
50

Constantly Wide Tree for Parallel Processing*

Vladislav Shevskiy[0000-0001-5121-201X]

Saint Petersburg Electrotechnical University "LETI", Saint Petersburg 197376, Russia

lncs@springer.com

Abstract. Improving the performance of modern computing devices requires

the adaptation of data processing algorithms for the efficient use of hardware

resources. This article provides comparisons of existing database management

systems and shows their disadvantages when used in conjunction with parallel

processing algorithms. An approach to data storage is presented that can be

used to optimize the execution of database queries using parallel processing. A

method for constructing the proposed data structuring storage algorithm is de-

scribed. At the same time, the advantages of the algorithm and the ways of in-

teraction with it to achieve greater benefits in comparison with the existing ana-

logs are shown.

Keywords: Database; Tree algorithm; Parallel computing; Data reading.

1 Introduction

With increasing productivity of modern computing systems [6], it is necessary to

adapt the software in such a way as to make optimal use of the available computing

resources. Modern high-performance systems, including database management sys-

tems (DBMS), use the interfaces for controlling the threads and cores of the working

CPU.

In the article [19] there was considered the process of paralleling queries and exe-

cuting them on MySQL DBMS. The authors have established the fact that MySQL on

the InnoDB engine does not work well with processing parallel queries and the use of

parallelized queries is inconsequential compared to simple ones.

In this article, for more efficient reading of data from the database, we propose the

use of a modified tree algorithm.

2 Problems using tree algorithms

The most popular algorithm currently used by the DBMS is B + -tree. It belongs to

the B-tree group, which are balanced trees. The main advantage of using B + tree in a

DBMS is the method of data storage - all data is stored in the leaves of the tree, which

* Copyright 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

51

can be linked to each other. This allows storing data in adjacent blocks, which reduces

the chances of missing a cache in the process of paging data from the main memory.

Because of the fact that the number of reading operations from a disk decreases, the

overall data reading speed will be increased.

However, despite the increase in data reading performance when using B + -tree,

the algorithms for their application are not optimal when processing a large number of

database queries and when using multi-thread processing of query data[5]. This is

because each thread will pass through the upper levels of the tree, and therefore will

make many requests to the tree and do extra work. This problem is illustrated in Fig-

ure 1:

Fig. 1. Processing queries in a database whose data storage is based on B + tree.

Figure 1 shows the processing of two queries for data on a fragment of the B + tree.

The first query reads data from node 4, and the second from node 5. As can be seen in

the figure, for the successful execution of each of the query processes it is necessary

that both must go through node 1, node 2 and node 3, and only after that, each of them

52

reaches the goal.

Another type of tree that is used for parallel processing is the k-d tree. Its main ad-

vantage is the effective search for keys in a given range. Such a tree is useful to use in

databases designed to store geometric data, for example, coordinates on a map. The

authors of the article [1] created a STIG tree (Spatio-Temporal Indexing using GPUs)

based on the k-d tree. This algorithm was designed to optimally process queries on the

input spatial data. To make this possible, the authors included in the STIG physical

storage of the keys of the tree according to the basic principles of the k-d tree, and the

actual records are stored separately in the form of data blocks that will be processed

by the cores of the graphical process. The results presented in the article [1] show the

efficiency of the algorithm. However, the possibilities of using such a tree are severe-

ly limited. It may be useful in solving the problem of creating a database that stores

spatial data; however, a more unified solution is required in commercial development.

Thus, despite the obvious advantages of the STIG algorithm, it is not suitable for use

in a data management system used in solving business problems.

3 Proposed cw-tree algorithm

The basic idea of creating a tree is that the tree should be distributed according to the

number of physical cores available on the machine on which the DBMS is to be in-

stalled.

The tree must comply with the rules:

─ it must have a main vertex or root of a tree;

─ the tree consists of subtrees, which we will call child trees, each of which has its

own root, which we will call child roots;

─ the root has connections with the child roots, each of which represents a root for its

part of the tree;

─ the number of daughter roots must be equal to the number of physical cores of the

involved processor for more efficient use of resources;

─ each subtree is traversed according to the rules of that subtree. Thus, all subtrees

may not necessarily be of the same type, but on the contrary, each subtree can be

implemented in accordance with various algorithms, including various traversal al-

gorithms of this subtree.

Creating a tree is done in accordance with the rules:

Before determining which of the subtrees should add a new element, it is necessary

to find the necessary child root. For a uniform distribution, the direction of passage

from the child root with index 0 to the child root with index N alternates with the

opposite direction. At each iteration, the following algorithm is executed:

start {

if(one_of_child_trees_ is_empty) {

if (current_ child_tree_ is_empty) {

current_child_tree.Add(new_element);

53

sort(all_nodes);

}

else {

go_to_next_in_order_child_root(); } }

else if (more_than_one_of_child_trees_is_empty) {

If (current_ child_tree_ is_empty) {

current_child_tree.Add(new_element); } }

else {

If (current_direction_ equals_B) {

function_1();

}

else if (current_direction_ equals_A) {

function_4(); } }

}

function_1 {

If (new_element < maximum_of_current_node && new_element

> minimum_of_current_node) {
current_child_tree.Add(new_element); }

function_2();

}

function_2 {

If (new_element < minimum_current_subtree AND new_element

> maximum_of_next_subtree) {

next_child_tree.Add(new_element);

from узел_n to узел_0 {

function_3 (node_i); }

}

else {

go_to_next_in_order_child_root(); } }

function_3 {

If (size_of_current_subtree >

Size_of_next_in_order_subtree) {

next_child_tree.Add(minimum_of_current_subtree);

current_child_tree.Remove(minimum_of_current_subtree); }

}

function_4 {

If (new_element < maximum_of__current_subtree &&

new_element > Minimum_of_current_subtree) {
current_child_tree.Add(new_element); }

function_5 ();

}

function_5 {

if (new_element > maximum_of_current_subtree AND

new_element < minimum_of_next_subtree) {
next_child_tree.Add(new_element);

54

from node_0 to node_n {

function_6 (node_i); }
}

else {

go_to_next_in_order_child_root(); }

}

function_6{

if (size_of_current_subtree >

size_of_next_in_order_subtree) {

next_child_tree.Add(maximum_of_current_node); }

} (1)

The operation «Add» involves adding an element to the appropriate subtree according

to the rules of that subtree. Performing the above described algorithm spends addi-

tional time at the stage of storing data in the tree, however, it allows to sort the data in

the corresponding subtrees. This reduces the number of reads from the tree, and there-

fore increases the overall read performance of the tree.

The nodes should store the keys of each record without data. The target data set

that the user expects to receive is to be stored in the leaves of the tree. This will min-

imize the number of reading operations from memory, thus speeding up queries. And

also, it separates the logic of finding the target element in the tree and accessing the

memory. Thus it is possible to use various computer resources for each operation.

For example, in article [1], the authors applied an algorithm to process only the bot-

tom level of the kd-tree tree, that is, database records using GPU tools.

Based on the presented description of the algorithm, the scheme of the resulting

tree is shown (see Fig. 2).

Figure 2 shows an example of a created tree for working with data under the con-

trol of a processor that has 4 physical cores. The user configures the number of child

roots during the creation of the database.

The root of the tree from which the DBMS starts processing queries has connec-

tions with the child roots. At the first stage of processing, it is necessary to make a

choice in which of the child trees to search for the requested data. Its physical proces-

sors must process each of the child trees. If one of the cores cannot be used on the

computer, it is possible to use threads. Next, there is a need to make a pass through

the corresponding subtree. Since there is an abstraction on subtrees, any tree structure

can be applied to its subtree. However, the proposed use of B + - the tree is because it

is well adapted to the storage of data of various types, in contrast to, for example,

from k-d trees.

In the article [2], the authors state that b-tree is suitable for parallel processing. In

the article [2], the authors obtained experimentally that when using b-tree, the algo-

rithm for traversing a tree wide (BFS) is more suitable for parallel computing, unlike

the types of algorithms for traversing a tree in-depth (DFS). Based on the conclusions

that the authors have made, it is expected that using the B-tree together using the tree-

wide traversal algorithm is best suited for parallelized queries.

The database created on the implementation of the proposed tree algorithm will

55

faster process queries for reading data on high-performance hardware. A special in-

crease in performance will be noticeable for databases in which read operations are

most often performed.

Fig. 2. The scheme of the resulting tree

In order to optimize database queries, it is possible to use different types of trees.

However, even the most frequently used ones have their drawbacks, which consist of

poor adaptation to parallel processing.

4 Conclusion

A tree algorithm has been developed that will efficiently process database queries

using the processing power of the processor, which performs the search for keys and

also the processing power of the graphics device that searches for data records using

the received key.

Based on the proposed algorithm, it is planned to create a new database management

system and create an experimental database in it in order to conduct an experiment.

56

As a result, temporary assessments and an assessment of the overall efficiency of the

use of this tree will be obtained.

Acknowledgments

The research was funded by RFBR and CITMA according to the research project

№18-57-34001

References

1. Anthony Fox, Chris Eichelberger, James Hughes, Skylar Lyon Commonwealth Computer

Research; Spatio-temporal Indexing in Non-relational Distributed Databases; IEEE 2013,

978-1-4799-1293-3/13;

2. R.K. Ghosh; Parallel Search Algorithms for Graphs and Tree; Information sciences 67,

137- 165 1993, 0020-0255/93;

3. Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandra, Bryan

O’Gorman, Alejandro Perdomo-Ortiz, Andre Petukhov, John Realpe-Gomez, Eleanor

Rieffel, Davide Venturelli, Fedir Vasko, Zhihui Wang; A NASA perspective on quantum

computing: Opportunities and challenges; Parallel Computing, Volume 64, May 2017, pp

81-98, DOI 10.1016/j.parco.2016.11.002;

4. Weiming Lu, Yaoguang Wang, Jingyuan Juang, Jian Liu, Yapeng Shen, Baogang Wei;

Hybrid storage architecture and efficient MapReduce processing for unstructured data;

Parallel Computing, Volume 69, November 2017, pp.63-77, DOI

10.1016/j.parco.2017.08.008;

5. Peiquan Jin, Puyuan Yang, Lihua Yue; Optimizing B+-tree for hybrid storage systems;

Distributed and Parallel Databases, Volume 33, September 2015, Issue 3, pp 449–475,

DOI 10.1007/s10619-014-7157-7;

6. Qiong Luo, Jens Teubner; Special issue on data management on modern hardware; Dis-

tributed and Parallel Databases, 2015, Volume 33, pp.415–416, DOI 10.1007/s10619-014-

7168-4;

7. Abdurrahman Yasar, Bugra Gedik, Hakan Ferhatosmanoglu; Distributed block formation

and layout for disk-based management of large-scale graphs; Distributed and Parallel Da-

tabases, 2017, Volume 35, Number.1, pp.23-53, March 2017, DOI 10.1007/s10619-017-

7191-3;

8. Daichi Amagata, Takashiro Hara, Shojiro Nishio; Sliding window top-k dominating query

processing over distributed data streams; Distributed and Parallel Databases, December

2016, Volume 34, Issue 4, pp 535–566; DOI 10.1007/s10619-015-7187-9;

9. Research in Mobile Database Query Optimization and Processing, Agustinus Borgy

Waluyo, Bala Srinivasan, and David Taniar, Mobile Information Systems, Volume 1

(2005), Issue 4, pp. 225-252

10. Spiliopoulou M., Hatzopoulos M., Ttanslation of SQL queries into a graph structure: query

transformations and pre-optimization issues in a pipeline multiprocessor environment, In-

formafion Sysfems 1992, Vol. 17, No. 2, pp. 161-170. https://doi.org/10.1016/0306-

4379(92)90010-K

11. Yao S.B. Optimization of query evaluation algorithms. ACM Trans. Database Syst. 4(2),

133-155 (1979). DOI: 10.1145/320071.320072

57

12. Mikkilineni K. P., Su S. Y. W. An evaluation of relational join algorithms in a pipelined

query processing environment. IEEE Trans. Software Engng 14(6), 838-848 (1988). DOI:

10.1109/32.6162

13. Jarke M., Koch J. Query optimization in database systems. ACM Comput. Suru. 16(2),

111-152 (1984). DOI: 10.1145/356924.356928

14. Smith J. M., Chang P. Y. T. Optimizing the performance of a relational algebra database

interface. CACM 18(10). 5688579 (1975). DOI: 10.1145/361020.361025

15. Sai Wu, Feng Li, Sharad Mehrotra, Beng Chin Ooi, Query Optimization for Massively

Parallel Data Processing, Proceedings of the 2011 SoCC Conference, Oct. 2011. DOI:

10.1145/2038916.2038928

16. Lila Shnaiderman, Oded Shmueli, A Parallel Tree Pattern Query Processing Algorithm for

Graph Databases using a GPGPU, Workshop Proceedings of the EDBT/ICDT 2015 Joint

Conference (March 27, 2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073)

17. Dex: High-performance and scalable graph database management system.

http://www.sparsity-technologies.com/dex.

18. Shichkina, Y.A., Kupriyanov, M.S., Applying the list method to the transformation of par-

allel algorithms into account temporal characteristics of operations, Proceedings of the

19th International Conference on Soft Computing and Measurements, SCM 2016,

7519759, с. 292-295. DOI: 10.1109/SCM.2016.7519759

19. Article URL, http://2018.nscf.ru/TesisAll/05_Reshenie_zadach_optimizatsii/

206_ShichkinaYA.pdf, last accessed 2019/04/14.

20. Julian Shun, Guy E. Blelloch; A Simple Parallel Cartesian Tree Algorithm and its Applica-

tion to Parallel Suffix Tree Construction; Carnegie Mellon University; ACM Trans. Paral-

lel Comput. 1, 1, Article 8 (September 2014); http://dx.doi.org/10.1145/2661653.

21. Zhila Nouri and Yi-Cheng Tu, GPU-Based Parallel Indexing for Concurrent Spatial Query

Processing; University of South Florida; Proceedings of 30th International Conference on

Scientific and Statistical Database Management; Bozen-Bolzano, Italy, July 9–11, 2018

(SSDBM ’18), 12 pages; https://doi.org/10.1145/3221269.3221296.

22. Giovanni Mariani, Andreea Anghel, Rik Jongerius, Gero Dittmann; Parallel Computing 66

(2017) 1–21; http://dx.doi.org/10.1016/j.parco.2017.04.006.

23. K. Amunts, A. Lindner, K. Zilles; The human brain project: neuroscience perspectives and

German contributions, e-Neuroforum 5 (2) (2014) 43–50; doi:10.1007/s13295-014-0058-

4.

24. A. Anghel, G. Rodríguez, B. Prisacari, C. Minkenberg, G. Dittmann; Quantifying commu-

nication in graph analytics, in: High Performance Computing - 30th International Confer-

ence, ISC High Performance 2015, Frankfurt, Germany, July 12–16, 2015, Proceedings,

2015a, pp. 472–487; DOI:10.1007/978- 3- 319- 20119- 1_33.

25. M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, Nbclust; an r package for determining

the relevant number of clusters in a data set, J Stat Softw 61 (1) (2014) 1–36;

DOI:10.18637/jss.v061.i06.

26. G. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, G. da Costa; A user friendly phase detection

methodology for HPC systems’ analysis; Green Computing and Communications (Green-

Com); 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Confer-

ence on and IEEE Cyber, Physical and Social Computing, 2013, pp. 118–125;

DOI:10.1109/GreenCom-iThings-CPSCom.2013.43.

27. L. Fiorin, E. Vermij, J. Van Lunteren, R. Jongerius, C. Hagleitner; An energy-efficient

custom architecture for the SKA1-Low central signal processor; Proceedings of the 12th

ACM International Conference on Computing Frontiers, in: CF ’15, ACM, New York,

NY, USA, 2015, pp. 5:1–5:8; DOI:10.1145/ 2742854.2742855.

https://doi.org/10.1145/3221269.3221296

