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Abstract: Convolutional Neural Networks (CNN) is one of the 
main categories that have proven highly effective in various 
high-level tasks such as image classification. Pre-trained Neural 
Networks are models introduced in ILSVRC (ImageNet-Large-
Scale-Visual-Recognition-Challenge) which have been trained 
successfully for hundreds of hours on powerful GPUs. 
Furthermore, they are applicable to new application domains. 
The aim of this work is to investigate the effectiveness and the 
application of pre-trained models from natural (non-medical) 
images to images from the OCT (optical coherence tomography) 
domain in ophthalmology. The experiments show the robustness 
of a series of models without the demand to train a model from 
scratch again, what leads in effect to reduced training times and 
computational costs. 
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1  Introduction 

In recent years Convolution Neural Networks (CNNs) have been used widely as a powerful tool to solve several Machine-
learning tasks in several domains like natural language processing, speech recognition and computer vision [1] as well as 
semantic segmentation [2] or object detection [3]. The power of CNNs became stronger and more effective after the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in 2010 which made a revolution through the 
efficient use of graphics processing units (GPUs), rectified linear units, new dropout regularization, and effective data 
augmentation [4]. The success was achieved primarily by deep CNNs, while the depth of the network makes it more robust 
and allows for extracting a set of discriminating features at multiple levels of abstraction. Training a deep CNN from 
scratch requires a huge amount of labeled training data that represents a big challenge in domains like medical image 
classification and detection since in a lot of use cases or applications, it is not easy to obtain such high numbers of labeled 
data. In addition to the extensive computing and storage resources that the network requires in order to overcome the 
training time-consuming. However pre-trained Neural Networks introduced in ILSVRC have been trained on a large 
benchmark (of natural images) dataset [5] for hundreds of hours on powerful GPUs in order to solve a problem similar to 
the one that we want to solve in the remainder of the paper. Thus, they could be used as a starting point for a new training 
problem without the need to train our network from scratch again, especially by tweaking the already trained convolutional 
layers in order to fit our problems by fine-tuning and transfer-learning [6]. Despite the significant differences between 
natural and medical images, natural image descriptors such as the scale-invariant feature transform (SIFT) [7] and the 
histogram of oriented gradients (HOG) [8] have been widely used for object detection and segmentation in medical image 
analysis. Recently, several studies are employed to solve diagnosis medical problems by using transfer learning. 

Azizpour [9] suggests that the success of knowledge transfer depends on the contrast or difference between the dataset 
on which a CNN is trained and the dataset to which the knowledge is to be transferred.  The study shows that it is possible 
to transfer the knowledge from networks trained on natural (non-medical) images to medical images. In Bar et al. [10] pre-
trained CNNs are used as a feature generator for chest pathology identification. Ginneken et al. [11] suggest that the 
integration of CNN-based features together with handcrafted features enables improved performance. Chen et al. [12] used 
the fine-tuned pre-trained network to localize standard planes in ultrasound images. Tajbakhsh et al. [13] show that fine-
tuned CNNs and fully trained CNNs outperform the corresponding handcrafted alternatives in medical imaging 
applications. 

The aim of this work is to investigate the effectiveness of the application of pre-trained (natural image) models on 
specifically chosen foreign domains in order to determine the degree of transferability. OCT (Optical coherence 
tomography) images have been used in the following study. The Experiments carried out make use of two of the most 
widely spread pre-trained CNNs: VGG16 and Resnet50 [14,15]. In addition, and in contrast, a CNN handcraft architecture 
has been built and trained from scratch on our OCT-image set. In order to better understand how Convolutional Neural 
Networks make their decisions, we apply Gradient-weighted Class Activation Mapping (Grad-CAM) [16] visualization 
method on a pre-trained Resnet50. 

The remainder of this study is organized as follows: Section 2 presents the description of the OCT datasets. An overview 
of pre-trained Convolutional Networks is given in Section 3. Methodology and applied networks architectures are briefly 
outline in Section 4. Section 5 comprises our experimental study and an introduction to our results. Finally, our findings are 
briefly summed up in Section 6. 

2  OCT Dataset 

''Optical coherence tomography (OCT) is an optical analog of ultrasound imaging that uses low coherence interferometry to 
produce cross-sectional images of the retina. It captures optical scattering from the tissue to decode spatial details of tissue 
microstructures.  It uses infrared light from a super-luminescent diode that is divided into two parts: one of which is 
reflected from a reference mirror and the other is scattered from the biological tissue. The two reflected beams of light are 
made to produce interference patterns to obtain the echo time delay and their amplitude information that makes up an A-
Scan. A-Scans that are captured at adjacent retinal locations by transverse scanning mechanism are combined to produce a 
2-dimensional image.'' [17]. 

Our dataset consists of real clinical images which had been acquired during ten years of practice at The Eye Center in the 
Medical Center of the University of Freiburg in Germany during 2007 and 2018. It contains ophthalmological data for 
about 3,600 patients. Each patient suffers from Age-Related Macular Degeneration (AMD) [18] or a related disease such as 
(diabetic retinopathy or retinal vein occlusion). The data for each patient had been collected during a long-term application 
of Anti-VEGF therapy [19], and it remains unfiltered, i.e. patients suffer from other eye diseases (e.g. glaucoma or 
cataract), too. Figure (1.a) shows a healthy macula, the Retinal Pigment Epithelium in the middle appears almost as a 
straight and smooth line. On the other hand, the presence of druses represents an optical marker for dry AMD (see Figure 
(1.b)). 
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Typical signs referring to fluid AMD as the new but abnormal blood vessels grow (Choroidal Neovascularizations) are 

contained in Figure (1.c). The leakiness, which leads to aggregation of fluid, i.e. intraretinal or subretinal edema, also leads 
to a scarf (fibrosis) as shown in Figures (1.d and 1.e) respectively. We faced several OCT data training problems. In this 
work, our experiments focus on the Visual Acuity Performance (VP) classification problem where only a few patients could 
be safely associated with a specific performer class, where after giving the very first OCT finding of a given patient, and 
after a long period of time and therapy, the performance class could be expected with a significant confidence. 

3  Pre-Trained Networks 

The VGG-16 is a CNNs which is pre-trained deep network using more than one million images retrieved from the 
ImageNet dataset. This network is designed by its simplicity employing only 3×3 convolution layers which are stacked on 
top of each other at increasing depth. The volume size is minimized by Max Pooling. Then, two fully connected layers (of 
4,096 neurons) are followed by a softmax classifier.  VGG-16 contains 16 deep layers and is capable to classify images into 
1,000 classes such as a mouse, keyboard, pencil and animals etc. Consequently, the network has learned extensive feature 
representations for a variety of images. The network has an input image size of 224 x 224 pixels. 

ResNet-50 is a pre-trained convolutional neural network which also utilized more than 1 million images retrieved from 
the ImageNet dataset during the training process. ResNet-50 employs deep residual learning on 50 layers and has the ability 
to classify a large number of objects into 1,000 classes like VGG-16 while also maintaining an input image size of 224 x 
224 pixels. 

4  Methodology 

In the following, we practically investigate the robustness of pre-trained natural image CNNs on the OCT domain. The 
biggest challenge arises through the difficulty of correctly classifying these kinds of medical images by ophthalmologists. 
We examine the transferability of knowledge embedded in pre-trained CNNs for this type of medical images. We also 
employ the Grade-CAM technique to visualize the regions on the image input, which is important for these pre-formed 
CNN predictions, in order to gain a better understanding of how these networks create their decisions. Our experiments are 
conducted on our classification problem of Visual Acuity Performance (VP). The VP problem set contains three classes: 

Figure 1 – OCT-samples: (a) Healthy Macular, (b) dry AMD with druses,  
(c) subretinal fluid / oedema and choriodal neovascularizations, 

(d) subretinal fluid and a large scarf (fibrosis), (e) intraretinal fluid. 
[Data provided with courtesy from the Medical Eye Center in Freiburg Germany.] 
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 1-decreasing: the visual acuity of the patient drops after a period of time. 
 2-stable: the visual acuity of the patient stabilizes after a long period; however, it needs consistent therapy.  
 3-increasing: the patient's visual acuity increased immediately from therapy,  

(the problem of the outcome of the therapy quality).  
We used VGG16 pre-trained network [20] keeping the weights and filters of the top layers of the network which identify 

simple features like edges, lines, and corners and retrained the last four layers. Then, we added a fully connected layer 
followed by a Softmax activation [21] with a number of outputs corresponding to the number of classes in each OCT-image 
set. The same procedure was applied to the Resnet50 pre-trained network. We apply Grad-CAM to all those networks in 
order to highlight the specific discriminative regions of an image detected by the pre-trained CNNs. The annotated ground 
truth labels are converted and forwarded to the last layer in order to calculate the appropriate class scores. 

The workflow of Grad-CAM is shown in Figure 2, where for all classes, the gradient is set to zero except that the true 
class which is set to 1. The error signal is then back propagated to the feature map of interest where the Grad-CAM 
localizations use the gradients of the target class flowing into the final convolutional layer to create a coarse localization 
map which highlights the important parts in the image for the predicting of the respective class [16]. 

 
 

 
 

Figure 2 – Grad-Cam 
 

5  Experimental results 

Three convolutional neural networks (pre-trained VGG16, pre-trained ResNet50 and a handcrafted CNN) are used in our 
experiments. Since the lower layers only detect more (localized) general and simple features like edges and lines, and as the 
network increases the complexity in the higher layers, we decided to retrain the last four layers and leave the others frozen 
whereas a frozen layer does not change during training in VGG16 pre-trained network. Then, we added a fully connected 
layer with 512 neurons and ReLU activation [22] followed by dropout layer in order to avoid overfitting. In addition, an 
output layer with a number of neurons matches the number of classes followed by Softmax activation. We employed an 
Adam optimizer with a learning rate of 0.0001 [23]. Within the Resnet50 pre-trained network, also the first 41 layers are 
frozen; a flattened layer followed by a dense layer with several neurons matching the number of classes by using Softmax 
activation. SGD optimizer is used with 0.01 learning rate [24]. Our handcrafted CNN consists of four convolutional layers 
with filter-weights of sizes (5x5x32), (5x5x64), (7x7x64), (7x7x128), respectively. Each convolutional layer is followed by 
a (2x2) max pooling and ReLU activation. In addition, a fully connected layer with 512 neurons is followed by a last output 
layer with a number of neurons equal to the number of classes within the Softmax activation.  

Our dataset consists of 8,434 OCT-images. 20% of our samples are used as the validation set and 20% as a test set. After 
the training phase of our three networks (VGG16, ResNet50 and our handcrafted model) for 10-times of runs we got an 
accuracy range over a validation set of values between (92.20% - 94.54%),  (92.57% - 94.72%), (75.11%-76.90%), for 
these models respectively. Thus, as shown in Figure 3 which plots the training and validation accuracy and the training and 
validation loss during the training process of these three CNNs in the last run, the two pre-trained models outperformed our 
handcrafted model which is had been solely trained from scratch on our selected three classes OCT-image set. 
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Figure 3 – Training and validation accuracy and loss of the last runs for our modified models of:  
(a) VGG16, (b) ResNet50, (c) Handcrafted model. 

(a) (b) (c) 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

For more robust evaluation of each classification network, we calculated the classification accuracy after training each 
CNN networks ten-times over an OCT-test set (test-accuracy), which represented 20 % from our OCT image samples. The 
results show the resulting performance of pre-trained CNN over our Handcrafted CNN. Not only for validation and test 
accuracy, but also for the number of epochs our Handcrafted CNN performs worse while employing 50 epochs to fit 
training image samples in comparison to 20 and 10 epochs for VGG16 and ResNet50, respectively.  As shown in Table 1, 
the best test accuracy was obtained by pre-trained VGG16 with a test accuracy average of 88.814 %. ResNet50 achieved 
even better in terms of the number of epochs, which was 10 epochs. 

 
Table 1 –The results of test accuracy and standard deviation 

 
 
 
 
 
 
 
 
 
As a measurement of how much the test accuracy varies over the runs, we calculated the standard deviation of test 

accuracies for each CNN. Figure 4 shows the normal distribution of the resulting test-accuracy values over the ten runs for 
CNNs. 

We applied Grad-Cam visualization methods on ResNet50 in order to understand exactly where CNN is looking in the 
image to actually distinguish between the classes. As figure (5) shows Grad-Cam of three OCT-image samples related to 
three classes. 

 

CNN Epochs Test Accuracy  Average Accuracies Standard 
deviation 

VGG16 20 87.22 % - 90.64% 88.814 % 0.943 

Resnet50 10 81.07 % - 82.49 % 82,17 % 0.799 

Handcraft  50 75.80 % - 79.79 % 77.82 % 1.104 
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Figure 4 – The normal distribution of test accuracy values over ten runs:  
(a) Pre-trained ResNet50 CNN, (b) Handcrafted CNN, (c) Pre-trained VGG16 

Figure 5 – Grad-CAM applied to different OCT images. (a) 1_decr. (b) 2_stable  

(a) (b)

(c) 

 

(a) (b)
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6  Conclusion and Future Work 

In this study, we introduced an experimental study in order to investigate the robustness of pre-trained Neural Networks 
towards a special kind of medical images (OCT-images) described in Section 2 without the need to retrain these networks 
from scratch. We explore the outcome of keeping the first few layers of the pre-trained networks are while retraining the 
latter layers in order to adjust and fit our classification problem. The experimental results show the resulting performances 
of pre-trained networks over a Handcraft network, which has been built and trained from scratch, and which augments the 
concept of knowledge transfer despite the big difference between the natural and medical image domains. We also applied 
Grad-CAM visualization method on pre-trained ResNet50 to get a better understanding which features appear relevant to 
the CNNs in order to distinguish between the different medical image classes.  Future work encompasses the investigation 
of semi-automated and active learning algorithms to solve the massive annotation problems, since these algorithm classes 
are capable to fill the gap between labelled and unlabelled data while idealistically only querying such samples that would 
lead to an increase in precision or accuracy. In addition, it is essential to enhance the current framework and tool chain to 
address at least a wider variety of real-world ophthalmologic challenges. 

7  Acknowledgement 

We like to acknowledge that Prof. Dr. Andreas Stahl and the collaborators of the TOPOs project provided the OCT image 
data that was used in this study, as well as the ophthalmological background. TOPOs (“Therapievorhersage durch Analyse 
von Patientendaten in der Ophthalmologie”) is a collaborative project that is funded by BMBF (”Bundesministerium fur 
Bildung und Forschung”) (FKZ: 13GW0170B) from March 2017 to January 2020. The European Social Fund (ESF) also 
funded this work within the Innovative PhD Scholarship entitled “Aggregation, Visualisierung und Optimierung von 
überwachten  Deep Learning-Technologien mit Hilfe der virtuellen und erweiterten Realität”. 

 
 
 
 
 
 

References 

[1] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning for Computer Vision: A Brief 
Review,” Comput. Intell. Neurosci., vol. 2018, pp. 1–13, Feb. 2018. 

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation, 2015 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440, Boston, MA, 2015. 

[3] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, L. Van Gool, and K. Leuven, “Weakly Supervised Cascaded 
Convolutional Networks.”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5131-
5139, Honolulu, HI, 2017. 

[4] M. Thoma, “Analysis and Optimization of Convolutional Neural Network Architectures,” arXiv preprint 
arXiv:1707.09725, 2017. 

[5] “ImageNet.” [Online]. Available: http://www.image-net.org/. [Accessed: 12-Jul-2019]. 
[6] T. Wang, J. Huan, B. Research, and M. Zhu, “Instance-based Deep Transfer Learning.”, 2019 IEEE Winter 

Conference on Applications of Computer Vision (WACV), pp. 367-375, Waikoloa Village, HI, USA, 2019. 
[7] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol. 7, no. 5, p. 10491, 2012. 
[8] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893,2005. 
[9] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “From Generic to Specific Deep Representations 

for Visual Recognition.”, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops 
(CVPRW), pp. 36-45, Boston, MA, 2015. 

[10] Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, “Deep learning with non-medical training used for chest pathology 
identification.”, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294-297, New York, 
NY, 2015. 

[11] B. van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi, “Off-the-shelf convolutional neural network features for 
pulmonary nodule detection in computed tomography scans,” in 2015 IEEE 12th International Symposium on 
Biomedical Imaging (ISBI), 2015, pp. 286–289. 

[12] H. Chen et al., “Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks,” 
IEEE J. Biomed. Heal. Informatics, vol. 19, no. 5, pp. 1627–1636, Sep. 2015. 



207 
 

[13] N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?,” 
IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1299–1312, 2016. 

[14] K. Simonyan and A. Zisserman, “VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE 
RECOGNITION”, arXiv preprint arXiv:1409.1556, 2015. 

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 770-778. 2016.. 

[16] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations 
from Deep Networks via Gradient-Based Localization,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 
618–626, 2017. 

[17] M. Bhende, S. Shetty, M. Parthasarathy, and S. Ramya, “Optical coherence tomography: A guide to interpretation of 
common macular diseases,” Indian J. Ophthalmol., vol. 66, no. 1, p. 20, 2018. 

[18] “Age-Related Macular Degeneration (AMD) | National Eye Institute.” [Online]. Available: 
https://nei.nih.gov/health/maculardegen. [Accessed: 09-Jul-2019]. 

[19] T. Y. Y. Lai, C. M. G. Cheung, and W. F. Mieler, “Ophthalmic Application of Anti-VEGF Therapy,” Asia-Pacific J. 
Ophthalmol., vol. 6, no. 6, pp. 479–480, 2017. 

[20] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, arXiv 
preprint arXiv:1409.1556, Sep. 2014. 

[21] Y. Tang, “Deep Learning using Linear Support Vector Machines”, arXiv preprint arXiv:1306.0239, Jun. 2013. 
[22] C. Enyinna Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of Trends in 

Practice and Research for Deep Learning.”, arXiv preprint arXiv:1811.03378, 2018. 
[23] D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.”, arXiv preprint 

arXiv:1412.6980, 2014. 
[24] H. Robbins and S. Monro, “A Stochastic Approximation Method”, The annals of mathematical statistics, pp.400-

407, 1951. 

 
 
 
 


