlinks to other KGs are wrong or missing up to 20% of the
time [19], therefore, finding equivalent entities on different knowledge graphs is
a challenging task itself. Finally, the ontology of the KGs may be significantly
different, for example, we noticed that other KGs (e.g., YAGO), has significantly
more types than DBpedia.

4.1 Comparing classifiers

Our first experiment consisted of comparing popular binary classifiers suitable
for the task. We used 70% of the entities of the gold standard for training the
classifiers and the remaining 30% for testing them. Hyperparameter tuning for
k-NN was performed using 5-fold cross-validation. Table 2 shows the results. The
reported values are an average of 10 runs on different training/testing splits of
the gold standard. For each run, we averaged the precision, recall, F1-Score, and
accuracy of the 35 binary classifiers. The Nearest Centroid approach leads to
better classifiers, achieving more than 97% of performance in all metrics, while
the Naive Bayes classifiers achieved the lowest performance.
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4.2 Predicting types of unseen entities

Motivated by the high accuracy of the binary classifiers, we tested whether the
proposed supervised approach could detect incorrect type assignments among
other entities of the 35 classes in our gold standard. For this, we used the best
performing algorithm (Nearest Centroid). In total, 364,791 entity-type pairs were
checked by the classifier: a positive classification confirmed the type prediction
while a negative classification disproved it. Human annotators verified the output
of the classifiers for a random sample of 3699 predictions. Table 3 shows the
results.

Upon further inspection of the false negatives, we noticed some discrepan-
cies in the way entities are classified in DBpedia which were not reflected in the
way we created our gold standard. The most notable example concerns the class
dbo:Animal, for which most instances correspond to Wikipedia articles describ-
ing a species (e.g., dbr:American black bear). In fact, all instances in our gold
standard correspond to species. In our test sample, however, we found many indi-
vidual racehorses also classified as dbo:Animal (e.g., dbr:Fusaichi Pegasus).
Not surprisingly, all such instance-type pairs were (correctly in our opinion)
rejected by our classifier. To further illustrate our claim, we note that race-
horses have properties like dbo:honours, dbo:owner, dbo:sex, dbo:trainer,
and dbp:earnings, while most other instances with dbo:animal type have prop-
erties such as dbo:family, dbo:genus, dbo:kingdom, dbo:order, dbo:phylum,
and dbo:conservationStatus.

We found other similar cases involving other ontology types. In order to
more accurately evaluate the effectiveness of the classifier, we removed from our
analysis the following cases:

– Animals that are also an instance of type racehorse.

– Cities that are fictional or medieval cities.

– Automobiles that are buses or trucks.

– Songs that are rhymes, prayers, hymns, lullabies, or marches.

– Countries that are fictional countries, former sovereign states, or former king-
doms.

The manual inspection showed that the proposed approach has a very low
false positive rate of less than 5%, which is very encouraging. Moreover, the
method is correct about 75% of the times it claims a type assignment is wrong,
for a false negative rate below 25%. The performance of the classifier varies across
classes: for example, both false positive and false negative rates for entities tagged
as dbo:HorseTrainer is 0%. On the other hand, the false positive rate for the
class dbo:President is 13%. That is probably because dbp:President is a more
generic class, which can include presidents of countries, universities, companies,
institutes, associations, councils, etc. This could be addressed by increasing the
diversity of entities in the training data.

Some entities had multiple types.
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Table 4. Classification results using embeddings created from YAGO types

Classifier P R F1 Accuracy

Nearest Centroids 0.94 0.93 0.93 0.93
K-NN 0.90 0.89 0.89 0.89
Naive Bayes 0.88 0.84 0.84 0.84

4.3 Predicting with YAGO types

Since DBpedia entities are annotated with types from YAGO, we also attempted
to leverage these links for identifying and correcting typing errors in DBpedia.
However, these two ontologies cannot be easily aligned: we found 419,297 unique
objects with a YAGO prefix for which there was a predicate rdf:type associated
with a DBpedia entity. Thus, our attempt to use YAGO boiled down to: for
each DBpedia entity in our gold standard , we created a one-hot encoding vector
that represents the YAGO types assigned to that entity, then we apply PCA to
reduce the dimensionality of the one-hot encoding vectors. From those vectors,
we created binary classifiers as in Section 4.1. The results are shown in Table 4.

Although the embeddings created using all YAGO types seem to carry a
strong signal, it is clear we need a way to filter out a large number of types
before we can obtain embeddings for entities other than in the gold standard.
Furthermore, we observed several entities in the gold standard with identical sets
of YAGO types, which means that the classifiers may be overfitting, rendering
the numbers in Table 4 unreliable.

5 Conclusion and Future Work

This paper presented an effective approach for detecting erroneous type assign-
ments in a KG by leveraging an annotated corpus of text and the properties in
the KG itself. The assumptions behind the method are that the input KG is of
sufficient quality so that the initial type assignment is not random. Moreover,
our method can be applied post factum, without requiring any changes to the
already complex KG generation process. We evaluated the approach on a large
and carefully created gold standard, and obtained very encouraging results. We
used the best performing binary classifiers to verify the type assignment for thou-
sands of unseen entity-type pairs and found out that the false positive rate of
the method is below 5%, while the false negative rate is below 25%. We believe
these results are encouraging. The method also found some inconsistencies in
the way types are assigned to entities.

There are several interesting directions for future work. First, the method
described here is supervised, and although expanding our gold standard to en-

We were not able to obtain embeddings for all entities among the 35 types, let alone
embeddings for all entities in DBpedia, due to the time complexity of PCA analysis
and the size of the input matrix.
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compass the 537 classes in DBpedia certainly seems within reach of its commu-
nity, we seek to develop a fully unsupervised method for selecting representative
entities for each class to be used to derive the centroids. Another interesting idea
would be to perform a detailed assessment of the DBpedia ontology and try to
identify types that are too broad and should be split into multiple subtypes, and
types that are too specific and could be merged with others. Also, we believe it
would be interesting to evaluate our method for the task of identifying missing
types (as opposed to incorrect ones). Finally, although we tested on DBpedia
only, we believe our method could be easily adapted to find errors on other
knowledge graphs provided one can find an annotated text corpus.

Acknowledgements

This work was done with the support of the Natural Sciences and Engineering
Research Council of Canada and gifts from NVIDIA and Diffbot Inc.

References

1. Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pages 1247–1250. AcM, 2008.

2. Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hruschka Jr, and
Tom M Mitchell. Coupled semi-supervised learning for information extraction. In
Proceedings of the third ACM international conference on Web search and data
mining, pages 101–110. ACM, 2010.

3. Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-
scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
601–610. ACM, 2014.

4. David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,
et al. Building watson: An overview of the deepqa project. AI magazine, 31(3):59–
79, 2010.

5. Jens Lehmann, Daniel Gerber, Mohamed Morsey, and Axel-Cyrille Ngonga Ngomo.
Defacto-deep fact validation. In International semantic web conference, pages 312–
327. Springer, 2012.

6. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören
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