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Abstract. Mining frequent itemsets in transaction databases is an important 

task in many applications. This task becomes challenging when dealing with a 

very large transaction database because traditional algorithms are not scalable 

due to the memory limit. In this paper, we propose a new approach for 

approximately mining of frequent itemsets in a transaction database. First, we 

partition the set of transactions in the database into disjoint subsets and make 

the distribution of frequent itemsets in each subset similar to that of the entire 

database. Then, we randomly select a set of subsets and independently mine the 

frequent itemsets in each of them. After that, each frequent itemset discovered 

from these subsets is voted and the one appearing in the majority subsets is 

determined as a frequent itemset, called a popular frequent itemset. All popular 

frequent itemsets are compared with the frequent itemsets discovered directly 

from the entire database using the same frequency threshold. The recalls and 

precisions of the frequent itemsets from selected subsets are analyzed against 

the entire database. The experiment results demonstrate that the use of less than 

10 percent of the transaction data in the database can achieve more than 87 

percent accuracy. The new approach is very suitable for parallel 

implementation for large transaction database mining. 

Keywords: Approximate Frequent Itemsets Mining, Random Sample, Partition  

1. Introduction 

Frequent itemsets mining is the first and most critical stage of finding association rules 

from a transaction database. Association rule mining is one of the main data mining 

tasks in many applications, such as basket analysis, product recommendation, cross-

selling, inventory control, etc. Huge research efforts are devoted to solving frequent 

itemsets mining problem. Many of these works had considerable impact and led to a 

plenty of sophisticated and efficient algorithms for association rules mining, such as 

Apriori [1, 2], FP-Growth (Frequent Pattern Growth) [3–6], Eclat [7–9] and some 

others. However, the decade fast development of e-commerce, online and off-line 

shopping has resulted in fast growth of transaction data, which present a tremendous 

challenge to these existing algorithms, because these algorithms require a large 

memory to run efficiently on large transaction databases.  
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Parallel and distributed association rule mining algorithms were developed to 

handle large transaction databases. Parallel association rule mining algorithms use in-

memory computing to efficiently mine association rules from a large transaction 

database. However, their scalability is limited by the size of memory of the parallel 

system. Distributed association rule mining algorithms [10, 11] were developed using 

MapReduce [12] and run on a Hadoop cluster platform. The algorithms have better 

scalability, but they are not efficient in mining large transaction datasets because of 

frequent I/O operations and communication overhead between nodes.  

In this paper, we propose a new approach for mining frequent itemsets from a big 

transaction dataset. Similar to the distributed algorithms in MapReduce, we partition 

the dataset into disjoint subsets of the same size. However, we make the distribution 

of frequent itemsets in each subset similar to the distribution of frequent itemsets in 

the entire dataset. Then, we randomly select a set of subsets and run a frequent itemset 

mining algorithm independently to find the local frequent itemsets from each subset. 

After all frequent itemsets are discovered from the set of subsets, each frequent itemset 

is voted by all subsets and the one appearing in the majority subsets is determined as 

a frequent itemset, called a popular frequent itemset. All popular frequent itemsets are 

compared with the frequent itemsets discovered directly from the entire database using 

the same frequency threshold. The recalls and precisions of the popular frequent 

itemsets from the selected subsets are analyzed against the entire database to show 

how many true frequent itemsets in the entire transaction dataset can be discovered 

from the selected subsets.  

We have conducted experiments to evaluate the new approach on two datasets. 

Empirically we have shown that the proposed method is not only capable of producing 

highly accurate frequent itemsets but also approximating the global frequency of 

frequent itemsets with very small error.  

The remaining of this paper is organized as follows. Related works are discussed 

in Section 2. Section 3 describes the proposed approach. In Section 4, the details of 

the algorithm are described. Experiments evaluation is presented in Section 5. Finally, 

conclusions and future work are drawn in Section 6.  

2  Related Work  

Frequent itemsets mining is a well-studied problem in computer science. However, 

the enormous data growth made traditional methods inadequate. Therefore, parallel 

and distributed algorithms came in use.  

Researchers in [13] introduced the parallel implementation of the FP-growth 

algorithm on GPU. In [10] and [11], the authors introduced two different approaches 

for mining frequent itemsets in a large database based on MapReduce. In [10], 

researchers presented two methods for frequent itemsets mining based on Eclat 

algorithm. The first one is a distributed version of Eclat that partitions the search space 

more evenly among different processing units, and the second one is a hybrid approach, 

where k-length frequent itemsets are mined by an Apriori variant, and then the found 

frequent itemsets are distributed to the mappers where frequent itemsets are mined  
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using Eclat. Authors of [11] presented a novel zone-wise approach for frequent 

itemsets mining based on sending computations to a multi-node cluster. All mentioned 

approaches have obtained a speed increase over the traditional algorithms and allowed 

to increase the size of the dataset used for mining. However, all introduced approaches 

require using the entire dataset to get the result. In [14], M. Riondato first introduced 

PARMA (Parallel Randomized Algorithm for Approximate association rule mining). 

Algorithm sends random subsets of the database to various machines in the cluster as 

an input. Then, each machine mines the received subset, and reducers combine the 

result. Research in [15] is the basis for the current work. Random sample partition 

(RSP) data model was presented, which showed that the block-level samples from an 

RSP data model can be efficiently used for data analysis.  

3.  A New Approach  

In our approach, we split a big dataset into smaller disjoint subsets such that the 

distribution of frequent itemsets in each subset is similar to the distribution of frequent 

itemsets in the entire dataset. Mining smaller subsets allows using traditional frequent 

itemset mining algorithms without experiencing memory limit problems. By 

combining the results of random subsets, we are able to produce highly accurate 

approximate frequent itemsets.  

3.1  Definitions  

A transactional dataset D={t1,t2,...,tn} is represented by a collection of n transactions, 

where each transaction t is a subset of the set of items I={I1,I2,...,Im}. An itemset A 

with k distinct items is referred as k-itemset. In this paper, we do not distinguish 

itemsets with different numbers of unique items. Given an itemset A, define TD(A) as 

the set of transactions in D which contain A. The number of transactions in TD(A) is 

defined as the support of A by D and denoted as support(A)=|TD(A)|. The frequency of 

A, i.e., proportion of transactions containing A in D, is denoted as  

.  

Under the above definitions, the task for finding frequent itemsets from D with 

respect to a minimal frequency threshold θ is defined as follows.  

Definition 1. Given a minimum frequency threshold θ for 0<θ≤1, the frequent 

itemsets mining with respect to θ is finding all itemsets {Ai} for 1≤i≤M with freq(Ai)≥θ, 

where M is the total number of frequent itemsets found in D. Formally, we define the 

whole set of frequent itemsets in D as  

FI(D,I,θ)={(Ai,freqD(Ai)): Ai I, freqD(Ai)≥θ}.  

Definition 2. Let FI(D,I,θ) be the set of frequent itemsets in D with respect to θ 

and M=|FI(D,I,θ)| the number of frequent itemsets in FI. The accumulative 

distribution of frequent itemsets in FI is defined as  
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𝑃(𝑓) =
1

𝑀
∑ 𝐼(𝑓𝑟𝑒𝑞𝐷(𝐴𝑖)) ≥ 𝑓

∀𝐴𝑖∈𝐹𝐼

 

 

where I() is an indicator function and f is a frequency value for θ≤f≤1. The example of 

P(f) is shown in Fig. 1.  

 
Fig. 1. Example of the accumulative frequent itemsets distribution  

Let D be a big transactional dataset and P={D1,D2,...,Dk} a partition of D, where 

 and Di ⋂ Dj =  for i ≠ j. Di for 1≤i≤k is named as a block of transac- 

tions of dataset D.  

Definition 3. Let PD(f) be the accumulative distribution of frequent itemsets 

FI(D,I,θ) and 𝑃𝐷𝑖(f) the accumulative distribution of frequent itemsets FI(Di,I,θ) for  

1≤i≤k. P is a random sample partition of D if  

 𝑃𝐷𝑖(f)→PD(f) as |Di |→|D|.              (1)  

Definition 3 is a redefined definition of random sample partition in [15] with 

respect to frequent itemsets by replacing the condition of E[�̃�𝑘(t)]=F(t) with condition 

(1), where �̃�𝑘(t) denotes the sample distribution function of Dk and E[�̃�𝑘(t)] denotes its 

expectation.  

Definition 4. FID(D,I,θ) is called the set of global frequent itemsets and FIDi(Di,I,θ) 

the set of local frequent itemsets. Accordingly, PD(f) is the accumulative distribution 

of global frequent itemsets and 𝑃𝐷𝑖(f) is the accumulative distribution of the local 

frequent itemsets in Di.  
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3.2.  Approximate Computing  

When the transactional dataset D is big and cannot be held in memory, we cannot 

run a frequent itemset mining algorithm on D to find all frequent itemsets FID(D,I,θ). 

In this situation, we randomly select a set of l transaction blocks {D1,D2,...,Dl} from 

the partition P and use the set of local frequent itemsets FIDi(Di,I,θ) for 1≤i≤l to 

estimate the set of global frequent itemsets FID(D,I,θ). This approach is called 

approximate frequent itemset mining.  

Definition 5. Let itemset A be a frequent itemset in 𝐹𝐼𝐷𝑖(Di,I,θ) for 1≤i≤l. A is 

called a popular frequent itemset if  

∑𝐼(𝐴 ∈ 𝐹𝐼𝐷𝑖(𝐷𝑖 , 𝐼, 𝜃)) > 𝛼

𝑙

𝑖=1

 (2) 

where I() is an indicator function and 𝛼 is a given integer greater than l/2.  

Definition 6. The frequency of a popular frequent itemset A is defined as  

 

The set of all popular frequent itemsets PFI from 𝐹𝐼𝐷𝑖 (Di,I,θ) for 1≤i≤l is the 

estimation of the set of global frequent itemsets FID(D,I,θ). Given PFI and assuming 

FID(D,I,θ) is known, an itemset A has the following status: 

- true positive if 𝐴 ∈ 𝑃𝐹𝐼 and 𝐴 ∈ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃) 
- false positive if 𝐴 ∈ 𝑃𝐹𝐼 and 𝐴 ∉ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃) 
- true negative if 𝐴 ∉ 𝑃𝐹𝐼 and 𝐴 ∉ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃) 
- false negative if 𝐴 ∉ 𝑃𝐹𝐼 and 𝐴 ∈ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃) 

 

4.  An Approximate Frequent Itemsets Finding Algorithm  

In this section, we propose an approximate algorithm for finding the set of popular 

frequent itemsets from a set of l transaction blocks {D1,D2,...,Dl} randomly selected 

from the partition of a big transactional dataset D, and using the popular frequent 

itemsets to estimate the set of frequent itemsets in D with respect to a given frequency 

threshold θ. The algorithm consists of three steps: converting the dataset D into a 

partition of k transaction blocks and randomly selecting l blocks from the partition; 

finding the local frequent itemsets for each of l selected transaction blocks; finding 

the popular frequent itemsets from the local frequent itemsets.  
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4.1  Generate Partition of Transaction Blocks  

Given a transaction dataset D, the first step is to convert it to a partition of transaction 

blocks. D is preprocessed such that each record represents one purchase transaction 

and the transactions with one purchased item are removed. The pseudo code for 

creating the random partition is given in Algorithm 1.  

Algorithm 1 RSP Blocks generation and selection  

Input:  
-D: preprocessed data; 

-l: number of subsets; 

-m: subset size; 

1: procedure RSPBlocks(D,l,m)  

2:   

3:  for each Di, 1 <= i <= k do  

4: randomly assign m transactions from D to the i-th block without replacement  

5:  end for  

6:  randomly select l transaction blocks from the set of created k blocks, l <= k  

7: Output: set of l transaction blocks of D  

8: end procedure  

 

4.2  Finding Local Frequent Itemsets  

In this step, Apriori algorithm is called to find the local frequent itemsets from each 

of l transaction blocks {D1,D2,...,Dl} with respect to a given minimum frequency 

threshold θ. Finally, l sets of local frequent itemsets are obtained. The pseudo code of 

obtaining local frequent itemsets is presented in Algorithm 2.  

Algorithm 2 Local frequent itemsets mining  

Input:  

-{Dl}: set of l transaction blocks of D;  

-θ: minimum frequency threshold 

1: procedure LocalFIs({Dl},θ)  

2:  for each Di, 1 <= i <= l do  

3:  FIi = Apriori(Di,θ)  

4:  end for  

5: Output: {FIl} - set of l sets of the local frequent itemsets  

6: end procedure  
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4.3  Finding Popular Local Frequent Itemsets  

The l sets of local frequent itemsets are united into one set of unique local frequent 

itemsets. For each frequent itemset in the united set, the number of its appearances in 

the l sets is checked with Eq. (2). If the condition is satisfied, the frequent itemset is 

considered as a popular frequent itemset. Otherwise, it is dropped. All local frequent 

itemsets in the united set are checked and the set of popular frequent itemsets is 

obtained. These popular frequent itemsets are used as the approximate set of the 

frequent itemsets in D with respect to the same minimum frequency threshold θ. The 

pseudo code is given in Algorithm 3.  

Algorithm 3 Popular Frequent Itemset mining  
Input:  
-{FIl}: set of l local frequent itemsets;  

1: procedure PopularFIs({FIl})  

2: ) // for all frequent itemsets found, creating <key, value>pair,  

where itemset is a key and number of its repeats in all blocks is a value 3: 

 for each frequent itemset  FI do  

4:  if value  then  

5:  include frequent itemset to the set of popular frequent itemsets  

6:  end if  

7:  end for  

8: Output: set of popular frequent itemsets  

9: end procedure  

 

5.  Experiments  

To demonstrate the performance of the approximate frequent itemsets algorithm, we 

conducted a series of experiments on two datasets. We run our algorithm several times 

with different numbers of transaction blocks and different block size, and compared 

the set of popular frequent itemsets with the exact set of frequent itemsets obtained 

from the entire dataset.  

5.1  Datasets  

We evaluated the proposed approach on 2 datasets downloaded from Kaggle.com and 

Open-Source Data Mining Library. Properties of datasets used in the experiments are 

described in Table 1.  
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Table 1. Properties of the datasets used in experiments  

 Kaggle dataset  Online Retail dataset  

Number of transactions  729148  541908  

Number of items  791  2603  

Average transaction length  8  4  

5.2  Experiment Settings  

In order to test the proposed algorithm, the set of popular frequent itemsets was 

compared against the set of frequent itemsets in the entire dataset to compute the 

accuracy, recall, and precision. We conducted 50 experiments for each set of 

parameters specified in Table 2 and averaged obtained results afterward. For both 

datasets, we used the same minimum frequency threshold for both local and global 

frequent itemsets. We chose threshold to be small enough to produce a big collection 

of the output frequent itemsets and set θ to be 0.005 for all experiments.  

Testing was started with a comparison of the accumulative distribution of frequent 

itemsets for local and global frequent itemsets and proceeded with the evaluation of 

the different metrics of the popular frequent itemsets.  

Table 2. Parameters used for experiments  

Number of blocks  Block size  

50  10000, 5000, 3500, 2000, 1000, 500  

30  10000, 5000, 3500, 2000, 1000, 500  

15  10000, 5000, 3500, 2000, 1000, 500  

10  10000, 5000, 3500, 2000, 1000, 500  

5  10000, 5000, 3500, 2000, 1000, 500  

 

5.3  Evaluation Methods  

For evaluation of the accuracy and sufficiency of obtained approximate frequent 

itemsets, we used the confusion matrix in our research. Using the confusion matrix 

allows analyzing the efficiency of the proposed approach more detailed by introducing 

three measures, namely recall, precision, and accuracy.  

 

shows the fraction of the global frequent itemsets that are contained in the popular FIs.  

 

shows the fraction of the popular frequent itemsets that are contained in the set of the 

global frequent itemsets.  

 

shows the proportion of accurate results among the total number of cases examined.  
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5.4  Experiment Results  

We started with a comparison of accumulative distributions of the local and global FIs. 

Fig. 2(a) clearly shows that the accumulative distribution of global frequent itemsets 

is similar to the accumulative distributions of local frequent itemsets with a 

sufficiently large subset size (Fig. 2(a) left and middle graphs). Different colors show 

the differences of the accumulative distributions between the local frequent itemsets. 

However, decreasing the size of the subset leads to the growth of the number of local 

frequent itemsets (Fig. 2(a) right graph) and results in a significant difference between 

the accumulative distributions of the global and local frequent itemsets. Nevertheless, 

the accumulative distribution of the popular frequent itemsets shows almost identical 

accumulative distribution to the global frequent itemsets. The accumulative 

distributions of the global and popular frequent itemsets are represented in Fig. 2(b). 

It shows that the number of the popular FIs almost matches to the number of global 

FIs, and the overall frequency of the popular frequent itemsets is consistent with the 

frequency of the global frequent itemsets.  

 

 

(a) Accumulative frequent itemsets distributions of the global frequent itemsets (left) and 

the local frequent itemsets (middle and right)  

 
(b) Accumulative frequent itemsets distribution of the global frequent itemsets(left), 

accumulative frequent itemsets distributions of the popular frequent itemsets  

Fig. 2. Accumulative frequent itemsets distributions. Number of subsets = 30, subset size  

(middle) = 10000, subset size (right) = 2000 (Kaggle dataset)  

The proposed algorithm approximates the exact set of frequent itemsets in the 

entire dataset. The difference between approximate and global collections is false- 
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positive FIs. The number of false-positive frequent itemsets affects one of the accuracy 

measures, namely precision. Fig. 3 shows, how the precision value is affected by 

different experimental parameters. It is observed that using more transaction blocks 

decreases the number of false-positive itemsets, therefore increasing the precision. 

From the graph, we can see that the number of falsepositive frequent itemsets 

decreases as the growth of the block size.  

 

 

Fig. 3. Precision changes with different parameters  

The overall change of the accuracy defined in terms of a confusion matrix is 

represented in Fig. 4. From the graphs, we can see that accuracy increase can be 

obtained by increasing both the number of subsets used and the subset size.  

 

 

Fig. 4. Accuracy changes with different parameters  
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5.5. Result Analysis  

To evaluate the efficiency of our approach, we conducted 50 independent experiments 

on both datasets with specified parameters in Table 2 to estimate the performance for 

each set of parameters. For each test run, the set of approximate frequent itemsets was 

compared to the exact set of the frequent itemsets obtained by mining the entire dataset. 

As a result, we received 50 different observations of elapsed time, recall, precision 

and accuracy for each set of parameters, and then averaged all values. Fig. 5 illustrates 

how the average accuracy changes with the change in the amount of data being mined. 

The graphs show that the proposed algorithm is capable of producing approximate 

frequent itemsets with above 87% of the accuracy, using only a little less than 10% of 

data.  

 

Fig. 5. Accuracy increases with the rise of data used to mine  

We also conducted an evaluation of the estimated frequency error in the 

approximate frequent itemsets for all experimental parameters. In Fig. 6, we depict the 

distribution of the average absolute error in the frequency estimation, defined as:  

 

for all itemsets A that are contained in both the approximate and the global frequent 

itemsets. We can see that the flustration of the error decreases with the increase of the 

subset size. The error is reduced as the increase of the number of transaction blocks 

and the block size.  
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Fig. 6. Error in frequency estimations for different parameters (Kaggle dataset)  

6. Conclusions and Future Work  

In this paper, we have presented a new approach for mining approximate collections 

of frequent itemsets based on a random sample partition of the data. We have shown 

that using the RSP data model in big data can be very beneficial, especially in the 

frequent itemset mining task, since the size of transaction database grows much faster 

than the contained patterns change.  

For the further work, we are going to implement the parallel version of the 

algorithm on a cluster and to conduct experiments on big datasets in terabyte scale. 

We will also conduct a theoretical analysis of the approach.  
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