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Abstract. This paper presents DBMS-KU team approach for task 1,
i.e., author profiling in Arabic tweets, and task 2, viz., deception de-
tection in Arabic texts, of Author Profiling and Deception Detection
in Arabic (APDA). Our approach utilizes word n-grams, character n-
grams, word and character n-grams combinations, and function words
as features for classifiers to deal with these two tasks. We then examine
several term frequency thresholds to attributes of the features. Our ob-
tained results indicated that our approach could work well in both tasks
of this APDA.

Keywords: Author profiling · Deception detection · Character n-grams
· Word and character n-grams combinations · Function words.

1 Introduction

This paper elucidates the participation of DBMS-KU team in Author Profiling
and Deception Detection in Arabic (APDA) of Forum for Information Retrieval
and Evaluation (FIRE) 2019. In this APDA, we participate in task 1, i.e., author
profiling (gender, age, and variety) in Arabic tweets, and task 2, viz., deception
detection (lie or truth) in Arabic texts (twitter and news) [2, 13–20, 25, 26]. To
do this, we utilize word n-grams, character n-grams, word and character n-grams
combinations, and function words as features for classifiers. Previous studies have
shown that using those features for classifiers could contribute well in author
profiling and deception detection tasks [1–4, 7–11, 13, 20, 22–24]. To improve our
classification performance, we perform particular preprocessing techniques to
the dataset and apply term frequency thresholds to attributes of our utilized
features in this work. Our obtained results could show encouraging evaluation
scores in both tasks of the APDA.
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2 Dataset

The APDA organizer provided dataset that consisted of training and testing
sets for each task 1 and task 2 [2, 13–20, 25, 26]. The training and testing sets
of task 1 consisted of 2250 and 720 tweets, respectively. In task 2, the training
sets consisted of 532 instances for twitter and 1443 instances for news, while the
testing ones had 241 instances for twitter and 370 instances for news.

3 Method

This section explains the employed features, term frequency thresholds, prepro-
cessing, and classifiers in our approach to deal with task 1 and task 2 of the
APDA. To examine the performance of our approach, we conduct 10 fold cross-
validation in our experiments. Accuracy and F1-score are used to measure the
performance of our approach in task 1 and task 2, respectively. This measure-
ment is the same as the evaluation metric used by the APDA organizer [16].

3.1 Features

Word N-grams We use the word n-grams, namely, unigrams (uni), unigrams +
bigrams (2grams), and unigrams + bigrams + trigrams (3grams), as our features
to deal with both tasks in this work. Our word n-grams features are segregated
by space(s) and excluding numbers.

Character N-grams In this work, we examine character n-grams features
where n is between 3 (3chars) and 15 (15chars). The character n-grams features
are constructed from all existing characters in the dataset.

Word and Character N-grams Combinations To use word and character
n-grams combinations as features, we follow the method of [22, 24]. For simplicity,
we consider combining word n-grams, i.e., uni, 2grams, and 3grams, with only the
best character ones as our combinations features in this work, e.g., uni+3chars,
2grams+3chars, and 3grams+3chars.

Function Words To deal with this APDA, we utilize a set of 248 Arabic
function words (AFW) from [12] as features. Following the work of [6, 23, 24],
we employ the AFW features as combinations with our other utilized features
in this work, e.g., uni+AFW, 3chars+AFW, and uni+3chars+AFW.

3.2 Term Frequency Thresholds

We examine several term frequency thresholds to attributes of our utilized fea-
tures. This examination is to optimize the use of features [7, 13] when used by
classifiers in this work. The examined value of the term frequency thresholds
(TH) of the features in this work is from 1 to 10, e.g., uni TH2, 3char TH2, and
uni TH2+3chars TH2.
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3.3 Preprocessing

To improve the classification performance [7, 8, 13], we perform certain prepro-
cessing techniques to the dataset of task 1 and task 2. In task 1, we consider
three preprocessing options, namely, removing all mentioned @users (No@user),
removing all mentioned @users and URLs (No@user-url), and using Arabic al-
phabets (Arabic-only). Meanwhile, we use all contents in the dataset and replace
all numbers by zero [8], e.g., 2020 replaced by 0000, (To-zero) as our preprocess-
ing choice in task 2. The different preprocessing considerations between task 1
and task 2 are not only because of the different purpose of classification tasks
but also due to the different characteristic of each dataset in task 1 and task 2.

3.4 Classifiers

We utilize Support Vector Machine (SVM), Naive Bayes (NB), and Multinomial
Naive Bayes (MNB) classifiers in this work. To do this, we use the WEKA [5]
implementation of those classifiers.

4 Experimental Settings and Results

We show our experimental settings and obtained results in our submissions for
classifying testing sets of task 1 in Tables 1 and 2, respectively. In this task 1,
using DBMS-KU.2 settings could perform a better classification for gender and
age, while utilizing DBMS-KU.3 ones could perform the best classification for
variety. These good results might be due to the used preprocessing techniques,
i.e., No@user for gender, No@user-url for age, and Arabic-only for variety, to our
utilized features in this task 1. This conjecture might be corroborated by our
finding that the obtained variety classification results of using Arabic-only pre-
processing options, i.e., DBMS-KU.1 and DBMS-KU.3, were better than those

Table 1. The used experimental settings in our submissions for classifying the testing
sets in task 1. The SVM classifier was used for all our submissions in the task 1.

Submissions Settings Gender Age Variety

DBMS-KU.1
Features 10chars TH3 8chars TH2 11chars TH6

Preprocessing Arabic-only Arabic-only Arabic-only

DBMS-KU.2
Features 7chars TH5 7chars TH5 9chars TH7

Preprocessing No@user No@user-url No@user-url

DBMS-KU.3
Features uni TH1+10chars TH3 uni TH1+8chars TH2 uni TH1+11chars TH6

Preprocessing Arabic-only Arabic-only Arabic-only

Table 2. The obtained results of our submissions in task 1. Results in bold indicate
the best accuracy among our three submissions.

Submissions Gender Age Variety Joint

DBMS-KU.1 0.7778 0.5792 0.9736 0.4347

DBMS-KU.2 0.7944 0.5861 0.9722 0.4556

DBMS-KU.3 0.7833 0.5819 0.9778 0.4444
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Table 3. The used experimental settings in our submissions for classifying the testing
sets in task 2. The MNB classifier was used for all our submissions in the task 2.

Submissions Settings Twitter News

DBMS-KU.1
Features 11chars TH2 11chars TH2

Preprocessing To-zero To-zero

DBMS-KU.2
Features uni TH1+11chars TH2 uni TH1+11chars TH2

Preprocessing To-zero To-zero

DBMS-KU.3
Features 11chars TH2+AFW TH1 11chars TH2+AFW TH1

Preprocessing To-zero To-zero

Table 4. The obtained results of our submissions in task 2. Results in bold indicate
the best F1-score among our three submissions.

Submissions Twitter News Average

DBMS-KU.1 0.7877 0.7188 0.7533

DBMS-KU.2 0.8125 0.7352 0.7739

DBMS-KU.3 0.7877 0.7188 0.7533

of using No@user-url ones, viz. DBMS-KU.2 (Table 2). Nevertheless, it would
be valuable to analyze further this supposition in the future.

Next, we display the used experimental settings and obtained results in our
submissions for classifying testing sets of task 2 in Tables 3 and 4, respectively.
According to the results in Table 4, our DBMS-KU.2 settings could perform
better than other ones, i.e., DBMS-KU.1 and DBMS-KU.3, for detecting de-
ception in both twitter and news of this task 2. This DBMS-KU.2 achievement
might be due to the ability of word and character n-grams combinations features
which was better to capture deception attributes than that of character n-grams,
i.e., DBMS-KU.1, and character n-grams combined with Arabic function words
(AFW) ones, viz., DBMS-KU.3. However, it should be worthwhile to investigate
further of this presumption in the future.

5 Conclusion

This paper has described the participation of DBMS-KU team in task 1 and
task 2 of the APDA of FIRE 2019. Our obtained results indicated that our
approach could be useful and give promising evaluation scores in both tasks of
this APDA. As future work, examining more various preprocessing techniques to
the dataset, such as in [8], and using other types of character n-grams features,
e.g., character n-grams in token [1, 2] and typed character n-grams [7, 8, 20, 21],
must be valuable to improve the performance of our approach.
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