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Abstract. Selecting the invariant classification characteristics of the program 

behavior of some secured infrastructure (in this task, into two classes: correct 

and incorrect execution) is identical to the isomorphism problem of the two sys-

tems under some mapping. I order to clarify the necessary and sufficient condi-

tions for the system isomorphism, as well as to determine the isomorphism 

mapping qualitative and quantitative parameters, a similarity theory of the 

mathematical apparatus was developed. However, in the late 1980s, the results 

were applied in the field of modeling, applying the universal digital computers 

and then transferred to solve a much wider spectrum of problems, including cy-

bersecurity and ensuring the required cyber resilience of the critical information 

infrastructure. 

Keywords: inverse similarity theorem, dynamic control of correctness of calcu-

lation programs, the correctness of computing processes. 

1 Introduction 

The most detailed provisions of the similarity theory were developed concerning the 

processes, described by the homogeneous power polynomial systems [1, 3]. There are 

three main theorems in the similarity theory: the direct, inverse, and π-theorem. The 

similarity theorem, known as "π-theorem", allows identifying the functional relation-

ship between variable processes in relative form. The deductions form the direct theo-

rem and the “π-theorem” of similarity allowed formulating invariant informative fea-
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tures for the correct behavior of some critical information infrastructure soft-

ware [2, 4, 5]. 

2 Introducing a passport system for programs 

Let us consider two processes of p1 and p2, which complete equations have the fol-

lowing form: 

 , u = 1, 2, …, r;  (1) 

 , u = 1, 2, …, r; (2) 

Where  and  ‒ homogeneous functions of their parameters. 

The direct similarity theorem states that if the processes are homogeneously similar, 

then the following system takes place: 

 , (3) 

 u = 1,2, …, r; s = 1,2, …, (q-1). 

Expressions 

 , (4) 

 u = 1,2, …, r; s = 1,2, …, (q-1) 

are called criteria or similarity invariants and, as a theorem deduction, are numeri-

cally equal to all processes belonging to the same subclass of mutually similar pro-

cesses.  

Thus, the direct theorem formulates the necessary conditions for the correlation of 

the analyzed process with one of the subclasses. Sufficient conditions for the homo-

geneous similarity of two processes are given in the inverse similarity theorem: if it is 

possible to reduce the complete processes equations to an isostructural relative form 

with the numerically equal similarity invariants, then such processes are homogene-

ously similar [6, 7].  

The similarity theorem, known as "π-theorem", allows identifying the functional 

relationship between variable processes in relative form. The deductions form the 

direct theorem and the “π-theorem” of similarity allowed formulating invariant in-

formative features for the correct behavior of some critical information infrastructure 

software [9, 11]. 
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3 Mathematical problem formulation  

Imagine the computational process (СP) in the following form ((5), table 1): 

 CP=<T,X,Y,Z,F,Ф> (5) 

 

Table 1. Mathematical problem formulation of a computational process 

1 T The set of times t at which a computational process is observed 

2 X, Y Sets of input and output parameters of the computational process 

3 Z Set of states of the computing process. Every state of the computa-

tional process is characterized at each moment of time by the se-

quence of arithmetic operations at the selected control point k. 

4 F The set of transition operators fi, reflecting the mechanism of 

changing the states of the computing process during its execution, 

including arithmetic operations 

5 Ф The set of output operators фi, describing the mechanism of the 

formation of the result during the calculation 

 

We introduce the following notation: 

λ - Violation mapping of an arithmetic operation at a specific time ti for given input 

parameters; 

ψ – Mapping of the computational process regular invariants formation; 

μ – Comparative mapping of standard and reference invariants of the computation-

al process; 

υ – Mapping of the signal generation about incorrect calculations; 

ξ – Mapping of the arithmetic operations recovery, based on reference similarity 

invariants; 

χ –Performed calculation correctness mapping, based on the recovered arithmetic 

operations. 

In order to exclude the possibility of discreet modification, made by the calculation 

program, it is necessary to perform dynamic control of the executed computational 

process (Figure 1). Under the dynamic control of the computational program correct-

ness, we will understand the correctness control of the performed arithmetic opera-

tions semantics, while their actual execution. Data for dynamic control must first be 

obtained as a program passport, resulting from its additional static analysis [8, 10]. 
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Fig. 1. The mapping diagram of the calculation correctness recovery 

Impact on calculations, invariant formation, comparison with the reference invariants, 

signal about incorrect calculations, calculation recovery, correct result calculation. 

In order to form the passport program the following actions are required: 

1. Solving the observative problem (the computational process simulation by an ori-

ented program control graph). 

2. Solving the problem of presenting calculations by similarity equations on linear 

graph parts, i.e. to transform the arithmetic operations of the form: 

  (6) 

To dimensionless form: 

  (7) 

1. Solving the problem of managing the computational process by comparing the se-

mantic invariants with the program passport that means that it is necessary to find 

the maps: 

 ψ: Z’→П’ 

 μ: П’→П (8) 

 ξ: П→Z 

Limitations and assumptions: 

1. Considered set of arithmetic operations {+,‒,*,/,=} 

2. ti<tmax, where ti – computation time recovery, tmax – maximum allowable time to 

recover the correctness of the calculations. 
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Solving these problems allowed developing a new method to control the computa-

tional program semantic correctness, which complemented the known method capa-

bilities to ensure the required cyber resilience of the secured critical information in-

frastructure [9, 12]. 

In order to control the software correctness, it was necessary to construct a pro-

gram control graph.  

Let us imagine some computational process in the form of a program control 

graph: G(B.D). 

Where B = {Bi}is set of vertices (linear program part and D = {BxB} set of arcs 

(control connections) between them.  

Here, each linear graph part  has its own arithmetic operator sequence, i.e. 

  (9) 

An ordered vertex sequence corresponds to each elementary (without cycles) route of 

the graph input vertex to output vertex: 

  (10) 

where  and    form a sequence of the executed 

arithmetic operators called a program implementation or a computational process. The 

arithmetic expression sequence data is the potentially dangerous program fragments. 

The computational process algorithm was reduced to the graph representation form 

to derive the arithmetic expression operators from the control operators (conditional 

transitions, branching, cycles). As a result, in the control graph, all arithmetic expres-

sion operators were grouped on a set of linear program parts — the graph vertices, 

into which checkpoints (CP) were entered. Here, checkpoints were needed to deter-

mine the routing context within which the calculations take place. Moreover, the spe-

cial systems of defining relations were constructed in the form of similarity equations 

at each checkpoint for arithmetic operators. The equation system solution allowed to 

form the matrices of similarity invariants to control the computational process seman-

tics. 

4 A similarity equations system development 

The studies have shown that the most effective way to control the computation se-

mantics is to test relations, based on theoretically based relations and computation 

features. Here the key relationships in the approach for detecting the parameters of the 

incorrect computational process functioning are some invariant, which is understood 

as the auto modeling (constant) presentation of program execution in the actual oper-

ating secured infrastructure conditions. The invariant generation problem, from the 

different program representations, is non-trivial and poorly formalized. In the pro-

gram execution dynamics, only semantic invariants remain fully computable (repro-
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ducible) (since they do not depend on the specific values of the program varia-

bles) [7, 13]. 

Let us imagine the implementation of Bk of the program control graph as an or-

dered primary relation sequence, corresponding to arithmetic operators: 

  (11) 

Having performed the superposition {yi} on X on the right relation sides, we obtain a 

relation invariant system according to the displacement: 

  (12) 

The relation  can be presented as: 

  (13) 

where   ‒ a power monomial. 

In accordance with the Fourier rule, the summands (13) should be homogeneous in 

dimensions, i.e. 

 [yi] = [ ] = [ ],  or  

[ ] = [ ],  (14) 

System (16) is a defining relations system or a similarity equation system. 

Using the function ρ = X→[X], we associate each  with some abstract di-

mension . Then the summand dimensions (13) will be expressed as 

 ,  (15) 
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Using (14) and (15), we develop a system of defining relations: 

   (16) 

which is transformed into the following form: 

   (17) 

Using the logarithm method, as it is usually done, when analyzing the similarity rela-

tions we obtain a homogeneous system of linear equations from the system (17) 

 ,  (18) 

Expression (16) is a criterion for semantic correctness. 

 

Having performed a similar development for , we obtain a system of 

homogeneous linear equations for k-implementation: 

 Акω = 0  (19) 

Generally, we can assume that the function ρ = X→[X] is surjective and, therefore, 

the Bk implementation is represented by a matrix of size mk × nk, which a 

number of columns are not less than the number of rows, i.e. . 

We say that the implementation of Bk is representative if it corresponds to the ma-

trix Аk with , i.e. the implementation allows developing at least one similarity 

criterion. 

Usually, a program corresponds to a separate functional module or consists of an 

interconnected group of those and describes the general solution of a certain task. 

Each of the implementations  describes a particular solution of the same prob-

lem, corresponding to the certain X components values. Since 

 then the mathematical dependencies structure should be preserved during 

the transition from one implementation to another, i.e. similarity criteria should be 

common. Then the matrices {Ak}, corresponding to the implementations {Bk}, can be 

combined into one system. 

 

Let the program have q implementations. Denote by A the union of the matrices 

{Ak} corresponding to the implementations {Bk}, i.e. 

  (20) 
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The A Development can be carried out using selective vertices covering the imple-

mentations. 

Thus, the matrices A union is part of the program passport and is a database of se-

mantic standards {Ak} for the linear program {Bk} sections. 

The similarity equation example. 

Let us consider an assignment operator: 

 p = a*b + c/(d‒e) (21) 

Here, the correct expression must be generated by some selected grammar, which 

depends on both the possible terms meanings and the chosen operations set. For a 

context-free grammar, each expression can be matched to an output tree in a unique 

way. Thus, an output tree can be used as an alternative expression representation. 

When constructing a tree by the expression, the order of the calculations plays its 

role. Obviously, the vertex descendant values are calculated earlier than the ancestor 

vertex value. Therefore, the operation last performed will take place at the treetop. In 

order to construct a tree unambiguously, it is necessary to determine the operation 

calculation order in the expression, taking into account their priorities and the opera-

tion order with the same priority, including the case when calculating the same opera-

tion (associativity property). Usually, such expressions are calculated from left to 

right. 

 

Fig. 2. Arithmetic expression generation tree 
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The constructed tree will definitely correspond to the specified expression taking 

into account the calculation order. 

We formalize the arithmetic expressions: 

Let Op {+,‒,*,/} be an arithmetic operations set under consideration. 

Terms is a set of terms, consisting of possible objects that can be operation argu-

ments. 

Expr is a set of all possible expressions, and . 

- many other elements, and . 

Thus, an arithmetic expression is either a term or an operation connecting several 

expressions. 

The expression (20) with the set of terms Terms = {p,a,b,c,d,e} and the binary op-

erations set Op {,-,*,/} will be represented as: 

elem: (=,p,(,(*,a,b),(/,c,(-,d,e)))). 

The arithmetic operator execution correctness can be assessed using the appropri-

ate semantic function. When applied to expressions, the semantic function 

 assigns to each argument some abstract entity or dimension [a]. Thus, the 

arithmetic operations, performed on program variables during the program execution 

are in fact operations on physical dimensions, and the semantics reflections, per-

formed at runtime, are linear mappings. The axiomatic of extended semantic algebra, 

which defines operations on the variable dimensions, is presented in Table 2. 

Table 2. The operations on the program variables dimensions 

Operator Denotation 
Correctness 

condition 
Linear equations 

Similarity 

criterion 

Addition R = L + P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1 

Subtraction R = L – P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1 

Multiplication R = L * P [R] = [L][P] [R]1[L]-1[P]-1 = 1 1 -1 -1 

Division R = L / P [R] = [L][P]-1 [R]1[L]-1[P]1 = 1 1 -1 1 

Exponentiation R = Ls [R] = [L]s [R]1[L]-s[P]0 = 1 1 -s 0 

Assignment L = P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1 

where R – the operation result; L, R – left and right operands; [ ] – dimension. 

 

For a correctly running program in the context of this operator, the following rela-

tions between the physical dimensions of the terms {p, a,b,c,d,e} should be fulfilled: 

[p] = [a ∗ b] = [a][b], 

[d] = [e], 

 [p] = [c / (d‒ e)] = [c][d]−1 = [c][e]−1, (22) 

Where [X] – is a physical object X dimension. 

  

ExprTerms
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167 

A computation model in memory can be represented using the context-free gram-

mars. It allows describing the calculation process structure as a whole. Context-free 

grammar has the following form: 

  (23) 

where  

 – a set of assembler terminal symbols/ 

 – a non-terminal 

character set; 

 – an output 

rule set; 

 – a starting symbol. 

The terminal symbols include arithmetic coprocessor command lexical tokens, in-

cluding addition, subtraction, multiplication, division, assignment (data transfer) 

commands. A non-terminal symbol set is a set of lexical tokens, united by a generaliz-

ing feature, as well as their combinations, using products. An example of non-

terminal symbols is given in the Table 3. 

Table 3. Sets of non-terminal symbols 

NON_TERMINAL 

SYMBOLS   

GENERALIZING 

FEATURE 

TERMINAL SYMBOLS 

 

Addition Addition commands fiadd | fadd | faddp | … 

Subtraction Subtraction commands fisub | fsub | fsubr | … 

Multiplication Multiplication commands fimul | fmul | fmulp | … 

Division Division commands fidiv | fdiv | fdivr | … 

Appropriate Data transfer commands fist | fst | fstp | … 

 

The output rule represented by expression (21) determines the use of the “fadd” 

command. Thus, we will present all possible inference rules in assembly language. 

  (24) 

Where  

Addition ‒ a non-terminal set of coprocessor addition commands; 

Register ‒ a non-terminal set of coprocessor stack registers; 

Address ‒ a memory identifier set or actual memory addresses. 
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Each output in a context-free grammar, starting with a non-terminal symbol, is 

uniquely associated with a directed graph, which is a tree and is called an output 

(parse) tree. An output tree example related to the disassembled expression code, as 

well as its representation as to the similarity equations in terms of the dimension theo-

ry, is shown in figure 3. 

 

 

Fig. 3. Calculations representation by similarity equations 

The solution to this equation system is a similarity coefficient matrix, constructed 

as follows: 

[ebp+p] = 

[ebp+a][ebp+b] 

[ebp+d] = [ebp+e] 

[ebp+p] = 

[ebp+c][ebp+d]-

1=[ebp+c][ebp+e]-1 

 

[ebp+p]1[ebp+a]-1[ebp+b]-

1[ebp+c]0[ebp+d]0[ebp+e]0=1 

[ebp+p]0[ebp+a]0[ebp+b]0[ebp+c]0[ebp+d]1 

[ebp+e]-1=1 

[ebp+p]0[ebp+a]0[ebp+b]0[ebp+c]-

1[ebp+d]1[ebp+e]0=1 

 

  





169 

By taking a logarithm we obtain a homogeneous linear equation system with a co-

efficients matrix: 

  (25) 

 

In order to organize the similarity relations development, it is necessary to construct a 

translation grammar for assignment operators of the arithmetic type. The translational 

(attribute) grammar in addition to the syntax allows describing the action characters, 

which are implemented as functions, procedures, and algorithms. According to di-

mensions, these functions should implement algorithmic calculations and the similari-

ty relation development, power monomials, equations and solutions. 

Thus, the observation problem solution (control graph) and the computations rep-

resentation (similarity equation) made it possible to form the image of a system for 

monitoring destructive software actions on the secured infrastructure, and restoring 

computation processes based on similarity invariants. 

The plan of destructive software impacts control and the computational processes 

recovery includes preparatory and main stages (Figure 4). The preparatory stage in-

cludes the program passport formation in similarity invariants, the main ones are the 

stages of:  

─ Similarity invariants formation underexposure,  

─ Similarity invariants database formation at the checkpoints of the program control 

graph,  

─ Validation of the semantic correctness criteria of computational processes, 

─ Signal generation of the computation semantics violation, 

─ Partial calculations recovery according to the program passport. 
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Fig. 4. Distortion control and computation process recovery scheme 

 

A general representation of the information infrastructure that implements correct 

calculations under the hidden intruder program actions is reflected in Figure 5. We 

will reveal the stages of the destructive software impacts control and the computation 

processes recovery in more detail. 

 

 

Fig. 5. The correct calculation scheme 

Stage 1. The program passport formation in similarity invariants. 

In order to implement a dynamic control, it is necessary to use the static verifica-

tion results in the form of a program passport. 

At the stage of a static verification using the disassembled correct calculation code, 

the program control graph is constructed. 
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At each checkpoint for each arithmetic operator, a production tree of an arithmetic 

expression is generated to develop a linear homogeneous equation system in the di-

mension terms. The result of solving the equation systems for each linear program 

part is a similarity invariant matrix. The semantic standard database is made up of 

reference matrices of similarity invariants for each checkpoint (Figure 6). 

 

 

Fig. 6. The passport program formation scheme in the invariant similarity 
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Stage 2. The similarity invariants formation underexposure 

The similarity invariants formation of the computational process, which is subject-

ed to the hidden arithmetic operations impacts, runs according to the same algorithm 

as the computational process reference invariant formation. 

For a given program, a set of checkpoints (CT) is formed, which are embedded in 

the studied program. The initial program model is the control graph of the computa-

tion process in terms of linear program sections. The similarity equations are analyzed 

and a coefficient matrix is developed in embedded CT for each linear program sec-

tion, where the calculations take place (Figure 7). 

 

 

Fig. 7.  The similarity invariants scheme underexposure 

Incorrect calculations will differ in the state set of the computational process Z, i.e. 

in arithmetic operator sequence. The incorrect calculations scheme is presented in 

Figure 8. 

 

 

Fig. 8.  The incorrect calculations scheme 

Stage 3.  The similarity invariants database formation at the checkpoints of the 

program control graph. 

At this stage, the similarity invariant matrices constructed for each checkpoint form 

a similarity invariants database. The scheme of adding matrices to the database is 

presented in Figure 9. 
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Fig. 9. The similarity invariants database formation scheme 

 

Stage 4. The validation of the semantic correctness criteria of the computational 

processes. 

In order to control the semantic correctness of the performed calculations, it is nec-

essary to check the semantic correctness criterion by the formula (18) applying the 

reference and standard invariants matrix (Figure 9). 

If the validation of this checkpoint has been completed, then proceed to check the 

criteria in the next CT until the program ends. 

Stage 5. The signal generation of the computation semantics violation and the par-

tial calculations recovery according to the program passport. 

If the semantic correctness violation of the program execution is detected, that is, if 

for a given checkpoint , then a signal is formed and an attempt is made to 

recover the calculations from the inverse transformation of the reference matrix invar-

iants (Figure 10). 

 

 

Fig. 10. The computational processes validation scheme 

0 injn 
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5 Conclusions 

This approach allows to determine not only the fact of the calculation semantics viola-

tion but also to indicate the specific impact location on the program, using the mecha-

nism for introducing checkpoints Thus, the dimensions and similarity theory applica-

tion allowed synthesizing new informative features - the so-called similarity invari-

ants for controlling the computational processes correctness. The similarity invariants 

use made it possible to bring the monitoring system of destructive program actions 

and the computation processes recovery closer to the controlled computational pro-

cess semantics.  

The obtained results allowed presenting a controlled computational process as a 

corresponding equations system of dimensions and similarity invariants, and its solu-

tion was to analyze the computations semantics under the destructive program im-

pacts on the secured critical information infrastructure. 
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