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Abstract. This paper presents the extension of a UML and OCL tool
that enables the textual specification of UML sequence diagrams, and the
automated generation of all valid behaviors according to these sequence
diagrams. Message Sequence Charts (MSC) are used as the textual no-
tation to specify the UML sequence diagrams, and the USE high-level
action language SOIL is used to specify behavior.
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1 Introduction

In UML [11], sequence diagrams (SDs) describe one type of interaction, which
focuses on the partial order of message interchanges between objects. These
diagrams enable rich interaction descriptions, with modularity mechanisms and
combination operators such as parallel, alternative, optional, or repeated action
or event occurrences (par, alt, opt, loop). The semantics of UML interactions,
and in particular of SDs, is defined in terms of their valid and invalid traces [9,11].
In this context, traces refer to sequences of action or event occurrences.

Most UML modeling tools support the specification of SDs. In addition to
checking that the names and types of the messages are valid, a few tools also
provide analysis capabilities, such as checking whether the trace of a program or
model execution is valid (w.r.t. a SD) [3], generating test cases [18] and even code
from them [8]. Nevertheless, often, the analysis potential is not fully exploited
at the modeling level.

One interesting alternative provided by some modeling tools with simulation
capabilities is the use of sequence diagrams to represent execution traces, i.e., as
views of the behavior of the system being modeled. In particular, this is the ap-
proach followed by the tool USE (UML-based Specification Environment) [5,6].
In USE, modelers textually specify the structure of their systems using standard
UML class diagrams and their associated invariants using OCL [10]. For the
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description of the behavioral aspects of the system, modellers can specify pre-
and postconditions on the objects’ operations, as well as and protocol state ma-
chines for the classes. A distinctive feature of USE is that it provides a high-level
textual, OCL-like action language called SOIL [2] for specifying the behavior of
operations, together with an engine able to create and delete object instances
and links, assign values to attributes, and execute the SOIL implementations
of the operations. Thus, sequences of operations (scripts) can be invoked by an
external actor, enabling powerful simulations of the modeled systems, all at the
same level of abstraction as the one used to specify the system. Sequence dia-
grams can be automatically produced from the execution traces of these scripts,
allowing modelers to visualize the interactions that have happened between the
system objects, including the option to link sequence diagrams to associated
protocol state machines.

However, something that is missing in the tool USE is the possibility of spec-
ifying sequence diagrams that describe in general the valid execution traces of
the system. In USE, the interaction diagrams are derived from the system execu-
tions, i.e., they are projections of an execution [1] and not general specifications
on the system that impose restrictions on all its possible behaviors.

Class model Extended Class model

including operation signatures \ g including class Choreographer

Eclipse Plugin for USE

Textual Message Sequence Chart (MSC) / N Action se!fuen%els (teﬁ(tual S'I?IIL scripts)
describing a generic object interaction escribing all possible

utilizing par, alt, opt, loop MSC constructs concrete interaction sequences

A

A

Fig. 1: Overview: Generating Action Sequences from MSCs.

In this paper, we propose an extension for UML and OCL tools, by means
of (1) textual specifications of UML sequence diagrams using ITU-T Message
Sequence Charts (MSC) [7], and (2) the automated generation of the set of
valid behaviors from them. Thus, a modeller can specify a SD using MSC, the
standard ITU-T textual notation—which is equivalent to the graphical notation
provided by UML to describe sequence diagrams—and then generate the set of
action language scripts (in our case SOIL scripts) whose behavior correspond
to the valid traces of the system w.r.t. the given SD. The proposed extension
has been implemented by means of an Eclipse plugin that allows modelers to
write an MSC, type-check it, and automatically generate the set of corresponding
sequences of action language commands (SOIL commands) that produce all its
valid traces. Fig. 1 gives an overview on the approach.

The structure of this paper is as follows. After this introduction, Sect. 2 briefly
describes the related technologies used in this work. Then, Sect. 3 presents our
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Fig.2: An example of a UML Class diagram and associated Sequence diagram.

proposal and how it has been implemented. Finally, Sect. 4 discusses related
work, and Sect. 5 concludes with an outline on future research lines.

2 Background

2.1 UML Sequence Diagrams

Sequence diagrams (SD) describe one type of interaction, which focuses on the
sequences of message interchanges between a number of objects (represented by
Lifelines). UML supports the specification of different kinds of messages and
signals, both synchronous and asynchronous. Message exchanges can be speci-
fied to happen instantaneously, or have an associated duration. Different kinds
of constraints (including time constraints) can impose further requirements on
the SD elements. Several combination operators can be used for representing dif-
ferent kinds of interactions, such as parallel (par), loops (Loop), alternative and
optional interactions (alt and opt, resp.), negative traces (neg), critical regions
(critical) and many others. SD fragments can also be used to encapsulate a
set of interactions, which can then be reused in other SDs. This provides a very
useful mechanism to achieve modularity in the specifications.

Despite its apparent simplicity, UML SDs are not easy to undertand [14],
and, in fact, its semantics deserve a careful definition [9,11]. They are defined in
terms of the valid and invalid traces specified by the SD.

Fig. 2 shows an example of a UML Class diagram (left) and one associated
Sequence diagram (right) that describes the partial order in which the opera-
tions implemented by objects of class Server can be invoked by objects of class
Client. A loop combination operator determines the minimum and maximum
number of times that the interactions included in it may happen. The opt op-
erator is used to indicate that the call to operation serviceB() is optional and
could be omitted. Lines with solid arrows represent synchronous messages, and
dashed lines represent the returns of the calls.
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This specification defines 14 possible valid execution traces for the system,
depending on the number of times that the loop is executed, and whether the
optional operation is invoked or not:

— serviceA(), serviceC()

— serviceA(), serviceB(), serviceC()

— serviceA(), serviceA(), serviceC()

— serviceA(), serviceB() serviceA(), serviceC()

— serviceA(), serviceA(), serviceB(), serviceC()

— serviceA(), serviceB() serviceA(), serviceB(), serviceC()

In general, identifying and generating all the behaviors that produce the
valid traces defined by a given SD is far from being a trivial task. However,
this is relevant in several situations. For example, it helps identifying all possible
behaviors of the system, as specified by the SD, and all the potential executions it
could allow, which helps understanding the SD specifications. Another situation
of interest happens in the realm of Model-Based Testing [16,17], when a SD can
be used to generate the set of test suites that exercise all possible executions. In
the following section, we show how our proposal achieves such goals and how we
have implemented it for the USE tool.

2.2 ITU-T Message Sequence Charts (MSC)

To improve the UML 1.X notation used for specifying sequence diagrams, in
UML 2.X sequence diagrams were defined based on the International Telecom-
munication Union’s (ITU) Message Sequence Chart (MSC)—ITU-T Recommen-
dation Z.120 [7]—, which is the standard notation commonly used to specify
interaction protocols in the Telecommunications domain.

The ITU-T Recomendation defines two concrete syntaxes to represent MSCs,
one textual and one graphical. The graphical notation was the one adopted by
UML 2.X. The textual notation expresses the same information, using a well-
defined grammar [7]. For example, Listing 1.1 shows the textual specification
of the SD described in Fig. 2. Interestingly, in this notation each interaction
is described both from the sender and from the receiver, since this enables the
separation between the signals being sent and received that is required, e.g.,
when we need to deal with asynchronous interactions.

Listing 1.1: Textual MSC describing the sequence diagram shown in Fig. 2.

msc Examplel;
(inst c:Client, s:Server)
c,s : loop<1,3> begin loopi;

c : call serviceA() to s;
s : receive serviceA() from c;
s : replyout serviceA() to c;
c : replyin serviceA() from s;
c,s : opt begin opti;
c : call serviceB() to s;
s : receive serviceB() from c;
s : replyout serviceB() to c;
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Fig. 3: A screenshot of the USE specification environment.
c : replyin serviceB() from s;
opt end;
loop end;
c : call serviceC() to s;
s : receive serviceC() from c;
s : replyout serviceC() to c;
c : replyin serviceC() from s;
endmsc;

The expressiveness of ITU-T’s MSCs is richer than that of UML SDs, which
only implement a subset of all the numerous features and mechanisms of MSCs.
In our proposal we are interested just in the interactions that happen between
objects when they interact via method calls, and thus we have implemented
a subset of MSCs. More precisely, we currently support instance specification
(to identify the Lifelines of the objects engaged in the interaction and their
types), method invocations and responses (using MSC constructs call, receive,
replyout and replyin), and four types of combined fragments (loop, alt, par
and opt), which can be arbitrarily composed.

2.3 USE

The UML-based Specification Environment (USE) [5] is a modeling tool that
enables the specification and validation of UML and OCL models. The tool is
open source and distributed under the GNU General Public License.

USE supports UML class diagrams for the specification of the structure of
the modeled system, and provides full support for OCL. To specify the behavior
of the system, operations can be enriched with pre and postconditions, and UML
protocol state machines can be associated to the system objects.

Figure 3 shows a screenshot of the specification in USE of the client-server
example. We can see how USE also allows modelers to specify protocol state
machines for the objects of the system. The behavior of the system when being
executed is checked against these state machines.
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Fig.4: An example of a SOIL script and the corresponding SD.

USE also provides an executable extension of OCL that enables quickly pro-
totyping the system specifications, called SOIL (Simple OCL-like Imperative
Language) [2]. Given a UML model, SOIL allows modelers to create instances
and links of that model, assign values to the attributes of these objects, and
invoke their operations.

For example, Fig. 4 (left) shows the specification of one Client operation
called test () that calls the three server services in sequence; the SOIL script
(center) that creates the instances of the client, the server, and the link between
them and then calls method test () of the client; finally, the right part of Fig. 4
shows the SD obtained as a result of the execution of the SOIL script.

In USE, both sequence and communication diagrams can be automatically
generated from a system execution, defined as a sequence of SOIL commands.
However, USE modelers do not have any means for specifying UML sequence
diagrams describing all the valid interactions between a set of objects.

Therefore, the goal of our proposal is, given the structural model of a system
in USE, and the specification of a sequence diagram written using the MSC
notation, automatically generate the set of SOIL scripts that produce all valid
executions of the system, according to that SD.

For example, given the client-server model depicted in Fig. 2 and the corre-
sponding MSC shown in Listing 1.1, our tool generates 14 SOIL scripts, each one
producing a valid trace for the system. For illustration purposes, Fig. 5 shows
the SDs generated for three of these 14 SOIL scripts.

The next section describes the way in which we generate the SOIL scripts
from a UML class diagram as well as an MSC that specifies the possible inter-
actions among the objects of that system, and the tool we have developed to
achieve this.
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Fig.6: A system with two objects that invoke each other’s methods.

3 Ouwur proposal

3.1 Specifying Sequence Diagrams in USE

To illustrate our proposal and how it works, we will use a slightly more complex
system than the one employed until now. For example, let us consider the system
shown in Fig. 6, which is composed of two types of objects, each one calling the
other’s method in the order specified by the SD shown in the figure, and whose
equivalent MSC specification is described in the Listing in Fig. 7.
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Fig.8: Adding a choreographer and extending the interacting objects.

msc Example2;

G T This system is not easy to simu-
a,b : Io0|)|<1i)2> begin loopl; late according to the behavior spec-
a,b : alt egin altil; . .
. Ca,,gb() to b ified in the MSC, because we need
b : receive b() from a; to ask each object to individually
b : replyout b() to a; f h 1Is in diff d
5 4 ceplln b)) T by perform the calls in different orders.
alt; This is why we need to extend the
b : call a() to a; ith ial inf
a : receive a() from b; system with some essential infor-
a : replyout a() to b; mation for implementing the execu-
b : replyin a() from a; .
alt end; tions.
loop end; More precisely, we need to (a) ex-

endmsc;

tend each object with the appropri-
Fig.7: MSC describing the SD of Fig. 6. ate methods that invoke other ob-
jects’” methods, and (b) add a new
object to the system, which is in
charge of calling the extended objects in the required order.

This new object is called the Choreographer, and the extended objects will
be called after their original ones, suffixed by “_Ch” to indicate that they are
their choreographed versions. Fig. 8 shows the resulting model after extending
the classes of the system in Fig. 6 and adding the choreographer. We can see
how the extended classes incorporate a method that carries out the required call,
hence implementing the desired behavior.

Figure 9 shows the corresponding sequence diagram for the extended system,
which is now able to be simulated by USE. All these extensions are automatically
produced by our plugin from the UML specifications of the system (Fig. 6) and
the corresponding MSC (Fig. 7).

In particular, our plugin is able to generate the set of sequences of SOIL com-
mands whose executions correspond to the set of valid execution traces for that
behavior, namely, {opB() }, {opA() 2}, {opB() ;0pA}, {opB() ;0pB)}, {opAQ);
opBO)} and {opA();;0opAQ)}.

Figure 10 shows one of the possible sequences of SOIL commands and its
related sequence diagram, as it is shown by the USE tool. It corresponds to one
of the possible valid traces identified above, namely, {opA() ;opB()}. The left
part of Fig. 10 displays the complete trace. In contrast, the right part shows the
same sequence diagram where we have hidden the Choreographer object: it is
one of the traces of the original UML SD previously shown in Fig. 6.
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Fig. 10: One system trace showing (left) or hiding (right) the Choreographer.

The SOIL script whose execution generates the SD depicted in Fig. 10 is
shown in Listing 1.2.

reset

Listing 1.2: One of the generated SOIL scripts.

Inew Choreographer('Ch');
Inew A_Ch('a');
Inew B_Ch('b');
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linsert (a,b) into RelAB;

ICh.b_A_opA();
ICh.a_B_opB();

3.2 Generating SOIL scripts from MSCs

This section describes how the SOIL scripts are generated from the USE model
with the structure of the system, and a given MSC. The process has three steps.

a) Parsing the MSC. Using Xtext, we have defined a subset of the complete
grammar of MSCs, as specified in the Z.120 Recommendation [7]. The textual
file with the MSC specification is parsed by Xtext, which builds its Abstract
Syntax Tree (AST) if the MSC specification is correct.

b) Extending the USE model. The AST generated by Xtext is then used by a
program we have developed in Xtend to generate the extended USE model. Such
an extension consists in adding to the initial USE model (a) the Choreographer
class, (b) the new classes that extend the model classes involved in the MSC with
the operations that the Choreographer will invoke, and (c) the relationships
among them. An example of this extension of the USE model, with new classes
Choreographer, A_Ch and B_Ch, was shown in Fig. 9.

c) Generating the SOIL scripts. Using the AST of the MSC and the extended
USE model, we have developed an algorithm in Xtend that generates the SOIL
scripts. The idea behind this algorithm is to traverse the control flow graph
(CFQG) [4,18] that corresponds to the MSC.

The CFG is a graph whose nodes can be either actions (method invocations)
or branching nodes: decision, merge, fork and join nodes. The arcs of a CFG
represent the possible transitions between nodes. Thus, the CFG of an MSC
is composed just of a sequence of method invocations, without any combined
fragment (loop, alt, par or opt), corresponding to a list of action nodes. The
presence of opt combined fragments in a MSC will make its CFG become a tree.
Loops introduce cycles in the CFG. Fork and join nodes are introduced by par
combined fragments, indicating that all the possible interleaving executions of
the contents of the par fragment are possible.

Every opt fragment corresponds to two transitions, one with the CFG of the
body of the option, and the other that jumps to the end of the body. Alternative
nodes are treated similarly, with one transition to each of the possible alternative
bodies. To deal with par fragments, we use the Heap algorithm to generate all
valid permutations of the body of the par fragment. Loops have a lower ()
and upper (u) number of iterations, so we need to consider that they have to
generate u — [ + 1 alternative behaviors, each one containing a different number
of repetitions of the loop body (ranging from [ to u).

The CFG for the MSC is not explicitly built, but represents implicitly the
behavior of the algorithm we have developed in Xtend to generate all its possi-
ble paths. The algorithm uses recursion to traverse the graph, since we permit
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the unlimited use of combined fragments inside the body of other combined
fragments (this is something that not many related proposals allow).

A string with the text of a SOIL file is created at the beginning of this process,
and initialized with the set of SOIL commands that create the corresponding
instances and links. Then, the recursive algorithm starts.

Every time an action node is found, the text corresponding to the SOIL call
is added to the file we are building. Recursion continues until a final node of
the MSC is reached. Then, a SOIL file is produced with the current contents of
the text string, and the recursion backtracks to let the algorithm explore further
nodes, continuing the CFG traversal.

3.3 Some Optimizations

Although in theory the algorithm described above should work well with all types
of fragments and their combinations, its performance severely degrades under
the presence of nested loops. This is why we had to change its behavior when
a loop fragment is detected in the MSC AST. Instead of using just one string
to store the current SOIL file, we change the behavior of the algorithm when
a loop is detected. In this case, the body of the loop is treated as a separate
and individual MSC, for which one SOIL file (or many, in case of combined
fragments are contained inside the loop body) is created. Such a file (or set of
files) is then copied as many times as required by the possible iterations of the
loop in each alternative execution. For example, a loop<2..4> instruction will
generate 3 alternative executions, one where the body is repeated twice, one
where the body is repeated three times, and a final one where the body of the
loop is repeated four times. Although the number of files that are produced in
this way can be large (especially when a loop happens inside a loop, not to
mention when nesting happens at two levels), the performance of the algorithm
is much better (in terms of a few seconds instead of hours).

3.4 Evaluation

To validate our proposal, we have tested it with different kinds of system models.
First, we used a test suite composed of models of artificial systems that contained
the different combinations of the supported fragments (alt, loop, opt, par), with
varying numbers of interactions and nesting levels. These tests covered most
basic cases and allowed us to check the behavior of our plugin. For example,
with just three nested loops one can easily get thousands of SOIL scripts for
the same MSC. This made us realize about the intrinsic complexity of the MSC
specifications, whose execution traces can grow beyond the user expectations.
The performance of our plugin when dealing with these cases was acceptable,
with responses that in the worst cases went up to a few minutes for producing
tenths of thousands of SOIL scripts. As part of our future work we plan to
conduct a proper evaluation of the performance of our plugin, and check its
current limits regarding the number of nested loops it is able to support and
how its response time varies.
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Fig. 12: The Publish & Subscribe system.

In addition to the synthetic tests, we also validated our plugin with exem-
plar applications that cover various kinds of SD specifications. Although smaller
than the previous models, they were useful for understanding the responses we
obtained, and for checking that the behavior of the system was as expected. In
particular, some of these exemplar models used were the following:
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A File Manager system (Fig. 11), which represents the typical use of a file:

it has to be opened, then the user can read or write several times, and then

it needs to be closed. Assuming a loop with between 1 and 10 iterations,
within an optional block, we obtain 21 alternative behaviors.

— A Publish and Subscribe system (Fig. 12) that represents the typical ap-
plication where listeners register in a notification service, and are notified
every time an event producer tells the server that an event has happened.
Six SOIL files are produced in this case.

— A Library system (not shown here) that represents an application where

a user can borrow a book and then either return it or not, and could be

optionally fined.

A system that accesses the services of a large High-Performance Computer

using a security manager for registration and identification for clients (not

shown here for space reasons).

All the artifacts associated to these examples (USE models, MSCs and soil
files) are available from out git server.?

4 Related Work

UML Sequence diagrams have been used by several authors to perform different
software engineering activities with them. For example, some works focus on
generating code from UML class and sequence diagrams [8,12,15]. They normally
build the CFG explicitly, and generate the code from it. They also support a
subset of all SD operators, although most of them do not support their arbitrary
combination and nesting, in particular for loops.

Other group of works (e.g., [13,18]) focuses on generating test cases from
UML sequence diagrams. They also use the CFG for generating the test cases.
However, unlike us, they do not seem to use any executable notation for the
specification of the produced test cases. In our case, it is important that all
traces (test cases in their terminology) are formally specified and can be directly
executed. Another key feature of our solution is that it remains at the same level
of abstraction as the modeled system, and within the environment of the same
tool. In this sense, our produced artifacts can be seamlessly manipulated and
executed by USE, with the goal of improving the usability of our solution.

5 Conclusions and Future Work

This work has introduced an approach to specify UML sequence diagrams using
a textual notation (a subset of ITU-T’s MSCs) and how all valid behaviors of
the system according to that MSC can be automatically generated. We have
developed an Eclipse plugin to support these tasks, and the USE environment
as the UML modeling tool and executable engine. Thus, all valid behaviors

® https://github.com/atenearesearchgroup/msc-use/

93



are generated in terms of SOIL scripts (sequences of commands) which can be
simulated by USE.

We have presented here the first prototype of our tool, in which we plan
to continue working in several directions. First, we would like to support more
combined operators such as seq, critical or break, in addition to the four
that we currently support. Second, we would like to consider the guards of the
combined fragments, since now we abstract this information away. A more tight
embedding into the USE environment could be envisaged, too. Of course, vali-
dating our plugin with more and larger case studies would be required, as well
as studying its performance. The application of our proposal to other UML and
OCL tools could also be an interesting extension of this work. Finally, we would
like to analyze the usability of our proposal, conducting some empirical experi-
ments with real modelers that could help assess if specifying SDs with a textual
notation is acceptable, and whether our proposal indeed helps understanding
the semantics of SDs.
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