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Abstract. The output of the majority of NLP based informatics pipelines for 
structurization of free-text lack an ability to recover and convey implicit infor-
mation, found in diagnostic reports. Such information is readily perceived and 
taken into account by a human reader as a contextual component. Here, we have 
developed a method to model contextual information in order to recover implicit 
relationships among structurized diagnostic entities. Our method enables struc-
turization of contextual information into a cohesive and holistic representation of 
free-text diagnostic reports, which we call Knowledge Graphs. An expert assess-
ment confirmed the capability of the method to correctly convey contextual in-
formation. The precision of matching of the semantical content of the free-text 
with the corresponding knowledge graphs was 0.92 and the recall was 0.84. The 
Fisher’s exact test had odds ratio 19.7 and p-value of 2.2e-16. The intra-correla-
tion coefficient (ICC) statistic that reflects the level of correlation and magnitude 
of agreement between domain experts was 0.818 (p-value of 0.99). These results 
indicate high level of agreement among all experts in the study.  
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1 Introduction 

Free-text sections of diagnostic reports contain descriptions of molecular data, micro-
scopic findings from biopsy specimens, interpretations of laboratory values, clues for 
the identification of diseases, and data on disease surveillance. 

In order to computationally analyze diagnostic reports, we need to convert free text 
to a structured format. In this regard, natural language processing information extrac-
tion techniques (NLP-IE) have been widely used to automatically extract knowledge 
from free text via a structured relational triple format [1]. Relational triples are logical 
structures in the form of subject-predicate-object statements. 
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Several NLP-IE applications successfully convert free-text to relational triples. Mau-
sam et al. developed OLLIE, which extracted relational triples mediated by verbs, nouns 
and adjectives [2]; Akbik and Loser developed KRAKEN, which extracted n-ary rela-
tions from sentences based on heuristic rules [3], [4]; Bast and Haussmann developed 
CSD-IE, which extracted relational triples that span over several clauses by decompos-
ing a sentence to sub-sequences that “semantically belong together” [5], [6]; and An-
geli et al. developed Stanford OpenIE, which generated relational triples at multiple 
levels of granularity by learning a classifier to split a sentence in shorter clauses [7]. 

Structured representation of text facilitates the use of computational models. Then, 
computers can be used to mine for implicit relations between the data, to discover pat-
terns in the data, and to enable “semantic understanding and prompt retrieval” of spe-
cific information from documents [8]. 

Note here that the majority of these current NLP-IE applications extract explicit re-
lations between entities that belong to the same sentence or clause [1], [4], [5]. Conse-
quently, the information based on implicit relationships across a document is dis-
counted. Consider, for example, the relational triples in Figure 1 that are extracted using 
a NLP-IE application from the following excerpt from a diagnostic pathology report: 

Histologic sections show partial effacement of the lymph node with areas of nodular 
architecture [. . .]. Scattered Reed- Sternberg cells are present [. . .]. 

 
Subject Predicate Object 

histologic sections show effacement of lymph node 
histologic sections show effacement 
histologic sections show partial effacement area of nodular architecture 
scattered Reed-Sternberg cells are present 

Figure 1Relational triples generated from sentences in a diagnostic report using NLP-IE appli-
cations 

According to an expert pathologist, the focus of the diagnostic report is a “lymph 
node”. In this case, Reed-Sternberg cells should be considered in the context of that 
“lymph node”. However, since this fact was not expressed explicitly in the text, struc-
turization algorithms would not convey it in their output. 

As illustrated from the previous examples, context is essential component of NLP-
IE. In biomedicine, the term “context” describes entities related to a biomedical prob-
lem. Although the context of a whole text document is essential for the extraction of 
implicit information, most NLP-IE applications instead focus on the context of a sen-
tence or a clause. For example, Mausam et al. use “attribution and clausal modifiers” 
to extend a relational triple to a quadruple. The extra field provides contextual infor-
mation [5] [2], this process is also known as reification. Bast and Haussmann based on 
constituent parsing, which splits a sentence to parts that “semantically belong together, 
[to form] so-called ‘contexts’”. Here, each “context” is a fact that depends on sur-
rounding “contexts” [5]. Similarly, Angeli et al. use natural logic annotations to split 
a sentence to shorter clauses thus, enabling the “system to have a greater awareness of 
the context of each extraction” by generating multiple instances of the same relation 
[7]. For this study, we use the Stanford OpenIE application by Angeli et al. to extract 
information within the context of the following excerpt: 
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Histologic sections show partial effacement of the lymph node with areas of nodular 

architecture. The nodular areas are composed of a mixture of monomorphic small cells 
[. . .]. Immunostains with the appropriate controls are performed on block 1A [. . .]. 
Reed-Sternberg cells mark with weak nuclear positivity for PAX5 [. . .]. Reed-Sternberg 
cells are negative for CD20. 

 
Subject Predicate Object 

histologic sections show partial effacement of lymph node 
with areas of nodular architecture 

nodular areas are composed of mixture of monomorphic small cells 
immunostains are performed on block-1A 
Reed-Sternberg cells mark with weak nuclear positivity for PAX5 
Reed-Sternberg cells are negative for CD20 

Figure 2 Example of information extracted in the context of a diagnostic report using openIE 
applications. 

The relational triples in Figure 2 demonstrate that the current NLP-IE system has 
“awareness of the context of each extraction” [7]. This means that it generates triples 
only from the input sentence. However, implicit relationships between CD20, block 1A, 
and Reed-Sternberg cells within the context of the lymph node are not captured by the 
NLP-IE system. For example, it is critical for a pathologist to know that CD20 is neg-
ative in block 1A for the lymph node. 

In order to structurize implicit information, we need to model the context of a diag-
nostic report in relational triple resource description framework RDF-like format, 
which is a building block of a knowledge base (KB). Triples that share subject or object 
induce a graph that we link using the n-ary relation schema according to the semantic 
web [9]. We define these graphs as knowledge graphs (KG). 

The following section discusses in detail our methodological approach. 

2 Methods   

The informatics pipeline for modeling of contextual information is implemented as 
two independent processes (See Figure 3). The following sections describe these pro-
cesses in detail.  
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2.1 Contextual Encoding 

To encode contextual information, we use a Diagnostic Practice Ontology (DPO). 
DPO consists of concepts and relationships that describe a specific diagnostic setting. 
For instance, DPO includes concepts related to the diagnostic process such as types of 
specimens, tissues and cells as well as various diagnostic tests. It also includes a hier-
archy of personnel involved in a diagnostic process such as pathologists, residents, and 
laboratory staff. A structurized version of a diagnostic report consists of instantiations 
of DPO concepts and their relationships.   

In a semi-automatic Background Process (top panel in Figure 3), diagnostic reports 
from a Laboratory Information System (LIS) are screened by a human expert to search 
for new contextual relationships that are not present in the DPO. For instance, headings 
of sections of diagnostic reports can represent contexts for concepts described in these 
sections. Another example is specific locations in tissue specimens that can serve as 
context for biological entities (e.g. germinal center is context for Reed-Stenberg cells). 

To encode these relationships, we introduce a notion of Contextual Ancestry (CA). 
Given a concept A from a diagnostic report (e.g. a diagnostic test, a molecular entity, a 
specific cell), a Contextual Ancestry represents diagnostic concepts that can serve as a 
context for the concept A. Such contextual concepts are arranged in the CA in the order 
of their appearance in the reports. For instance, CD4 immunohistochemical (IHC) an-
tibody test can have the following CA: 

Figure 3. Contextual modeling framework is implemented as two independent processes. 
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CD4->Block 1A->IHC study->Lymph Node->Surgical Report 

 
Diagnostic concepts Block 1A, IHC study, Lymph Node, Surgical Report can all serve 
as a context for CD4 IHC test. We have to note here, that Contextual Ancestries are 
specific to a LIS platform used in a pathology practice, in the sense that they reflect the 
style and order of sections of a diagnostic report generated by that LIS. Contextual 
Ancestries can form hierarchical structures like trees or even networks. The above ex-
ample represent a linear path in the CA hierarchy. 

The generated CAs are then incorporated in real time into a Diagnostic Practice On-
tology (DPO), which models various types of relationships required to structurize di-
agnostic reports. 

2.2 Context Resolution 

Structurization of implicit diagnostic information is performed through the Context 
Resolution step of the pipeline in an automatic fashion (bottom panel in Figure 3). First, 
a diagnostic report is processed by a structurization pipeline to generate relational tri-
ples. To do this, we utilize Stanford OpenIE software. The resulting RDF triples are 
then arranged as n-ary relation models. Such n-ary models represent structurized ver-
sion of specific informational points from the diagnostic report. However, while they 
may successfully convey the intended semantics, in many cases, they lack the contex-
tual component. The lack of contextual information may undermine the usefulness of 
the n-ary models. To demonstrate this, consider the following excerpt from a diagnostic 
pathology report (Figure 4): 

 
 

 
Figure 4. Excerpt form a diagnostic pathology report. 

 
 

The report includes a statement about the presence of Reed-Stenberg (RS) cells. The 
corresponding structurized n-ary model (Microscopic_Description_002) that conveys 
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this information is shown at the right bottom of the upper panel in Figure 5. It can be 
clearly seen that the structurized version of the report does not include information in 
which type of tissue RS cells were spotted. This type of critical information is implicitly 
conveyed by the first sentence in the excerpt (underlined in Figure 4) and noted by a 
human reader.  Other examples include implicit contextual relationships between 
IHC_Study_001 and Surgical_Report_001,  IHC_Study_002 and Surgical_Re-
port_001,  Microscopic_Description_001 and Surgical_Report_001, and Micro-
scopic_Description_002 and Surgical_Report_001, which connect specific micro-
scopic findings and test results to patient information. The implicitly reported location 
of RS cells after context resolution step is properly established as being in lymphoid 
tissue. The generated contextual relationships are represented by a RDF predicate 
in_context_of and marked with purple in Figure 5.  
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Figure 5. An example of Context Resolution to model implicit information in a diagnostic pathol-
ogy report. 

The process of generation of contextual links is depicted by a pseudo-code in Figure 
6, which represents an (unoptimized) iterative process of finding context entities for 
each node in the structurized version of a diagnostic report. We call the overall output 
of the developed pipeline a Knowledge Graph, where all individual structurized infor-
mational points are connected in a cohesive manner to holistically represent a diagnos-
tic pathology report. 
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Figure 6. A pseudocode of Context Resolution procedure. Loop (2) searches for a contextual 
ancestor for each node of all n-ary models of the structurized version of a diagnostic report. For 
that it uses the function getNearestContextualAncerstor(), which traverses Contextual Ancestry 
tree upwards. If such contextual ancestor is found, Loop (7) checks whether an instantiation of 
this ancestor is present in any other n-ary model. If that is the case, the node is connected to the 
instantiation of the contextual ancestor by a contextual relation. 

3 Results and Discussion  

We analyzed 34 pathology reports that yielded over 3,500 RDF-like relational triples 
that we represented as KGs. We have performed an expert assessment of the effective-
ness of conveying implicit contextual information into the generated knowledge graphs 
of diagnostic reports. For that, we recruited 6 domain experts from the University of 
Missouri Department of Pathology to evaluate the output of our method. The evaluation 
was based on three levels of a Likert-like scale: “in context”, “not in context”, “not 
clear”. We measured the effectiveness of our model with performance statistics for 
information retrieval systems. The precision metrics of matching the semantical content 
of the free-text with the corresponding knowledge graphs was 0.92 and the recall was 
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0.84. A Fisher’s exact test was used to assess statistical significance. The Fisher’s exact 
test has odds ratio 19.7 and p-value of 2.2e-16. Inter-Raters’ Reliability (IRR) score 
according to a two-way random effects model based on a fully crossed design as de-
scribed in [10]. The intra-correlation coefficient (ICC) statistic that reflects the level of 
correlation and magnitude of agreement between domain experts [11] was 0.818 (p-
value of 0.99). We, therefore, concluded that the differences in the assessment were 
statistically insignificant. These results indicate high level of agreement among all ex-
perts in the study. Therefore, we accepted the computed values of precision and recall 
as measures of the structurization pipeline’s performance. Usage of KGs have several 
advantages: they represent domain knowledge and facts, they are human and machine 
readable, and they enable graph mining to discover non-trivial patterns in the data. 

4 Conclusion  

We have developed a method to model contextual information in order to recover 
implicit relationships among structurized diagnostic entities. The method enables struc-
turization pipelines to convey contextual information and connect structurized infor-
mational point into a cohesive and holistic representation of free-text diagnostic reports, 
which we call Knowledge Graphs. A limitation of our study is the sample size. Our 
future efforts will concentrate on applying rules to our ontology. Preliminarily, KGs are 
important in healthcare for data mining aspects and knowledge acquisition. 
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