
Extensions of Generic DOL for
Generic Ontology Design Patterns

Mihai CODESCU a,1, Bernd KRIEG-BRÜCKNER a,b and Till MOSSAKOWSKI c

a University of Bremen, Collaborative Research Center EASE, Bremen, Germany
b German Research Center for Artificial Intelligence (DFKI), CPS, Bremen, Germany

c Institute for Intelligent Cooperating Systems, Faculty of Computer Science,
Otto-von-Guericke University of Magdeburg, Germany

Abstract. Generic ontologies were introduced as an extension (Generic DOL) of
the Distributed Ontology, Modeling and Specification Language, DOL, with the
aim to provide a language for Generic Ontology Design Patterns. In this paper we
present a number of new language constructs that increase the expressivity and
the generality of Generic DOL, among them sequential and optional parameters,
list parameters with recursion, and local sub-patterns. These are illustrated with
non-trivial patterns: generic value sets and (nested) qualitatively graded relations,
demonstrated as definitional building blocks in an application domain.

Keywords. ontology design patterns, recursive pattern definition, generic ontologies,
generic DOL, qualitatively graded relations

1. Introduction

Ontology design patterns (ODPs) [1] have been introduced as a means to establish best
practices for ontology design as well as a way to provide a set of carefully-designed
building blocks for ontologies that may be reused in different contexts.

Several languages for representing ODPs, their instantiations and the relationships
between them have been proposed. The OPLa language [2] makes use of OWL annota-
tion properties to mark patterns and their relationships. OntoUML [3] has been extended
with a pattern language based on graph transformations in [4]. OTTR [5] is a language
for representing patterns as parameterized ontologies, instantiated via macro expansion.

With the exception of OTTR, in these languages ODPs are ontologies themselves.
In [6], we introduced generic ontology design patterns (GODPs), using the language
Generic DOL as an extension of the Distributed Ontology, Modeling and Specification
Language, DOL [7]. DOL is a meta-language that enables modular development of on-
tologies2 and allows specification of intended relationships (e.g. theory interpretation,

1This work has been partially supported by the German Research Foundation, DFG, as part of the
Collaborative Research Center (Sonderforschungsbereich) 1320 “EASE - Everyday Activity Science and
Engineering” (http://www.ease-crc.org/). Corresponding Author’s E-mail: codescu@uni-bremen.de
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

2We ignore the modeling and specification aspects here and focus on ontologies only.

alignment, properties of extensions) between them. DOL is supported by the Heteroge-
neous Tool Set, Hets [8], that provides a parser for DOL specifications, an implementa-
tion of DOL semantics, and an interface to theorem provers. In the proposed extension
of DOL, GODPs have parameters that may be instantiated in different ways, thus lead-
ing to an even greater and easier re-use of ODPs. Unlike OTTR, where parameters are
just symbols of a certain kind, or lists of these, in Generic DOL parameters are ontolo-
gies themselves, capturing abstract properties that are expected to hold for the argument
ontology in an instantiation.

Further examples of GODPs formulated in Generic DOL can be found in [9], in par-
ticular a role pattern from the literature, reformulated in a modular and reusable way. [9]
also gives more motivation and describes the advantages of Generic ODPs over “clas-
sical” ODPs, i.e. of parameterization over subsumption (parametric polymorphism over
subtype polymorphism, resp.).

[2] introduces a list of desired capabilities for a language for ODPs. We here list
these, and will come back to how they are met by Generic DOL in the next sections:

C1. Compatibility with the OWL standard and OWL supporting tools.

C2. Support for identification of ODPs as distinct from ontologies, and identification
of relevant parts of ODPs.

C3. Support for representing relevant relationships between patterns (refinement, gen-
eralization etc.)

C4. Support for identification of modules in ontologies generated using an ODP-based
approach.

C5. Support for representing relationships between ontology modules and the ODPs
that have been used as templates for these modules.

C6. Extensibility of the language by means of community-provided patterns for repre-
senting information about patterns and modules.

This paper is an update of [6], addressing many of the extensions of Generic DOL listed
there as future work, on which we focus in this paper. To better illustrate the degree of
generality provided by the new language extensions, we deliberately decided to present
some of the examples used in [6] again in their new form. The semantics of Generic
DOL follows the semantics of generic specifications in CASL [10]. Here we refrain from
presenting the semantics of the new language constructs in full formal detail.

2. Generic DOL

Unions and Extensions in DOL. The building blocks of DOL are (basic) ontologies
written as-is in existing ontology languages like OWL, inheriting its semantics. DOL also
provides a construct for uniting ontologies, written O1 and O2, and one for extending an
existing ontology O1 by new declarations and axioms, written O1 then O2 (in this case,
O2 may be an ontology fragment that is only well-formed in the context of O1, which is
called the local environment for O2). When all basic ontologies are written in OWL, this
has the same expressivity as OWL imports.

1 pattern ReflexiveRelation
[ObjectProperty: r]

3 [Class: C] =
ObjectProperty: r

5 Domain: C Range: C
Characteristics:

7 Reflexive

pattern InverseRelation
2 [ObjectProperty: r]

[Class: D][Class: R]
4 [ObjectProperty: ir] =

ObjectProperty: r
6 Domain: D Range: R

ObjectProperty: ir
8 Domain: R Range: D

InverseOf: r

pattern TransitiveRelation
2 [ObjectProperty: r]

[Class: C] =
4 ObjectProperty: r

Domain: C Range: C
6 Characteristics:

Transitive

pattern SubProp
2 [ObjectProperty: q]

[Class: D][Class: R]
4 [ObjectProperty: p

Domain: D Range: R] =
6 ObjectProperty: q

Domain: D Range: R
8 SubPropertyOf: p

Figure 1. ReflexiveRelation, TransitiveRelation, InverseRelation and SubProp.

Renaming. Renaming extends OWL’s expressiveness: the notation O with σ means
that O is translated along a signature morphism σ (mapping O’s symbols to possibly dif-
ferent ones). This construct is particularly useful for avoiding unintended name clashes
in unions of ontologies.

Unions, extensions and renamings can be used at a small-scale level, that is, within
one DOL document, in contrast to OWL’s import construct, which may only be used to
import other documents.

The naming of ontologies within one document, written ontology ON = O, gives
the name ON to some structured or unstructured DOL ontology O.

Generic DOL. The language Generic DOL (or GDOL) was proposed in [6] as an exten-
sion of DOL with parameterized ontologies (or generic ontologies, or patterns, for short),
following generic specifications in CASL [10], and used for writing GODPs. Parame-
ters are ontologies themselves, thus providing important semantic expressivity. A generic
ontology may import ontologies, written after the list of parameters with the keyword
given; the symbols of these ontologies are visible in the parameters and the body, but
will not be instantiated. Thus, a generic ontology is written pattern PN[P1]. . .[Pk]
given I = B, where P1, . . . Pk are the parameters of the pattern PN, I is the imported
ontology, and B the pattern body.

The syntax for instantiations is PN[A1 fit σ1]...[Ak fit σk], where A1, . . .
Ak are the argument ontologies of the instantiation, and for each i, σi are symbol map-
pings, written f |-> a where f and a are symbols of the parameter Pi and argument
Ai, resp. The sequence of mapping items gives rise to a signature morphism between the
parameter and the argument, called fitting morphism. The semantics of instantiation is a
DOL ontology. Note that patterns are written using a different keyword than ontologies,
and thus C2 is met.

Several simple examples of generic ontology patterns are presented in Fig. 1, where
we introduce patterns for very basic building blocks for ontologies, which should be self-
explanatory. The pattern SubProp already makes use of a new language construct of
Generic DOL (cf. the next section): it has, as fourth parameter, an ontology that contains
two additional axioms involving symbols from the previous parameters.

Just as for OWL (and DOL), the “Same Name – Same Thing” principle is used,
which means that the definition of an entity may be repeated without introducing multiple
occurrences of that entity. For Generic DOL, this means that if the body of a GODP
declares an entity, the union of multiple instantiations of that GODP will contain only
one occurrence of that entity. If this was not the intention, the entity should rather become
a parameter of the GODP, such that each instantiation can assign it a different name.

DOL’s notion of refinement: refinement R: O1 refined via σ to O2 ex-
presses that O1 may be refined to (or is a generalization of) O2 via the signature mor-
phism σ . Refinements have a formal semantics and can be easily extended to parameter-
ized ontologies over the same parameters; this addresses C3.

3. Extensions of Generic DOL

In the interest of simplicity (of writing and reading), parameters of generic ontolo-
gies should be kept as small as needed. The aim is to avoid having to explicit-
ly provide symbol mappings when making instantiations of generic ontologies: if a
parameter and its corresponding argument consist each of only one symbol, Hets
will automatically derive the unique way of mapping the one to the other. To make
the notation more compact, the parameters of a GODP and the arguments in an
instantiation may be written in Generic DOL as a semi-colon separated list, e.g.
TransitiveRelation[olderThan;Person] for TransitiveRelation[older-
Than][Person].3

Sequential semantics of parameters. The first significant extension of Generic DOL
that we introduce is a modification of the semantics of generic ontologies. In the seman-
tics of generics in [10,6], each parameter forms its own environment. In the context of
keeping the parameters small, we decided to allow each parameter to share the environ-
ment of all parameters preceding it along a chain of inclusions. We call this sequential
semantics for parameters of generic ontologies.

As an example, the GODP SubProp in Fig. 1 takes as parameters an object property
q, two classes D and R, and finally an ontology extending the previous parameters with
the declaration of an object property p with domain D and range R; its body adds axioms
that domain and range of q are also D and R, respectively, and moreover q is a sub-
property of p. Note that with the sequential semantics it has become possible to refer to
D and R in the axioms for p; the effect of including the domain and range axioms for
the parameter p now allows (indeed requires) the checking of these as constraints on its
argument in each instantiation, as we shall see below.

3For OWL we may use semicolons as separators between parameters and arguments because they are not
used as separators between declarations at the basic level. When this is the case, e.g. for the CASL logic, where
one may write sort s; op c : s, we use curly brackets to mark the begin and the end of an ontology. Thus,
G[sort s; sort t] will be parsed as G[{sort s; sort t}] – an ontology declaring two sorts, while a
generic ontology with two sorts as parameters or arguments will be written H[{sort s};{sort t}].

The semantics of instantiation in [10,6] imposes a compatibility condition between
the fitting morphisms for the different parameters: if a symbol occurs in multiple formal
parameters, it must be mapped by the different fitting morphisms in a unique way. This
compatibility condition remains in our extension, and the user can rely on it to provide
symbol mappings only for the new symbols of a parameter; by compatibility, the way
the old symbols are mapped is already defined.

To illustrate this, let us assume we want to define the isAncestorOf property be-
tween Persons as a transitive relation and with subproperty isParentOf (cf. Fig. 2).
We first instantiate the pattern TransitiveRelation to obtain that isAncestorOf is
transitive and has domain and range Person. We would like to write isAncestorOf as a
shorthand notation for the ontology TransitiveRelation[isAncestorOf;Person]
as the last argument of SubProp, or, to be fully correct, as this ontology has more than
one object property, as a shorthand notation for the even longer form where this is fol-
lowed by fit p |-> isAncestorOf.

Note that Fig. 2 also expresses that ontology PersonRels has been formed using
patterns TransitiveRelation and SubProp, showing that GDOL meets C4 above.
Also C5 is met, because the relation between the ODPs (here TransitiveRelation
and SubProp) and the resulting ontology (here PersonRels), in other words, the rela-
tion between the GODPs and one of their instantiations, becomes visible and gives rise
to theorem links (=theory interpretations) in Hets’ development graphs.

1 ontology PersonRels =
TransitiveRelation [isAncestorOf; Person]

3 then SubProp[isParentOf; Person; Person; isAncestorOf]

Figure 2. Using the patterns for a concrete design.

Local environments and compact notation for arguments. This requires another lan-
guage extension regarding instantiation of parameters of generic ontologies. Firstly, in
the case of some DOL ontology O1 followed by an instantiation, written O1 then
G[AP1], the local environment O1 of previous declarations that is being extended is im-
plicitly added to the argument, i.e. this expands to O1 then G[O1 then AP1]. In the
case of ontologies with imports, the local environment of an instantiation will include
them. Secondly, we introduce a shorthand notation for the instantiation of those param-
eters that define only one new symbol (recall that we assume sequential semantics of
parameters, thus the symbols of all previous parameters are visible at each step). Con-
sider that the name of this unique new symbol of a parameter is N and its kind (class,
object property, etc.) is k. For an instantiation of that parameter, in [10,6] an ontology is
required as an argument, which may be given in two forms:

• as a named ontology O. Then we must be able to derive uniquely how N is mapped
to a symbol of kind k in O, otherwise we must explicitly provide a symbol mapping
of the form N |-> N’ where N’ is a symbol of kind k in O.

• as an anonymous ontology consisting of a sequence of symbol declarations and
axioms. A special case is that of a single symbol defined with an explicit kind; then
this kind must also be k. In such a case, this unique symbol is considered newly
declared and acts as an argument, and the symbol mapping is uniquely determined.

We propose a third option here:

• the name M of a symbol of kind k from the local environment E is passed as an
argument. The argument expands to E fit N |-> M. Thus any properties that N
must have, as specified in the parameter, are checked for the symbol M in the local
environment.

In general, an instantiation SubProp[sr;A;B;r] of SubProp where A, B are classes
and sr, r are relations from the local environment, can be done only if r has domain
A and range B. The result is that sr becomes a sub-property of r and moreover it gets
domain A and range B (if this was not already available in the local environment). An
instantiation SubProp[sr;A;B;r] where sr is not visible in the local environment also
requires that r has domain A and range B. The result is that a new relation sr is defined
and added to the local environment (again, with domain A and range B, and as a sub-
property of r).

In our example, we may then write isAncestorOf as an argument for the fourth
parameter of SubProp; with the third case listed above, this means that we refer to
the symbol declared in the instantiation of TransitiveRelation, and therefore the
expected domain and range axioms hold for isAncestorOf.

OrderRelationExtension in Fig. 3 makes use of the simple patterns de-
fined in Fig. 1 to extend a simple order (the transitive greater[Val] relation on
a class Val): we define its inverse less[Val], a greaterOrEqual[Val] and a
lessOrEqual[Val] relation that are inverse to each other such that less[Val]
is a sub-property of lessOrEqual[Val] and greater[Val] is a sub-property of
greaterOrEqual[Val].

Parameterized names. Here the symbols declared in the two patterns have parameter-
ized names, to make explicit that they depend on the names of the parameters. The nota-
tion for parameterized names is Name[P1, ...,PN], if the name of the new symbol depends
on N parameters. During instantiation, the names of the arguments are substituted in the
parameterized name, e.g. greater[Val] becomes greater[Significance] if the
value provided for Val is Significance. Hets also offers the possibility of stratifying
these names for the result of an instantiation: the name greater[Significance] is
replaced with greater_Significance, thus obtaining a legal OWL identifier. This is
the final step needed to make an ontology involving the instantiation of one or several
Generic DOL patterns compatible with the OWL standard, as the DOL constructs can be
flattened: a structured DOL ontology is replaced with an equivalent unstructured one. 4

Thus Generic DOL fulfills C1.
As an argument of OrderRelationExtension we could provide any transitive re-

lation, in particular, a strict order. Since OWL does not support transitive and asymmetric
relations, the argument would have to be given in a logic where this can be expressed,
e.g. OWL without restrictions [11] or first-order logic. The theory presented informally
in this paper is actually independent of the underlying formalism used for writing on-
tologies (OWL in the examples here) and moreover provides support for heterogeneous
specifications as in the above example: the parameter may be instantiated with an argu-
ment in another logic along an encoding of the logic of the parameter to the logic of the
argument.

4This is true for the DOL structuring constructs presented here, but not for all of DOL, see [7].

1 pattern SimpleOrder [Class: C] =
TransitiveRelation[greater[C]; C]

pattern OrderRelationExtension
2 [Class: Val; TransitiveRelation[greater[Val]; Val]]
= %% greater[Val] + greaterOrEqual[Val],less[Val],lessOrEqual[Val]

4 InverseRelation[less[Val]; Val;Val;greater[Val]]
and InverseRelation[greaterOrEqual[Val];Val;Val;lessOrEqual[Val]]

6 and ReflexiveRelation[lessOrEqual[Val]; Val]
then TransitiveRelation[less[Val]; Val]

8 and TransitiveRelation[greaterOrEqual[Val]; Val]
and TransitiveRelation[lessOrEqual[Val]; Val]

10 and SubProp[greater[Val]; Val; Val; greaterOrEqual[Val]]
and SubProp[less[Val]; Val; Val; lessOrEqual[Val]]

Figure 3. SimpleOrder and OrderRelationExtension.

Local sub-patterns. A pattern may be structured into smaller sub-patterns; often we
want to make these visible only in the pattern where they are introduced. For this, we
allow local definition of sub-patterns before the body of a GODP, using a let notation.
The local sub-patterns share the parameters of the main pattern where they are defined.
Note that this considerably abbreviates the notation; in effect, it corresponds to a partial
instantiation of a corresponding pattern declared outside of the body (cf. [6]). The body
of the main pattern may, and in most cases will, make use of instantiations of the local
sub-patterns.

Optional parameters. We may mark parameters as optional, written ?[FP] (as in
OTTR [5]), where FP is a parameter, or [...; ? FP; ...] in the notation with semi-
colons. At instantiation, if an argument is not provided for an optional parameter (writ-
ten [] or as a whitespace between semicolons ; ;), all occurrences of that parameter in
the body are replaced with the empty pattern, and all symbols and sentences containing
symbols from that parameter are removed.

List parameters and recursion. We also introduce language constructs for list parame-
ters, in spirit similar to those in OTTR [5]. While OTTR patterns support only iteration
and zip over list parameters, we allow recursive calls of patterns over lists in Generic
DOL, which would be considered illegal in OTTR because they introduce cyclic depen-
dencies between patterns. A list is written X :: Xs, where X is an ontology and Xs de-
notes the tail of the list. If X is an ontology declaring only one symbol of a certain kind, it
is assumed that all the ontologies Xs are of the same form. We may refer to such a list as
a list of symbols of that kind. For example, Class: C :: Cs is a list of ontologies each
consisting only of a single class declaration. A pattern with such a list as a parameter is
written pattern G [Class: C :: Cs] = The empty list is written [empty]
and is treated as an empty optional argument.

Notations. In the argument of an instantiation of a GODP G, we may write

pattern ValSet [Class: Val; Individual: v0 :: vS;
2 ? ObjectProperty: greater]
= %% all individuals vi from v0::vS become members of Val

4 let pattern OrderStep [Individual: vi; Individual: vj :: vS] =
Individual: vj Types: Val Facts: greater vi

6 then OrderStep[vj; vS]
in Individual: v0 Types: Val

8 then SimpleOrder[greater;Val] and OrderStep[v0; vS]
then { DifferentIndividuals: {v0 :: vS}

10 Class: Val EquivalentWith: {v0 :: vS} }

Figure 4. ValSet.

1 ontology ValSet_CrustStyle =
ValSet[CrustStyle;

3 [bottomCrust,
topCrust,

5 singleCrust,
twoCrust,

7 turnoverCrust,
strudelCrust];

9 %% no order
]

ontology ValSet_Significance =

2 ValSet[Significance;

[0Insignificant,

4 1Subordinate,

2Essential,

6 3Dominant];

greater[Significance]]

Figure 5. Instantiations of ValSet.

• [] for [empty],
• [X] for [X::empty], and
• [X1, . . ., Xn] for [X1 :: . . . :: Xn :: empty].

Value Sets. Qualitative values, corresponding to abstractions from quantitative data,
occur quite often in practice, cf. grading below. As we know from cognitive science,
they are related to the human need for doing away with irrelevant detail (precision in this
case); here (and there) they allow us to simplify abstract reasoning (cf. [12]).

With the new constructions introduced above, the pattern ValSet (Fig. 4) has as
arguments: a class of values, a list of value individuals, and an optional relation between
these values. The sub-pattern OrderStep introduces the fact that a value belongs to the
set of values and is optionally greater than the value introduced in the set at the previous
step. Once the list vS is empty, the recursion stops. All this is put together in the body
of ValSet: the value is created for the first element of the list of value individuals, the
relation greater is defined to be a simple order on Val, the iteration creates the rest of
the values, and finally the values are declared to be different from each other and the set
of values is defined to be the disjoint union of all values.

The optional parameter for ValSet allows to create instances of this pattern both
for the case when the values are ordered (ValSet_Significance in Fig. 5), and for the
case when the values in the set are not ordered (ValSet_CrustStyle in Fig. 5). The

1 pattern ValSetWithOrder[Class: Val; Individual: v :: Vs] =
OrderRelationExtension[Val; ValSet[Val; v::Vs; SimpleOrder[Val]]]

Figure 6. Extending the order on ValSet.

expansion of ValSet_Significance is precisely the pattern GradedRelations4Exp
in Fig. 3 of [6]. We may also extend the order relation greater[Val] on the value
set with its inverse less[Val], its reflexive version greaterOrEqual[Val] and the
inverse of its reflexive version lessOrEqual[Val], as illustrated in Fig. 6.

Graded Relations. In [6] we introduced a pattern for graded relations with a grade do-
main with 4 values and stated that analogous patterns must be provided for each number
of values. The main idea of the pattern [13] is to introduce a qualitative metric, arbitrarily
fine and usually represented as an ordered set, for an object property. Typical examples
include the significance of an ingredient in a recipe, or how much a person is affected
by an impairment. Instead of using reification for the ternary relation thus obtained, the
solution proposed in [13] is to encode the grading with a sheaf of relations, one for each
grade, using an encoding by parameterized names. The intended meaning is that

hasTarget(?s,?t,Val) ≡ hasTarget_Val(?s,?t)

for a ternary relation hasTarget with grade value Val as third argument.
Using list parameters and recursive sub-patterns, we can now provide one pat-

tern that covers all necessary numbers of values, as in Fig. 7. The last parameter of
GradedRels is a list of ontologies, with the assumption that each of them declares an
individual of type Val. The local sub-pattern Step has as parameter a list of ontologies
such that each of them declares an individual. In the instantiation Step[v::valS], the
first element of the argument list is the pattern obtained by expanding the notation v, i.e.
the local environment that we denote by Env. In this case, this is the union of all for-
mal parameters; and it contains a declaration for the individual v. The argument expands
then to Env fit x |-> v. By assumption, each element of the list of ontologies valS
declares an individual (and an axiom about its type, that is not needed here), so we can
use it as an argument for xs, which is a list of ontologies each declaring an individual.

Template matching for list parameters. We may make use of the list constructor :: to
give different definitions for the same pattern according to the argument of the list pa-
rameter of that pattern. This is a case distinction similar to pattern matching in functional
programming, that we call template matching here to avoid the overlap with ontology de-
sign patterns. In an instantiation, Hets goes sequentially through the list of all definitions
for a pattern and checks whether the argument matches the parameter template. When a
match is found, the body given in that definition is used for instantiation. If the argument
for the list parameter is empty and no other definition for this case was provided, the
instantiation is the empty ontology. If no match is found, the instantiation is incorrect.

As an example, we provide a GODP for extending a sheaf of graded relations with
subsumption relations, see Fig. 8. The idea is to introduce relations for expressing that
a property holds with at least or at most a grade, when the grades can be compared,
and to create a subsumption hierarchy between the relations p_G and p_atLeast_G:
a property p holds with a grade at least G, if it holds with grade G or it holds at least

pattern GradedRels
2 [Class: S; Class: T;

ObjectProperty: p Domain: S Range: T;
4 Class: Val;

{Individual: v Types: Val} :: valS]
6 = %% a sheaf of graded relations p[vi], one for each vi in v::valS
let pattern Step[Individual: x :: xs] =

8 ObjectProperty: p[x] Domain: S Range: T SubPropertyOf: p
then Step[xs]

10 in Step[v::valS] and
{ ObjectProperty: has[Val] Domain: T Range: Val }

1 ontology GradedRels_Significance =
GradedRels[PhysicalObject;PhysicalObject;hasIngredient;

3 Significance;[0Insignificant,1Subordinate,2Essential,3Dominant]]

Figure 7. GradedRels and instantiation GradedRels_Significance.

with a grade less than G. In this example, the recursion is shown both for a less-or-
equal order (atLeast) and a greater-or-equal order (atMost); in the former, an ini-
tial step AtMostInitial is needed, while in the latter two cases for the recursion of
AtLeastStep have to be distinguished to define a special final step for recursion ter-
mination. When GradedRelsSub_Significance (Fig. 8) has been expanded and the
names stratified, we obtain a relation subsumption hierarchy between the graded rela-
tions as follows (only the atLeast relations are shown):

hasIngredient_atLeast_0Insignificant
hasIngredient_0Insignificant
hasIngredient_atLeast_1Subordinate
hasIngredient_1Subordinate
hasIngredient_atLeast_2Essential
hasIngredient_2Essential
hasIngredient_3Dominant

4. Conclusions and Future Work

As we have shown, generic DOL meets desiderata C1-C5 concerning the expected ca-
pabilities of a language for ODPs enumerated in the introduction. C6, extensibility of
the language, is not supported yet (a higher-order extension of the language is under
consideration). A structured repository and a meta-ontology relating the GODPs in this
repository are presently under development.

An important aspect is how to make the use of GODPs more intuitive for ontology
developers. A good GODP would have to provide

• a good choice of names for the pattern and for the parameters,

1 pattern GradedRelsSub
[Class: S; Class: T; ObjectProperty: p Domain: S Range: T;

3 Class: Val; {Individual: v0 Types: Val} ::
{Individual: v1 Types: Val} :: valS]

5 = %% GradedRels + subrelations p[atMost[vi]], p[atLeast[vi]]
let

7 pattern Sub2[ObjectProperty: r;
ObjectProperty: r1; ObjectProperty: r2] =

9 ObjectProperty: r Domain: S Range: T
ObjectProperty: r1 SubPropertyOf: r

11 ObjectProperty: r2 SubPropertyOf: r
pattern AtMostInitial[Individual: x; Individual: y :: empty] =

13 Sub2[p[atMost[y]]; p[x]; p[y]]
pattern AtMostStep [Individual: x; Individual: y :: ys] =

15 Sub2[p[atMost[y]]; p[atMost[x]]; p[y]] then AtMostStep[y; ys]
pattern AtLeastStep[Individual: x; Individual: y :: empty] =

17 Sub2[p[atLeast[x]]; p[x]; p[y]]
pattern AtLeastStep[Individual: x; Individual: y :: ys] =

19 Sub2[p[atLeast[x]]; p[atLeast[y]]; p[x]] then AtLeastStep[y;ys]
in GradedRels[S;T;p;Val;v0::v1::valS]

21 and AtMostInitial[v0;v1] and AtMostStep[v1;valS]
and AtLeastStep[v0;v1::valS]

ontology GradedRelsSub_Significance =
2 GradedRels_Significance then

GradedRelsSub[PhysicalObject; PhysicalObject; hasIngredient;
4 Significance;[0Insignificant,1Subordinate,2Essential,3Dominant]]

Figure 8. GradedRelsSub and instantiation of GradedRelsSub_Significance.

• a documentation part informing the user about the functionality of the pattern,

• an instantiation example.

Ideally, working with GODPs will be done via a GUI that hides the body of the pattern
from the ontology developer (providing an appropriate documentation) and makes only
those parameters visible that have to be instantiated.

Hets support for the Generic DOL language extensions introduced in this paper is
currently in progress.

The GODPs presented in this paper are extensively used in an ontology on food,
cooking and dietary restrictions (e.g. about 20 instantiations of GradedRels etc. in ca.
25,000 OWL axioms, cf. [6]); non-trivial GODPs are presently being developed for the
robotics domain.

References

[1] Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi, and Valentina Presutti, editors.
Ontology Engineering with Ontology Design Patterns - Foundations and Applications, volume 25 of
Studies on the Semantic Web. IOS Press, 2016.

[2] Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Alfa Krisnadhi, and Valentina Presutti. To-
wards a Simple but Useful Ontology Design Pattern Representation Language. In Eva Blomqvist, Óscar
Corcho, Matthew Horridge, David Carral, and Rinke Hoekstra, editors, Proceedings of the 8th Work-
shop on Ontology Design and Patterns (WOP 2017) co-located with the 16th International Semantic
Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017., volume 2043 of CEUR Workshop
Proceedings. CEUR-WS.org, 2017.

[3] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Models. PhD thesis, Univer-
sity of Twente, 2005.

[4] Eduardo Zambon and Giancarlo Guizzardi. Formal Definition of a General Ontology Pattern Language
using a Graph Grammar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Pro-
ceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS
2017, Prague, Czech Republic, September 3-6, 2017., pages 1–10, 2017.

[5] Martin G. Skjæveland, Leif Harald Karlsen, and Daniel P. Lupp. Practical Ontology Pattern Instantia-
tion, Discovery, and Maintenance with Reasonable Ontology Templates - demo paper. In Marieke van
Erp, Medha Atre, Vanessa López, Kavitha Srinivas, and Carolina Fortuna, editors, Proceedings of the
ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th Inter-
national Semantic Web Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018., volume
2180 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[6] Bernd Krieg-Brückner and Till Mossakowski. Generic Ontologies and Generic Ontology Design Pat-
terns. In Eva Blomqvist, Óscar Corcho, Matthew Horridge, David Carral, and Rinke Hoekstra, editors,
Proceedings of the 8th Workshop on Ontology Design and Patterns (WOP 2017) co-located with the
16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017., volume
2043 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[7] Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Distributed Ontology, Mod-
eling and Specification Language – DOL. In Arnold Koslow and Arthur Buchsbaum, editors, The Road
to Universal Logic, volume 2, pages 489–520. Birkhäuser, 2015.

[8] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set, Hets. In Orna
Grumberg and Michael Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science,
pages 519–522. Springer, 2007.

[9] Bernd Krieg-Brückner, Till Mossakowski, and Fabian Neuhaus. Generic Ontology Design Patterns at
Work. In Adrien Barton, Sejla Seppälä, and Daniele Porello, editors, JOWO 2019. Joint Ontology Work-
shops (JOWO-2019), September 23-25, Graz, Austria. CEUR Workshop Proceedings, CEUR-WS.org,
2019.

[10] Peter D. Mosses, editor. CASL Reference Manual, volume 2960 of Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2004.

[11] Michael Schneider, Sebastian Rudolph, and Geoff Sutcliffe. Modeling in OWL 2 without Restrictions.
In Mariano Rodriguez-Muro, Simon Jupp, and Kavitha Srinivas, editors, Proceedings of the 10th Inter-
national Workshop on OWL: Experiences and Directions (OWLED 2013) co-located with 10th Extended
Semantic Web Conference (ESWC 2013), Montpellier, France, May 26-27, 2013., volume 1080 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[12] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, pages 238–252. ACM, 1977.

[13] Bernd Krieg-Brückner. Generic Ontology Design Patterns: Qualitatively Graded Configuration. In Franz
Lehner and Nora Fteimi, editors, Knowledge Science, Engineering and Management - 9th International
Conference, KSEM 2016, Passau, Germany, October 5-7, 2016, Proceedings, volume 9983 of Lecture
Notes in Computer Science, pages 580–595, 2016.

