
Lessons Learned from an Application of
Ontologies in Software Testing

He TAN a, Vladimir TARASOV a and Anders ADLEMO a

a School of Engineering, Jönköping University, Jönköping, Sweden

Abstract. Testing of a software system is a resource-consuming activity that re-
quires high-level expert knowledge. In previous work we proposed an ontology-
based approach to alleviate this problem. In this paper we discuss the lessons
learned from the implementation and application of the approach in a use case from
the avionic industry. The lessons are related to the areas of ontology development,
ontology evaluation, the OWL language and rule-based reasoning.

Keywords. application of ontologies, OWL, Prolog, lesson learned, test case
generation, automated testing

1. Introduction

Manual software testing is made up of labor-intensive processes. Automated testing can
significantly reduce the cost of software development and maintenance [1]. Despite suc-
cessful achievements in automation of script execution and white-box testing, there is
still a lack of automation of black-box testing of functional requirements. Because such
tests are mostly created manually, which requires high-level human expertise, modern
methods from the area of knowledge engineering are up to the challenge.

In our previous work [2,3,4] we have proposed and implemented an approach to
automate software testing by modelling the testing body of knowledge with formal on-
tologies and reasoning with inference rules to generate test cases1. The experiment has
demonstrated that the use of ontologies allows for automation of the full process of soft-
ware testing, from the capture of domain knowledge in software requirements specifica-
tions (SRS) to the generation of software test cases. In this paper we discuss the lessons
learned from the implementation and application of the approach. The lessons relate to
the ontology development and evaluation, the use of OWL, and rule-based reasoning.

The rest of this paper is structured as follows. The automated testing process frame-
work is presented in Section 2. Section 3 presents an implementation of the framework
for a testing task in the avionics industry. We discuss the lessons learned from the project
in Section 4. Section 5 describes related work. The conclusions of the study are given in
Section 6.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

1The study presented in this paper is part of the project Ontology-based Software Test Case Generation
(OSTAG) that was financed by the Knowledge Foundation in Sweden, grant KKS-20140170.



Figure 1. A framework for automation of testing process using ontologies

2. A Framework for Testing Process Automation Using Ontologies

A typical process of black-box testing of functional software requirements comprises two
activities. During the first activity, software testers design test cases based on SRS and
their own expertise from previous work on testing software systems. The second activity
is to generate test scripts. Finally, the tests are carried out, either manually or using
a test execution tool, based on the automated execution of test scripts. Fig. 1 presents
a framework to automate such a testing process using ontologies. The framework was
developed in our project, OSTAG.

Requirements are often described in well-structured or semi-structured textual doc-
uments. First, a requirements ontology is built, to represent the structure of the software
requirements. With the help of the ontology, the requirements information is extracted
from the text documents and then used to populate the ontology. The populated ontology
serves as an input for the test case generator.

In situations where the testers’ expertise is less structured, the information is ac-
quired through interviews with experienced testers and examination of existing software
test description (STD) documents. The acquired testing strategies are represented with
inference rules that utilize the populated requirements ontology for checking conditions
and querying data to generate test cases.

Furthermore, a test case ontology is provided to specify what should be contained
in test cases and how each test case should be structured. The test case ontology is used
in the test case generation step. The ontology is populated when test cases are generated.
Finally, the populated test case ontology is employed to generate test scripts.

3. An Implementation of the Framework

In this section we demonstrate an implementation of the framework. The implementation
is to support testing of the components of an embedded sub-system within an avionic
system. The case data were provided by the fighter aircraft developer, Saab Avionics.
In the avionics industry, many of the systems are required to be highly safety-critical.
For these systems, the software development process must comply with several indus-
try standards, like DO178B. The requirements of the entire system, or units making up
the system, must be analyzed, specified, and validated before initiating the design and
implementation phases. The software test cases have to be manually inspected as well.
The requirements and test cases that were used in the framework implementation were
provided in text documents and the results were manually validated by avionic industry
domain experts.



3.1. Requirements Ontology and Test Case Ontology

The requirements ontology (see Fig. 2) was built by ontology experts based on the struc-
ture of the textual requirements specification documents provided by Saab Avionics.
Each requirement has a unique ID and consists of at least:

1. Requirement parameters, which are inputs of a requirement,
2. Requirement conditions,
3. Results, which are usually outputs of a requirement and exception messages.

Some requirements require the system to take actions. More details about the ontology
can be found in [2].

The test case ontology (see Fig. 3) was also built by ontology experts based on the
structure of test case descriptions created by the industrial partner. Each test case has
a unique ID, addresses one requirement, and has prerequisite conditions. There is a list
of ordered steps needed to be followed in each test case. Each step consists of input,
procedure and expected result.

The ontologies were built using the ontology language OWL, and developed in the
tool Protégé. The classes Test Input, Test Procedure and Test Results are defined as
the subclasses of OWLList [5], which is a representation of a sequence in OWL-DL.

Figure 2. The key entities in the requirements ontology

Figure 3. The key elements in the test case ontology



Figure 4. Ontology fragment of the SRSRS4YY-431 requirement specification

3.2. Population of the Requirements Ontology

The populated ontology contains 147 individuals in total in the experiment. Fig. 4
shows a fragment of the populated ontology for one particular functional requirement,
SRSRS4YY-431. The requirement states that if the communication type is out of its valid
range, the initialization service shall deactivate the UART (Universal Asynchronous Re-
ceiver/Transmitter), and return the result “comTypeCfgError”. In Fig. 4, the rectangles
represent the concepts of the ontology; the rounded rectangles represent the individuals
(instances); and the dashed rectangles provide the data values of datatype property for
individuals.

3.3. Approach to Test Case Generation based on Inference Rules

Test cases are generated through deriving information from the populated requirements
ontology with the help of inference rules. A necessary task to solve to derive test cases
from the requirements ontology is to represent testers’ expertise on how they use require-
ments to create test cases. Such expertise embodies inherent strategies for test case cre-
ation, knowledge that can be expressed in the form of heuristics represented as if-then
rules. This kind of knowledge is acquired from two sources. First, literature on software
testing contains some general guidelines, e.g. boundary value testing. These general test
strategies apply to all domains. Second, expert testers were interviewed to capture their
expertise that is specific to particular types of software systems and/or particular do-
mains. Such testing knowledge needs to be acquired for each domain type. Additionally,
existing test cases and their corresponding requirements were examined and analysed.
The details of the test case generation with inference rules are provided in [4].

The condition (if-part) of a heuristic rule is formulated using the ontology instances
(individuals) representing the requirement and connected hardware parts, input/output



parameters and the like. The instructions for generating a test case part are expressed
in the action part (then-part) of the rule. The Prolog programming language was chosen
for coding the acquired inference rules. The requirements ontology was first translated
into the Prolog syntax, to prepare the ontology for the inference rules. The translated
ontology can be loaded as part of the Prolog program, and the ontology entities can be
directly accessed by the Prolog code. The inference engine that is built-in into Prolog
was used to execute the coded rules to generate test cases. An example of the inference
rule written in Prolog that implements the acquired test case generation heuristic rule for
the requirement SRSRS4YY-431 is given below:

% construct TC procedure

1 tc_procedure(Requirement, [Service, WriteService, ReadService,

recovery(Service)]) :-

% check condition for calls #2-4

2 action(Requirement, deactivateUART),

% get service individual for calls #1,4

3 service(Requirement, Service),

% get individuals of the required services

4 type(WriteService, transmission_service),

5 type(ReadService, reception_service).

% check the required action

6 action(Requirement, Action) :-

objectPropertyAssertion(requiresAction, Requirement, Action).

% retrieve the service of a requirement

7 service(Requirement, Service) :-

objectPropertyAssertion(requirementForService, Requirement, Service).

% check the type of an instance

8 type(Individual, Class) :-

classAssertion(Class, Individual).

Line 1 in the example is the head of the rule consisting of the name, “input” argument
and “output” argument, which is the constructed procedure as a Prolog list. The list is
constructed from the retrieved ontology entities and special term functors. Line 2 encodes
the condition of the heuristic. Lines 3-5 are the queries to retrieve the relevant entities
from the ontology. The predicates 6-8 are auxiliary and help perform the actual retrieval
of the required entities from the ontology.

Each test case is generated sequentially, from the prerequisites part to the results
part. The generated parts are collected into one structure (Prolog term).

3.4. Population of the Test Case Ontology

During the generation phase, all created test cases are stored in the Prolog working mem-
ory as a list. When the test case list is complete, the next phase of the ontology pop-
ulation starts. The test cases in the list are processed consecutively. For each test case,
an instance is created with object properties relating it to the addressed requirement and
test case parts. After that, instances with object properties are created for the four test
case parts: prerequisites, test inputs, test procedure and expected test results. If the parts
contain several elements, OWL lists are used for the representation.

There are two Prolog predicates from the ontology population layer that per-
form ontology population: ontology comment and ontology assertion. The for-
mer is used to insert auxiliary comments in the ontology. The latter asserts OWL ax-
ioms representing test case elements in the test case ontology. The four additional



Table 1. Test case from the STD (left column) and the corresponding generated test case by applying inference
rules to the populated requirements ontology (right column)

. . .

Test Inputs
1. According to table below.
2. <uartId> := <uartId> from the

rs4yy init call
3. <uartId> := <uartId> from the

rs4yy init call
4. <parity> := rs4yy noneParity

. . .

Test Inputs:
1. <parity> := min value - 1, <parity> := max value +

1, <parity> := 681881
2. <uartID> := <uartID> from the initializationService

call
3. <uartID> := <uartID> from the initializationService

call
4. <parity> := noneParity

Test Procedure
1. Call rs4yy init
2. Call rs4yy write
3. Call rs4yy read
4. Recovery: Call rs4yy init

Test Procedure:
1. Call initializationService
2. Call writeService
3. Call readService
4. Recovery: Call initializationService

Expected Test Results
1. <result> == rs4yy parityCfgError
2. <result> == rs4yy notInitialised
3. <result> == rs4yy notInitialised,
<length> == 0
4. <result> == rs4yy ok

. . .

Expected Test Results:
1. <result> == parityConfigurationError
2. <result> == rs4yyNotInitialised
3. <result> == rs4yyNotInitialised, <length> == 0
4. <result> == rs4yyOk

. . .

predicates, populate w prereq, populate w inputs, populate w procedure and
populate w results, create OWL statements for the test case parts by processing lists
associated with each part. The the name prefix and initial number of each of these predi-
cates are passed to construct instances of an OWL list representing this test case part.

Finally, the newly asserted axioms are serialized in the ontology source file by the
ontology serialization layer. It takes care of translating the OWL assertions from the
Prolog syntax into the OWL functional-style syntax with the help of a definite clause
grammar.

3.5. Test Scripts Generation

In order to carry out testing, test cases need to be transformed into executable procedures.
Such procedures are usually programs written in a language like Python or C. However,
our project partner, Saab Avionics, follows a strict quality assurance process. According
to their process, all test cases have to be thoroughly inspected as plain text by the qual-
ity assurance team before they are signed of for actual execution. For this reason, the
test cases were translated into plain English in the OSTAG project. The translation was
implemented by the verbalization process on the test case ontology. The verbalization
starts with the test case instance and then iterates through the OWL lists representing the
four test case parts. In a similar way, the test cases from the test case ontology can be
transformed into actual executable procedures in a programming language.



In the implementation, 37 test cases were translated into plain text descriptions ac-
cording to the STD provided by Saab Avionics. An example of a test case description is
given in Table 1.

3.6. Evaluation of the Generated Test Cases

As we observed, there is an almost one-to-one correspondence between the texts in the
generated test scripts and the STD provided by Saab Avionics (see for example the test
case in Table 1). The evaluation result validated that it is possible to automate the test-
ing process using the framework. Even more so, on some occasions the generated test
scripts texts indicated a discrepancy to the corresponding test scripts texts in the STD
document. These discrepancies were presented to and evaluated by personnel from Saab
Avionics and on occasions, the observed discrepancies indicated a detected error in the
STD document.

4. Lesson Learned

In this section we discuss our choices for the implementation of the framework and
lessons learned from the effort to use ontologies and inference rules to automate testing.

4.1. Building Ontologies of Software Requirements and Test Cases

The knowledge acquisition bottleneck is a common problem that we faced when building
an ontology. It is difficult to bring domain experts into the ontology development, and it
is also challenging for them to express their knowledge in a way appropriate for ontol-
ogy construction. During the OSTAG project, we had the impression that the software
engineers from Saab Avionics, from the beginning to the end of the project, struggled
with understanding the ontology engineering technology.

In the project, instead of acquiring knowledge from domain experts, the ontology
experts relied on the textual documents, i.e. SRS and STD, as the sources to acquire the
knowledge of requirements and test cases. The documents provided by Saab Avionics
were written in a well-structured manner and had been manually inspected to achieve
compliance with the industry standards for developing highly safety-critical systems. In
this way, it was easy to engineer the ontologies of requirements and test cases from the
provided documents. However, natural language is inherently ambiguous. For example,
several requirements of the embedded system component could be interpreted differently.
Therefore, the evaluation and validation of the ontologies became necessary.

The population of the requirements ontology was done manually in the current
project. To increment the level of automation of the testing process, the ontology pop-
ulation step also could be automated using ontology learning methods [6,7]. However,
no well-established tools for automatic ontology population can support domain-specific
applications. As a step forward, we developed a method based on BNF grammar [8] as
a lightweight solution for automatic ontology population. The evaluation results showed
that a fully automated ontology population with high quality is a challenging task.



4.2. Evaluation and Validation of Ontology

Although ontology evaluation is relevant and important in ontology-based applications,
little attention has been paid to this topic. A number of different ontology evaluation
criteria, or features as we call them, have been discussed in literature (e.g. [9,10,11]),
but mainly from a theoretical point of view. To actually do ontology evaluation, the first
challenge is to determine the relevant quality features that are to be evaluated for a spe-
cific application. We identified the following three quality features as the most relevant
for this application:

• Ontology usability is defined as a set of attributes that describes the effort needed
by a human to make use of an ontology. The feature is especially important when
the ontology is going to be used by application domain experts who are normally
not ontology experts.

• Ontology applicability is defined as the quality of the ontology being correct or
appropriate for a particular application domain or purpose. In this case, the fea-
ture is about whether the ontologies support well the step of rule-based test case
generation within the framework of automated testing, as presented in Fig 1.

• Ontology correctness is defined as the degree to which the information asserted
in the ontology conforms to the information that should be represented in the
ontology. For example, the requirements ontology should accurately represent the
information in SRS.

The second, but also more challenging issue, is how to facilitate the evaluation of
these features. However, not many practical methods and tools exist for ontology eval-
uation. The methods based on metrics [12,13] do not help us much in the evaluation
of the three features. In the article [3] we reported on the methods and tools we devel-
oped to support the evaluation of the ontologies in the application. Our experience is that
evaluation methods and/or tools should provide user-friendly functionality to assist non-
ontology experts when they are involved in the evaluation process. The domain experts
from Saab Avionics were involved in the validation of the populated requirements ontol-
ogy. The level of difficulty to learn to master an ontology tool, like Protégé , is too high
and not intuitive to them as first time users. To help the domain experts in their evaluation
and validation work, a technique known as verbalization was used and worked very well.

4.3. Use of OWL as Ontology Language

OWL, a standard ontology language recommended by the Semantic Web community,
was chosen as the ontology language. The expressiveness of OWL allowed for the cap-
turing of SRS and STD details as well as for representing knowledge on both software
requirements and the underlying hardware components. Being the standard language,
OWL alleviates potential interoperability issues. There are different serialisations: both
XML-based, e.g. OWL/XML, and text-based, e.g. Turtle and functional-style syntax. We
chose the latter option because it allowed for interoperability with the test case generator
and it was easier to work with for the knowledge engineers.

OWL is based on description logics. It supports automatic checking of the consis-
tency and completeness of a model. OWL is an expressive language that allows for repre-
sentation of intrinsic software requirements peculiarities. The OWL definitions are split



into the TBox and ABox. The distinction between TBox and ABox, however, is not al-
ways clear and obvious. Should DeactivateURT be represented as a subclass of Action
or an instance of it? It actually depends on the purpose of knowledge modelling. Since
the test case generation inference rules are formulated in terms of ontology individuals,
classes and relations, our experience is that TBox should be simple and easy to under-
stand and instance data should be handled in a simple fashion. Hence, the level of OWL
expressiveness should be adjusted according to the domain of discourse and the purpose
of knowledge representation. Sophisticated OWL restrictions are extremely difficult to
verify by domain experts and are a complication factor for domain-level reasoning with
the ontology. Furthermore, the TBox should be reusable as much as possible to model
requirement specifications in different applications across the domain.

4.4. Use of Ontology-Based Reasoning

The use of OWL results in a machine-readable model that can be used for reasoning in
different ways. While there are several OWL reasoners, such as Pellet or HermiT that
allows for high-level reasoning at the level of descriptions logics, domain-specific rea-
soning requires either coding in a general-purpose language, e.g. Java, or formalisation
of custom inference rules and utilisation of an inference engine to execute the rules. Test
case generation requires the use of procedural knowledge—strategies that are used by
software testers to create test cases. This type of knowledge is difficult to capture directly
within an ontological model as soon as ontologies are designed to represent declarative
knowledge. A rule language provides an explicit way to capture and store procedural
knowledge. A rule-based formalisation of procedural knowledge could be more flexi-
ble and easier to maintain compared to program code-based formalisation. Moreover,
domain-level reasoning are easier to validate by experts when the reasoning steps are
represented by inference rules compared to being hard-wired into code.

The results of reasoning during the test case generation were saved in a new, test case
ontology through population. This exemplifies the use of reasoning for domain specific
transformation from one ontological model to another. However, we learned that the
expressiveness level of OWL in the ontology should be limited to OWL Lite. Otherwise,
the higher expressiveness could cause performance problems during reasoning with rules
or it would be difficult to use in program code.

4.5. Use of Prolog as a Rule Language

SWRL (Semantic Web Rule Language) is a frequent choice for reasoning over OWL
ontologies. It can support both forward-chaining and backward-chaining reasoning de-
pending on the capabilities of an inference engine used to power SWRL rules. Although
SWRL is widely used for OWL reasoning, it has rather limited facilities for expressions
in rule antecedents. This limitation, together with the necessity to complement it with an
external inference system, would complicate the full implementation of the procedural
semantics of test case generation. Hence, we chose Prolog as both rule language and
inference mechanism for the implementation of the test case generator.

Prolog supports backward-chaining reasoning, which fits to the problem-solving
type in our case. It was natural to implement rules starting with the goal—a test case or
test case part to generate. Prolog has a built-in inference engine with automatic conflict



resolution that reduced the effort required to manage rule firing. Apart from the inference
mechanism necessary to execute rules, Prolog has standard programming facilities. Thus,
no other programming language was needed to develop a complete test case generator.
Our choice of rule language implied the translation to/from Prolog but it was not difficult
to implement due to the availability of the serialisation of OWL in functional-style syn-
tax. The advantage of the translation was that the ontology statements could be directly
queried from the Prolog rules. One more aspect to consider is the assumption on the truth
values of the assertions in an ontology. Prolog is based on close-world assumption, while
OWL is based on open-world assumption. However, it did not create any difficulties as
soon as the required reasoning was performed in a limited and closed domain.

The disadvantage of Prolog is that it lacks support for OWL specific semantics. We
solved this by adding additional Prolog rules implementing, for example, subsumption
reasoning. In this way, the support for most of the parts of the OWL semantics could be
brought into a Prolog program. We also learned that the acquisition of inference rules
could be a problem. A partial solution that we found was to map particular test cases
to the corresponding requirements and then to discuss it with the expert testers. The
last drawback that we learned was that the use of individuals (ABox) makes the rules
fragile. As soon as individuals in an ontology could change frequently, the rules need to
be updated with every change. To alleviate this problem, classes and relations (TBox)
were used when possible instead of individuals’ names.

5. Related Work

There have been presented a number of projects with a focus on using formal models,
such as finite state machines, input/output transition systems, and UML, to support test-
ing activities [14,15]. The use of ontologies as formal model in software testing has not
yet received much attention, at least not as much as in other stages of the software life-
cycle process [16]. In [17], Happel and Seedorf present possible ways of utilizing on-
tologies for the generation of test cases, and discuss the feasibility of reusing domain
knowledge encoded in ontologies for testing. In practice, however, few tangible results
have been presented. Most of the research have had a focus on the testing of web-based
software and especially web services, e.g. [18,19].

The use of ontologies in requirements engineering date back to the 1990s, e.g. [20,
21,22]. There exists a clear synergy effect between the ontological modelling of do-
main knowledge and the modelling of requirements performed by requirement engi-
neers [23]. Recently, a renewed interest in utilizing ontologies in requirements engineer-
ing has surged due to the appearance of semantic web technologies [17,23]. Most of the
research deals with inconsistency and incompleteness problems in requirement specifi-
cations through reasoning over requirements ontologies.

Prolog has been used as a reasoner for OWL ontologies in a number of cases. For
example, in [24] the authors describe an approach to reason over temporal ontologies
that translates OWL statements to clauses in Prolog and then uses the built-in inference
mechanism. In [25] an OWL ontology and OWLRuleML rules are translated into Prolog
clauses, which are then used to infer new facts by the Prolog inference engine. Our
approach for automatic test case generation has utilised a similar idea, but we have used
OWL functional-style syntax for the OWL to Prolog translation which makes queries to
the ontology as close as possible to OWL syntax.



6. Conclusions

In the OSTAG research project, we proposed an ontology-based approach to automate the
test process. The approach was applied and implemented in a use case from the avionics
industry. In this paper we described the lessons learned from the project, especially those
relevant to the practical issues in areas of ontology development, ontology evaluation,
the OWL language and rule languages.

The implementation of the application has shown that it is possible to capture the
knowledeg in well-structured requirements specifications and test cases using ontologies
and to represent them in the OWL language. The test case generation strategies is a type
of procedural knowledge. They can be captured by rule languages. The lessons learned
about the OWL language and rule languages can be summarized as: (1) The expressivity
level of ontologies has to be limited on the level that is sufficient for its specific applica-
tion, if the ontology has to be populated, and the ontology has to be evaluated by domain
experts especially when no tool is available to support domain expert evaluation, and (2)
Care has to be taken not to make the rules too dependent on ABox by formulating rules
in terms of TBox that is much more stable.

The main challenges lied in the ontology development and evaluation area. The time
and effort needed to manually develop and populate the ontologies was reasonably high.
One solution to this problem is to automate the process, but our preliminary experiments
with the ontology learning methods have shown that the ontology development cannot
be fully automated. Ontology experts are needed to finish the task. The cost will depend
on the quality of the implemented ontology learning methods. Another solution is to
introduce boilerplates or semantic patterns in textual documents when they can be used
as the main source of domain knowledge. This solution would require a change in the
process where the documents are developed.

An ontology evaluation is necessary and has to be arranged around usability, appli-
cability and correctness, especially when the ontology is applied as a backbone for a so-
lution in a domain-specific application. It is challenging to involve domain experts in the
task due to the difficulty of using ontology tools. As soon as it become difficult for do-
main engineers to work directly with ontology editors, tools like ontology verbalization
can be used instead of directly using an ontology editor. When an editor has to be used,
a preparatory training session and the assistance of ontology engineer’s are beneficial.

References

[1] B. Beizer, Software testing techniques, Dreamtech Press, 2003.
[2] H. Tan, I. Muhammad, V. Tarasov, A. Adlemo and M. Johansson, Development and evaluation of a soft-

ware requirements ontology, in: 7th International Workshop on Software Knowledge-SKY 2016 in con-
junction with the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management-IC3K 2016, 2016.

[3] H. Tan, V. Tarasov, A. Adlemo and M. Johansson, Evaluation of an Application Ontology, in: Proceed-
ings of the Joint Ontology Workshops 2017 Episode 3: The Tyrolean Autumn of Ontology Bozen-Bolzano,
CEUR-WS, 2017.

[4] V. Tarasov, H. Tan, M. Ismail, A. Adlemo and M. Johansson, Application of Inference Rules to a Soft-
ware Requirements Ontology to Generate Software Test Cases, in: OWL: Experiences and Directions
– Reasoner Evaluation: 13th International Workshop, OWLED 2016, and 5th International Workshop,
ORE 2016, Bologna, Italy, November 20, 2016, Revised Selected Papers, M. Dragoni, M. Poveda-



Villalón and E. Jimenez-Ruiz, eds, Lecture Notes in Computer Science, Vol. 10161, Springer Interna-
tional Publishing, Cham, 2017, pp. 82–94. ISBN ISBN 978-3-319-54627-8.

[5] N. Drummond, A.L. Rector, R. Stevens, G. Moulton, M. Horridge, H. Wang and J. Seidenberg, Putting
OWL in Order: Patterns for Sequences in OWL., in: OWLED, Citeseer, 2006.

[6] A. Gangemi, V. Presutti, D. Reforgiato Recupero, A.G. Nuzzolese, F. Draicchio and M. Mongiovı̀,
Semantic web machine reading with FRED, Semantic Web 8(6) (2017), 873–893.

[7] G. Petasis, V. Karkaletsis, G. Paliouras, A. Krithara and E. Zavitsanos, Ontology population and enrich-
ment: State of the art, in: Knowledge-driven multimedia information extraction and ontology evolution,
Springer-Verlag, 2011, pp. 134–166.

[8] M. Ismail, Ontology Learning from Software Requirements Specification (SRS), in: European Knowl-
edge Acquisition Workshop, Springer, 2016, pp. 251–255.

[9] A. Gómez-Pérez, Ontology evaluation, in: Handbook on ontologies, Springer, 2004, pp. 251–273.
[10] A. Gangemi, C. Catenacci, M. Ciaramita and J. Lehmann, Modelling ontology evaluation and validation,

in: European Semantic Web Conference, Springer, 2006, pp. 140–154.
[11] D. Vrandečić, Ontology evaluation, in: Handbook on ontologies, Springer, 2009, pp. 293–313.
[12] S. Tartir and I.B. Arpinar, Ontology evaluation and ranking using OntoQA, in: International Conference

on Semantic Computing (ICSC 2007), IEEE, 2007, pp. 185–192.
[13] H. Hlomani and D. Stacey, Approaches, methods, metrics, measures, and subjectivity in ontology eval-

uation: A survey, Semantic Web Journal 1(5) (2014), 1–11.
[14] A. Petrenko, A. Simao and J.C. Maldonado, Model-based testing of software and systems: recent ad-

vances and challenges, Springer, 2012.
[15] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux and A. Vernotte, Recent advances in model-

based testing, in: Advances in Computers, Vol. 101, Elsevier, 2016, pp. 53–120.
[16] F.B. Ruy, R. de Almeida Falbo, M.P. Barcellos, S.D. Costa and G. Guizzardi, SEON: a Software En-

gineering Ontology Network., in: Knowledge Engineering and Knowledge Management: 20th Interna-
tional Conference, EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings 20, Springer, 2016,
pp. 527–542.

[17] H.J. Happel and S. Seedorf, Applications of ontologies in software engineering, in: Proceedings of
Workshop on Sematic Web Enabled Software Engineering (SWESE) on the ISWC, 2006, pp. 5–9.

[18] Y. Wang, X. Bai, J. Li and R. Huang, Ontology-based test case generation for testing web services,
in: Autonomous Decentralized Systems, ISADS’07. Eighth International Symposium on, IEEE, 2007,
pp. 43–50.

[19] H.M. Sneed and C. Verhoef, Natural language requirement specification for Web service testing, in: Web
Systems Evolution (WSE), 2013 15th IEEE International Symposium on, IEEE, 2013, pp. 5–14.

[20] J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis, Telos: representing knowledge about informa-
tion systems, ACM Transactions on Information Systems (TOIS) 8(4) (1990), 325–362.

[21] S. Greenspan, J. Mylopoulos and A. Borgida, On formal requirements modeling languages: RML revis-
ited, in: Proceedings of 16th international conference on Software engineering, IEEE Computer Society
Press, 1994, pp. 135–147.

[22] M. Uschold and M. Gruninger, Ontologies: principles, methods and applications, The Knowledge Engi-
neering Review 11(02) (1996), 93–136.

[23] G. Dobson and P. Sawyer, Revisiting ontology-based requirements engineering in the age of the se-
mantic Web, in: Proceedings of International Seminar on Dependable Requirements Engineering of
Computerised Systems at NPPs, 2006, pp. 27–29.

[24] N. Papadakis, K. Stravoskoufos, E. Baratis, E.G. Petrakis and D. Plexousakis, PROTON: A prolog rea-
soner for temporal ontologies in OWL, Expert Systems with Applications 38(12) (2011), 14660–14667.

[25] L. Laera, V. Tamma, T. Bench-Capon and G. Semeraro, Sweetprolog: A system to integrate ontologies
and rules, in: International Workshop on Rules and Rule Markup Languages for the Semantic Web,
Springer, 2004, pp. 188–193.


