
158

Invariants Classification Characteristics for Checking the

Correctness of Computational Processes*

Sergei A. Petrenko1[0000-0003-0644-1731], Krystina A. Makoveichuk2[0000-0003-1258-0463],

Alexander V. Olifirov2[0000-0002-5288-2725], Nikolay N. Oleinikov 2[0000-0002-9348-9153]

1Innopolis University, Kazan, Russia

s.petrenko@rambler.ru
2V.I. Vernadsky Crimean Federal University, Yalta, Russia

christin2003@yandex.ru

alex.olifirov@gmail.com

oleinikov1@mail.ru

Abstract. Selecting the invariant classification characteristics of the program

behavior of some secured infrastructure (in this task, into two classes: correct

and incorrect execution) is identical to the isomorphism problem of the two sys-

tems under some mapping. I order to clarify the necessary and sufficient condi-

tions for the system isomorphism, as well as to determine the isomorphism

mapping qualitative and quantitative parameters, a similarity theory of the

mathematical apparatus was developed. However, in the late 1980s, the results

were applied in the field of modeling, applying the universal digital computers

and then transferred to solve a much wider spectrum of problems, including cy-

bersecurity and ensuring the required cyber resilience of the critical information

infrastructure.

Keywords: inverse similarity theorem, dynamic control of correctness of calcu-

lation programs, the correctness of computing processes.

1 Introduction

The most detailed provisions of the similarity theory were developed concerning the

processes, described by the homogeneous power polynomial systems [1, 3]. There are

three main theorems in the similarity theory: the direct, inverse, and π-theorem. The

similarity theorem, known as "π-theorem", allows identifying the functional relation-

ship between variable processes in relative form. The deductions form the direct theo-

rem and the “π-theorem” of similarity allowed formulating invariant informative fea-

* Copyright 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

mailto:s.petrenko@rambler.ru
mailto:christin2003@yandex.ru
mailto:oleinikov1@mail.ru

159

tures for the correct behavior of some critical information infrastructure soft-

ware [2, 4, 5].

2 Introducing a passport system for programs

Let us consider two processes of p1 and p2, which complete equations have the fol-

lowing form:

 , u = 1, 2, …, r; (1)

 , u = 1, 2, …, r; (2)

Where and ‒ homogeneous functions of their parameters.

The direct similarity theorem states that if the processes are homogeneously similar,

then the following system takes place:

 , (3)

 u = 1,2, …, r; s = 1,2, …, (q-1).

Expressions

 , (4)

 u = 1,2, …, r; s = 1,2, …, (q-1)

are called criteria or similarity invariants and, as a theorem deduction, are numeri-

cally equal to all processes belonging to the same subclass of mutually similar pro-

cesses.

Thus, the direct theorem formulates the necessary conditions for the correlation of

the analyzed process with one of the subclasses. Sufficient conditions for the homo-

geneous similarity of two processes are given in the inverse similarity theorem: if it is

possible to reduce the complete processes equations to an isostructural relative form

with the numerically equal similarity invariants, then such processes are homogene-

ously similar [6, 7].

The similarity theorem, known as "π-theorem", allows identifying the functional

relationship between variable processes in relative form. The deductions form the

direct theorem and the “π-theorem” of similarity allowed formulating invariant in-

formative features for the correct behavior of some critical information infrastructure

software [9, 11].





q

1i
ui 0





q

1i
ui 0Ф





n

1j
ju

1ux
 




n

1j
ju

1uXФ


uq

ui

uq

ui

Ф

Ф






uq

ui
us




 

160

3 Mathematical problem formulation

Imagine the computational process (СP) in the following form ((5), table 1):

 CP=<T,X,Y,Z,F,Ф> (5)

Table 1. Mathematical problem formulation of a computational process

1 T The set of times t at which a computational process is observed

2 X, Y Sets of input and output parameters of the computational process

3 Z Set of states of the computing process. Every state of the computa-

tional process is characterized at each moment of time by the se-

quence of arithmetic operations at the selected control point k.

4 F The set of transition operators fi, reflecting the mechanism of

changing the states of the computing process during its execution,

including arithmetic operations

5 Ф The set of output operators фi, describing the mechanism of the

formation of the result during the calculation

We introduce the following notation:

λ - Violation mapping of an arithmetic operation at a specific time ti for given input

parameters;

ψ – Mapping of the computational process regular invariants formation;

μ – Comparative mapping of standard and reference invariants of the computation-

al process;

υ – Mapping of the signal generation about incorrect calculations;

ξ – Mapping of the arithmetic operations recovery, based on reference similarity

invariants;

χ –Performed calculation correctness mapping, based on the recovered arithmetic

operations.

In order to exclude the possibility of discreet modification, made by the calculation

program, it is necessary to perform dynamic control of the executed computational

process (Figure 1). Under the dynamic control of the computational program correct-

ness, we will understand the correctness control of the performed arithmetic opera-

tions semantics, while their actual execution. Data for dynamic control must first be

obtained as a program passport, resulting from its additional static analysis [8, 10].

161

Fig. 1. The mapping diagram of the calculation correctness recovery

Impact on calculations, invariant formation, comparison with the reference invariants,

signal about incorrect calculations, calculation recovery, correct result calculation.

In order to form the passport program the following actions are required:

1. Solving the observative problem (the computational process simulation by an ori-

ented program control graph).

2. Solving the problem of presenting calculations by similarity equations on linear

graph parts, i.e. to transform the arithmetic operations of the form:

 (6)

To dimensionless form:

 (7)

1. Solving the problem of managing the computational process by comparing the se-

mantic invariants with the program passport that means that it is necessary to find

the maps:

 ψ: Z’→П’

 μ: П’→П (8)

 ξ: П→Z

Limitations and assumptions:

1. Considered set of arithmetic operations {+,‒,*,/,=}

2. ti<tmax, where ti – computation time recovery, tmax – maximum allowable time to

recover the correctness of the calculations.





p

j

mijmi xxxzxxxz
1

2121),...,,(),...,,(

)],,...,,([)],...,,([2121 milmij xxxzxxxz  p,1l,j 

162

Solving these problems allowed developing a new method to control the computa-

tional program semantic correctness, which complemented the known method capa-

bilities to ensure the required cyber resilience of the secured critical information in-

frastructure [9, 12].

In order to control the software correctness, it was necessary to construct a pro-

gram control graph.

Let us imagine some computational process in the form of a program control

graph: G(B.D).

Where B = {Bi}is set of vertices (linear program part and D = {BxB} set of arcs

(control connections) between them.

Here, each linear graph part has its own arithmetic operator sequence, i.e.

 (9)

An ordered vertex sequence corresponds to each elementary (without cycles) route of

the graph input vertex to output vertex:

 (10)

where and form a sequence of the executed

arithmetic operators called a program implementation or a computational process. The

arithmetic expression sequence data is the potentially dangerous program fragments.

The computational process algorithm was reduced to the graph representation form

to derive the arithmetic expression operators from the control operators (conditional

transitions, branching, cycles). As a result, in the control graph, all arithmetic expres-

sion operators were grouped on a set of linear program parts — the graph vertices,

into which checkpoints (CP) were entered. Here, checkpoints were needed to deter-

mine the routing context within which the calculations take place. Moreover, the spe-

cial systems of defining relations were constructed in the form of similarity equations

at each checkpoint for arithmetic operators. The equation system solution allowed to

form the matrices of similarity invariants to control the computational process seman-

tics.

4 A similarity equations system development

The studies have shown that the most effective way to control the computation se-

mantics is to test relations, based on theoretically based relations and computation

features. Here the key relationships in the approach for detecting the parameters of the

incorrect computational process functioning are some invariant, which is understood

as the auto modeling (constant) presentation of program execution in the actual oper-

ating secured infrastructure conditions. The invariant generation problem, from the

different program representations, is non-trivial and poorly formalized. In the pro-

gram execution dynamics, only semantic invariants remain fully computable (repro-

BBi 

).,...,,(21 iliii bbbB 

),,...,,(21

k

t

kkk BBBB 

BB k ),,...,,(21

k

il

k

i

k

i

k

i bbbB  pi ,1

163

ducible) (since they do not depend on the specific values of the program varia-

bles) [7, 13].

Let us imagine the implementation of Bk of the program control graph as an or-

dered primary relation sequence, corresponding to arithmetic operators:

 (11)

Having performed the superposition {yi} on X on the right relation sides, we obtain a

relation invariant system according to the displacement:

 (12)

The relation can be presented as:

 (13)

where ‒ a power monomial.

In accordance with the Fourier rule, the summands (13) should be homogeneous in

dimensions, i.e.

 [yi] = [] = [], or

[] = [], (14)

System (16) is a defining relations system or a similarity equation system.

Using the function ρ = X→[X], we associate each with some abstract di-

mension . Then the summand dimensions (13) will be expressed as

 , (15)



















)y,...,y,y,x,...,x,x(fy

...

),y,x,...,x,x(fy

),x,...,x,x(fy

1M21N21

k

MM

1N21

k

22

N21

k

11



















).x,...,x,x(zy

...

),x,...,x,x(zy

),x,...,x,x(zy

N21

k

mm

N21

k

22

N21

k

11

)x,...,x,x(zy N21

k

ii 

,)x,...,x,x(zy
ip

1i
N21iji 





)x,...,x,x(z N21ij

)x,...,x,x(z N21ij)x,...,x,x(z N21il ip,1l,j 

)x,...,x,x(z N21ij)x,...,x,x(z N21il ip,1l,j 

Xx j 

   Xx j 

   
jnN

1n
nn21ij xx,...,x,x(z







ip,1j 

164

Using (14) and (15), we develop a system of defining relations:

 (16)

which is transformed into the following form:

 (17)

Using the logarithm method, as it is usually done, when analyzing the similarity rela-

tions we obtain a homogeneous system of linear equations from the system (17)

 , (18)

Expression (16) is a criterion for semantic correctness.

Having performed a similar development for , we obtain a system of

homogeneous linear equations for k-implementation:

 Акω = 0 (19)

Generally, we can assume that the function ρ = X→[X] is surjective and, therefore,

the Bk implementation is represented by a matrix of size mk × nk, which a

number of columns are not less than the number of rows, i.e. .

We say that the implementation of Bk is representative if it corresponds to the ma-

trix Аk with , i.e. the implementation allows developing at least one similarity

criterion.

Usually, a program corresponds to a separate functional module or consists of an

interconnected group of those and describes the general solution of a certain task.

Each of the implementations describes a particular solution of the same prob-

lem, corresponding to the certain X components values. Since

 then the mathematical dependencies structure should be preserved during

the transition from one implementation to another, i.e. similarity criteria should be

common. Then the matrices {Ak}, corresponding to the implementations {Bk}, can be

combined into one system.

Let the program have q implementations. Denote by A the union of the matrices

{Ak} corresponding to the implementations {Bk}, i.e.

 (20)

    ,xx
lnjn N

1n
n

N

1n
n







ip,1l,j 

  ,1x
lnjnN

1n
n 








ip,1l,j 

 



N

n
nnlnj x

1

0]ln[
ip,1l,j 

kk

i BB 

ij

k aA 

kk mn 

1mk 

BBk 

 lk BB

BB,B lk 



















q

1

A

...

A

A

165

The A Development can be carried out using selective vertices covering the imple-

mentations.

Thus, the matrices A union is part of the program passport and is a database of se-

mantic standards {Ak} for the linear program {Bk} sections.

The similarity equation example.

Let us consider an assignment operator:

 p = a*b + c/(d‒e) (21)

Here, the correct expression must be generated by some selected grammar, which

depends on both the possible terms meanings and the chosen operations set. For a

context-free grammar, each expression can be matched to an output tree in a unique

way. Thus, an output tree can be used as an alternative expression representation.

When constructing a tree by the expression, the order of the calculations plays its

role. Obviously, the vertex descendant values are calculated earlier than the ancestor

vertex value. Therefore, the operation last performed will take place at the treetop. In

order to construct a tree unambiguously, it is necessary to determine the operation

calculation order in the expression, taking into account their priorities and the opera-

tion order with the same priority, including the case when calculating the same opera-

tion (associativity property). Usually, such expressions are calculated from left to

right.

Fig. 2. Arithmetic expression generation tree

166

The constructed tree will definitely correspond to the specified expression taking

into account the calculation order.

We formalize the arithmetic expressions:

Let Op {+,‒,*,/} be an arithmetic operations set under consideration.

Terms is a set of terms, consisting of possible objects that can be operation argu-

ments.

Expr is a set of all possible expressions, and .

- many other elements, and .

Thus, an arithmetic expression is either a term or an operation connecting several

expressions.

The expression (20) with the set of terms Terms = {p,a,b,c,d,e} and the binary op-

erations set Op {,-,*,/} will be represented as:

elem: (=,p,(,(*,a,b),(/,c,(-,d,e)))).

The arithmetic operator execution correctness can be assessed using the appropri-

ate semantic function. When applied to expressions, the semantic function

 assigns to each argument some abstract entity or dimension [a]. Thus, the

arithmetic operations, performed on program variables during the program execution

are in fact operations on physical dimensions, and the semantics reflections, per-

formed at runtime, are linear mappings. The axiomatic of extended semantic algebra,

which defines operations on the variable dimensions, is presented in Table 2.

Table 2. The operations on the program variables dimensions

Operator Denotation
Correctness

condition
Linear equations

Similarity

criterion

Addition R = L + P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1

Subtraction R = L – P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1

Multiplication R = L * P [R] = [L][P] [R]1[L]-1[P]-1 = 1 1 -1 -1

Division R = L / P [R] = [L][P]-1 [R]1[L]-1[P]1 = 1 1 -1 1

Exponentiation R = Ls [R] = [L]s [R]1[L]-s[P]0 = 1 1 -s 0

Assignment L = P [L] = [P] [R]0[L]1[P]-1 = 1 0 1 -1

where R – the operation result; L, R – left and right operands; [] – dimension.

For a correctly running program in the context of this operator, the following rela-

tions between the physical dimensions of the terms {p, a,b,c,d,e} should be fulfilled:

[p] = [a ∗ b] = [a][b],

[d] = [e],

 [p] = [c / (d‒ e)] = [c][d]−1 = [c][e]−1, (22)

Where [X] – is a physical object X dimension.

ExprTerms

Expreoelem ),(ExpreOpo  ,

 aa:T 

167

A computation model in memory can be represented using the context-free gram-

mars. It allows describing the calculation process structure as a whole. Context-free

grammar has the following form:

 (23)

where

 – a set of assembler terminal symbols/

 – a non-terminal

character set;

 – an output

rule set;

 – a starting symbol.

The terminal symbols include arithmetic coprocessor command lexical tokens, in-

cluding addition, subtraction, multiplication, division, assignment (data transfer)

commands. A non-terminal symbol set is a set of lexical tokens, united by a generaliz-

ing feature, as well as their combinations, using products. An example of non-

terminal symbols is given in the Table 3.

Table 3. Sets of non-terminal symbols

NON_TERMINAL

SYMBOLS

GENERALIZING

FEATURE

TERMINAL SYMBOLS

Addition Addition commands fiadd | fadd | faddp | …

Subtraction Subtraction commands fisub | fsub | fsubr | …

Multiplication Multiplication commands fimul | fmul | fmulp | …

Division Division commands fidiv | fdiv | fdivr | …

Appropriate Data transfer commands fist | fst | fstp | …

The output rule represented by expression (21) determines the use of the “fadd”

command. Thus, we will present all possible inference rules in assembly language.

 (24)

Where

Addition ‒ a non-terminal set of coprocessor addition commands;

Register ‒ a non-terminal set of coprocessor stack registers;

Address ‒ a memory identifier set or actual memory addresses.

 ,S,R,N,G 

 register...address,ttancons,identifier

 eAppropriatDivisiontionMultiplicanSubtractioAdditionN ,,,,

 DivCommand...,,MulCommandSubCommand,AddCommandR 

S

N 

 

...|

st,1stfaddpgisterRe,gisterRe_Addition|

gisterRe,gisterRe_Addition|

Address,gisterRe_AdditionAddCommand





168

Each output in a context-free grammar, starting with a non-terminal symbol, is

uniquely associated with a directed graph, which is a tree and is called an output

(parse) tree. An output tree example related to the disassembled expression code, as

well as its representation as to the similarity equations in terms of the dimension theo-

ry, is shown in figure 3.

Fig. 3. Calculations representation by similarity equations

The solution to this equation system is a similarity coefficient matrix, constructed

as follows:

[ebp+p] =

[ebp+a][ebp+b]

[ebp+d] = [ebp+e]

[ebp+p] =

[ebp+c][ebp+d]-

1=[ebp+c][ebp+e]-1

[ebp+p]1[ebp+a]-1[ebp+b]-

1[ebp+c]0[ebp+d]0[ebp+e]0=1

[ebp+p]0[ebp+a]0[ebp+b]0[ebp+c]0[ebp+d]1

[ebp+e]-1=1

[ebp+p]0[ebp+a]0[ebp+b]0[ebp+c]-

1[ebp+d]1[ebp+e]0=1



169

By taking a logarithm we obtain a homogeneous linear equation system with a co-

efficients matrix:

 (25)

In order to organize the similarity relations development, it is necessary to construct a

translation grammar for assignment operators of the arithmetic type. The translational

(attribute) grammar in addition to the syntax allows describing the action characters,

which are implemented as functions, procedures, and algorithms. According to di-

mensions, these functions should implement algorithmic calculations and the similari-

ty relation development, power monomials, equations and solutions.

Thus, the observation problem solution (control graph) and the computations rep-

resentation (similarity equation) made it possible to form the image of a system for

monitoring destructive software actions on the secured infrastructure, and restoring

computation processes based on similarity invariants.

The plan of destructive software impacts control and the computational processes

recovery includes preparatory and main stages (Figure 4). The preparatory stage in-

cludes the program passport formation in similarity invariants, the main ones are the

stages of:

─ Similarity invariants formation underexposure,

─ Similarity invariants database formation at the checkpoints of the program control

graph,

─ Validation of the semantic correctness criteria of computational processes,

─ Signal generation of the computation semantics violation,

─ Partial calculations recovery according to the program passport.



























011

110

000

000

000

111

1A

170

Fig. 4. Distortion control and computation process recovery scheme

A general representation of the information infrastructure that implements correct

calculations under the hidden intruder program actions is reflected in Figure 5. We

will reveal the stages of the destructive software impacts control and the computation

processes recovery in more detail.

Fig. 5. The correct calculation scheme

Stage 1. The program passport formation in similarity invariants.

In order to implement a dynamic control, it is necessary to use the static verifica-

tion results in the form of a program passport.

At the stage of a static verification using the disassembled correct calculation code,

the program control graph is constructed.

171

At each checkpoint for each arithmetic operator, a production tree of an arithmetic

expression is generated to develop a linear homogeneous equation system in the di-

mension terms. The result of solving the equation systems for each linear program

part is a similarity invariant matrix. The semantic standard database is made up of

reference matrices of similarity invariants for each checkpoint (Figure 6).

Fig. 6. The passport program formation scheme in the invariant similarity

172

Stage 2. The similarity invariants formation underexposure

The similarity invariants formation of the computational process, which is subject-

ed to the hidden arithmetic operations impacts, runs according to the same algorithm

as the computational process reference invariant formation.

For a given program, a set of checkpoints (CT) is formed, which are embedded in

the studied program. The initial program model is the control graph of the computa-

tion process in terms of linear program sections. The similarity equations are analyzed

and a coefficient matrix is developed in embedded CT for each linear program sec-

tion, where the calculations take place (Figure 7).

Fig. 7. The similarity invariants scheme underexposure

Incorrect calculations will differ in the state set of the computational process Z, i.e.

in arithmetic operator sequence. The incorrect calculations scheme is presented in

Figure 8.

Fig. 8. The incorrect calculations scheme

Stage 3. The similarity invariants database formation at the checkpoints of the

program control graph.

At this stage, the similarity invariant matrices constructed for each checkpoint form

a similarity invariants database. The scheme of adding matrices to the database is

presented in Figure 9.

173

Fig. 9. The similarity invariants database formation scheme

Stage 4. The validation of the semantic correctness criteria of the computational

processes.

In order to control the semantic correctness of the performed calculations, it is nec-

essary to check the semantic correctness criterion by the formula (18) applying the

reference and standard invariants matrix (Figure 9).

If the validation of this checkpoint has been completed, then proceed to check the

criteria in the next CT until the program ends.

Stage 5. The signal generation of the computation semantics violation and the par-

tial calculations recovery according to the program passport.

If the semantic correctness violation of the program execution is detected, that is, if

for a given checkpoint , then a signal is formed and an attempt is made to

recover the calculations from the inverse transformation of the reference matrix invar-

iants (Figure 10).

Fig. 10. The computational processes validation scheme

0 injn 

174

5 Conclusions

This approach allows to determine not only the fact of the calculation semantics viola-

tion but also to indicate the specific impact location on the program, using the mecha-

nism for introducing checkpoints Thus, the dimensions and similarity theory applica-

tion allowed synthesizing new informative features - the so-called similarity invari-

ants for controlling the computational processes correctness. The similarity invariants

use made it possible to bring the monitoring system of destructive program actions

and the computation processes recovery closer to the controlled computational pro-

cess semantics.

The obtained results allowed presenting a controlled computational process as a

corresponding equations system of dimensions and similarity invariants, and its solu-

tion was to analyze the computations semantics under the destructive program im-

pacts on the secured critical information infrastructure.

References

1. A. Fink, R. L. Griswold, and Z. W. Beech, "Quantifying cyber-resilience against resource-

exhaustion attacks," in 7th International Symposium on Resilient Control Systems

(ISRCS), Denver, CO, 2014.

2. Appliance of information and communication technologies for development. Resolution of

the General Assembly of the UN. Document A / RES / 65/141 dated December 20.

3. Bakkensen, L. A., Fox-Lent, C., Read, L. K. and Linkov, I. (2017), “Validating Resilience

and Vulnerability Indices in the Context of Natural Disasters”. Risk Analysis, 37: 982–

1004. DOI:10.1111/risa.12677.

4. Barabanov A.V., Markov A.S., Tsirlov V.L. Methodological Framework for Analysis and

Synthesis of a Set of Secure Software Development Controls, Journal of Theoretical and

Applied Information Technology, 2016, vol. 88, No 1, pp. 77-88.

5. Biryukov, D. N., Lomako, A. G. Approach to Building a Cyber Threat Prevention System.

Problems of Information Security. Computer systems, Publishing house of Polytechnic

University, vol. 2, pp. 13–19, St. Petersburg, Russia, 2013.

6. Biryukov, D. N., Lomako, A. G., Sabirov, T. R. Multilevel Modeling of Pre-Emptive Be-

havior Scenarios. Problems of Information Security. Computer systems, Publishing house

of Polytechnic University, vol. 4, pp. 41–50. St. Petersburg, Russia, 2014.

7. Bongard, M. M. The Problem of Recognition, Fizmatgiz, Moscow, Russia, 1967.

8. Borzykh S., Markov A., Tsirlov V., Barabanov A. Detecting Code Security Breaches by

Means of Dataflow Analysis. In CEUR Workshop Proceedings, 2017, Vol-2081 (Selected

Papers of the VIII All-Russian Scientific and Technical Conference on Secure Information

Technologies, BIT 2017). P. 15-20.

9. Bostick, T. P., Connelly, E. B., Lambert, J. H., & Linkov, I. (2018). Resilience Science,

Policy and Investment for Civil Infrastructure. Reliability Engineering & System Safety

175:19–23. DOI: 10.1016/j.ress.2018.02.025

10. Bostick, T. P., Holzer, T. H., & Sarkani, S. (2017). Enabling stakeholder involvement in

coastal disaster resilience planning. Risk Analysis, 37(6), 1181–1200. DOI:

10.1111/risa.12737

11. D. N. Biryukov, Cognitive-functional memory specification for simulation of purposeful

behavior of cyber systems. Proc. SPIIRAS. 3(40), pp. 55–76 Russia, 2015.

175

12. D. N. Biryukov, A. P. Glukhov, S. V. Pilkevich, T. R. Sabirov, Approach to the processing

of knowledge in the memory of an intellectual system, Natural and technical sciences, No.

11, pp. 455–466, Russia, 2015.

13. E. D. Vugrin and J. Turgeon, "Advancing Cyber Resilience Analysis with Performance-

Based Metrics from Infrastructure Assessment," in Cyber Behavior: Concepts, Methodolo-

gies, Tools, and Applications, Hershey, PA, IGI Global, 2014, pp. 2033-2055.

