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ABSTRACT
Climate science is critical for understanding both the causes and
consequences of changes in global temperatures and has become
imperative for decisive policy-making. However, climate science
studies commonly require addressing complex interoperability is-
sues between data, software, and experimental approaches from
multiple fields. Scientific workflow systems provide unparalleled
advantages to address these issues, including reproducibility of
experiments, provenance capture, software reusability and knowl-
edge sharing. In this paper, we introduce a novel workflow with
a series of connected components to perform spatial data prepa-
ration, classification of satellite imagery with machine learning
algorithms, and assessment of carbon stored by urban trees. To the
best of our knowledge, this is the first study that estimates carbon
storage for a region in Africa following the guidelines from the
Intergovernmental Panel on Climate Change (IPCC).
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1 INTRODUCTION
Climate science requires modeling natural and man-made processes
that are highly complex, exhibit non-linear dynamics and possess
disparate spatial and temporal scales. Handling this complexity
requires a holistic approach among multiple disciplines [29], but
scientists from different fields may also need to use domain-specific
data sources, methods, and computational models. The integration
of their knowledge and experiments is a challenging task [7], espe-
cially when a study is expected to provide actionable insights for
decision making at regional and local scale.

Scientific workflows have emerged as an integrated solution to
manage this challenge, as they capture the computational steps
and data dependencies required to carry out a computational ex-
periment [40]. Scientific workflows ease data handling (metadata,
provenance), component versioning (parametrization, calibration)
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and have a clear separation between workflow design and work-
flow execution [4] [43]. One of the major advantages of scientific
workflow systems is their role in improving the reproducibility of
scientific studies. Reproducibility plays a critical role in climate
sciences due to their impact in our society [38]. In fact, due to is-
sues with the documentation of experiments, some climate science
studies have been re-examined lately due to their impact in global
policy-making [19] and water resources management [25].

In this paper we describe the process we followed to design and
implement reusable scientific workflows for the climate sciences.
In particular, we focus on carbon storage assessment by using ur-
ban trees, a common requirement for cities to reduce their carbon
emissions globally. Our contributions include the development of
a library of components for preparing geospatial data by doing
coordinate transformations, the integration of machine learning
components to classify trees in satellite images and the creation of
workflows for carbon storage assessment in cities. In order to imple-
ment these workflows, we use the Workflow Instance Generation
and Selection (WINGS) system [18], which has been successfully
used for applications in domains ranging from Genomics [17] to
Geosciences [16].

The paper starts by giving an overview of previous research on
the assessment of carbon storage by urban trees according to the
guidelines published by the Intergovernmental Panel on Climate
Change (IPCC), highlighting the advantages and limitations of the
most recent methods. We then describe the design considerations
of our scientific workflows as well as their experimental implemen-
tation and evaluation. The paper continues with a discussion of
results and suggested future work.

2 BACKGROUND: CARBON EMISSIONS AND
STORAGE

There is an increasing interest among scientific organizations and
national governments regarding Carbon emissions and their role
in climate science [13]. The consequences of higher concentrations
of carbon gases in the atmosphere are now more explicit and in-
ternational organizations such as the Intergovernmental Panel on
Climate Change (IPCC) are leading initiatives to monitor national
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efforts to lower emissions and increase carbon storage [10]. Mon-
itoring carbon emissions is fundamental to inform government
policies in topics such as renewable energy, transportation, and
manufacturing technologies. Similarly, the assessment of carbon
storage is equally important to guide hazard mitigation efforts [20].

Most studies in climate science require domain knowledge to
design and run the experiments [23]. But the increasing concerns
about the changing climate require strategies to streamline the
replication of assessment studies, the reusability of data, methods,
and results. The use of scientific workflows can significantly im-
prove the implementation and reproducibility of carbon assessment
studies, with additional gains in data and model sharing as well as
knowledge capture through semantic representations.

2.1 Carbon assessment by urban trees
Urban trees provide a natural and cost-effective alternative to cap-
ture and store carbon in cities. Having trees in densely populated
areas also improve human health and biodiversity and provide ben-
efits for flood prevention and reduced cooling costs, among other
benefits [26]. In 2003, the IPCC published the Good Practice Guid-
ance for Land Use, Land-Use Change and Forestry [33] and in 2006
the IPCC Guidelines for National Greenhouse Gas Inventories [11].
These guidelines suggest the use of area covered by trees, shrubs,
and herbaceous (perennial) plants to determine the amount of car-
bon stored as biomass in settlements. However, due to the limited
availability of detailed data the majority of published studies focus
only on tree cover. While these two documents describe the stages
of an assessment study, including aspects such as data collection
and uncertainty estimation, they suggest governments to deal with
minor implementation details according to their technical capacity
and available resources.

Published carbon assessment studies use different combinations
of data, methods, and software. These studies can be divided into
two major groups according to the data collection approaches and
models they use. Assessments in the first group use a statistics point
sampling technique to estimate tree density from aerial imagery
[28][32][31]. This method is easy to implement and only requires
imagery for sample areas, but the outcome is a percentage value
that does not describe the spatial distribution of trees. The second
group of methods use LiDAR, aerial or satellite imagery to pro-
vide a comprehensive assessment of tree coverage, including their
spatial distribution [42][37][8][35]. However, the second approach
requires imagery for the complete the area of study as well as the
configuration of more complex methods for detection or classifi-
cation of urban trees. Later in this document we introduce our
own method, which belongs to the second group and uses freely
available satellite imagery and a carefully designed workflow to
facilitate implementation and reuse.

One common limitation of carbon assessment studies is the lack
of a systematic approach to share data, models, software, and results.
Regardless of the specific data source, technology, or processing
method, most reports only contain descriptions of the work done,
which are not enough to replicate the experiments or reuse the
software tools [34].

Turning the information from those reports into actionable
knowledge becomes a cumbersome task, especially for scientists in

developing countries where technical capacity and resources are
particularly limited [1].

3 SCIENTIFIC WORKFLOW DESIGN
With the advantages and limitations of published methods in mind,
we design a new workflow to efficiently determine tree cover for
urban areas We start by presenting the advantages of knowledge
capture systems to represent models in geosciences as scientific
workflows and then describe how we leverage previous research on
carbon assessment and tree mapping to design our own workflow.

The workflow is designed as multiple interconnected compo-
nents in WINGS that operate in three consecutive stages as seen
in Figure 1, data preprocessing, mapping of tree coverage, and as-
sessment of carbon storage. Our workflow is based on previous
work in which high resolution satellite imagery are used to produce
land cover maps over urban areas [35] [37]. However, we focus on
using freely available medium resolution satellite imagery from the
Sentinel-2 sensors [9] to facilitate replication by other researchers.

Figure 1: Stages of our carbon assessment workflow

Spatial data preprocessing stage involves common operations
for experiments across earth sciences, such as transformation of
coordinate systems and conversion between file formats. We have
designed all these data preprocessing steps as reusable building
blocks so they can be included in other workflows. These prepro-
cessing operations are also known as Extract Transform Load (ETL)
tasks and are implemented using the Geospatial Data Abstraction
Library GDAL [15].

We map the tree coverage using satellite image classification and
design multiple components to train machine learning algorithms,
classify the image over an area of interest, produce a visualization
ready tree cover map, and determine the resulting accuracy. The
Machine Learning algorithms we implement are Random Forests
and Support Vector Machines, both available in the Orfeo Remote
Sensing toolbox [21]. Random Forest [36] [5] and Support Vector
Machines [41] [6] are well-known methods for pixel-based image
classification in Remote Sensing due to their straightforward im-
plementation and calibration, as well as its documented robustness
and accuracy.

We train the algorithms using sample points collected through
visual inspection as described further in this document. Our work-
flow generates a map that includes other land cover categories
such as water, grass and built areas; which may additionally serve
for other use cases in disciplines such as hydrology, planning, and
forestry, just to name a few (as seen in Figure 2). Moreover, this
map is generated in a standard format for further use in Geographic
Information Systems or other scientific platforms.

The assessment of carbon storage is completed following the
IPCC guidelines to calculate carbon stored based on urban canopy
area. In the calculation we multiply the canopy area by a conversion
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Figure 2: Some applications of land cover mapping

factor to estimate carbon stored in the form of biomass. Since no
values are published specifically for Africa (our initial region of
interest) we use a default value suggested by the IPCC.

Figure 3: City of Juba in South Sudan, Africa

4 AREA OF STUDY AND DATA
Our area of study is the city of Juba in South Sudan. It is the cur-
rent capital of the country and serves as its main commercial and
transportation hub with an estimated population of nearly 386,000
inhabitants [2]. Juba is located in the southern region of the country
and has an extension of 103 km2 according to the urban boundary
retrieved in July 2019 from Open Street Maps [22]. Figure 3 shows
the location of Juba and South Sudan in the African continent.

The country of South Sudan currently faces multiple issues,
including political instability [39], poor health services [27], and
a lack of infrastructure, especially for storage and distribution of
water [30]. Few mapping projects have been conducted in Africa,

and especially in South Sudan [3][24], which hinder the work of
humanitarian and non government organizations; therefore, any
study aiming to understand the characteristics of the rural or urban
territories will likely produce positive outcomes in the short and
long term.

The data we use includes 4000 sample points digitized through
visual inspection using Google Earth high resolution satellite im-
agery. The digitization is performed by trained individuals and
even though this task is not implemented as one of the workflow
components we follow best practices in Geographic Information
Systems [14] and complete random checks to ensure data accuracy
and consistency. The specific steps are as follows: First, 4000 ran-
dom points are generated within the city boundary and used as
spatial reference to ensure that the actual sample points are spa-
tially distributed across the city. Then, the person who is digitizing
places sample points closer to the random points but over locations
where examples of each land category are seen. The four land cat-
egories are trees, grass, impervious, and water, with 1000 points
per category to have a balanced dataset. Impervious includes all
built or bare areas not covered by vegetation, water, or agriculture.
Examples of impervious areas are constructions, parking lots, roads,
airport runways, and rocky surfaces.

Additionally, we use a multi-spectral satellite image from the
Sentinel-2 sensor made available by the European Space Agency
(ESA) [9]. While this image originally includes 13 bands we use
only the four bands with a pixel size equivalent to 10 meters on
the ground. The first three bands collect data in the visible light
spectrum and the fourth in the near infrared spectrum, with the
latter being particularly useful for detecting vegetation.

Figure 4 shows some sample points of the four land cover cate-
gories in a neighborhood close to the White Nile river in the city
of Juba, overlaid on high resolution satellite imagery from Google
Earth and the same area as seen on the medium resolution Sentinel-
2 image.

5 IMPLEMENTATION AND RESULTS
The workflow is implemented as a series of software components
in WINGS. Additionally, each component is designed to run a par-
ticular task and configured with relevant parameters to calibrate
their functionality. Components are coded as Python scripts that
serve as a high level interface for us to use libraries such as GDAL
for data preprocessing and Orfeo command line tools for satellite
image classification.

These components are connected through intermediate datasets
that in turn are outputs and inputs for the previous and follow-
ing components. We created 14 components in total, with eight
dedicated for data preparation, five for mapping of tree coverage,
and one for carbon assessment. The use of components as modu-
lar pieces of software to accomplish specific data processing tasks
creates opportunities for reusability across a variety of models in
Earth Sciences and Geospatial technologies.

The eight components designed for data preparation allow re-
searchers to handle datasets in the most common file formats and
transform them according to the particular goals of the study. Some
operations correspond to sub-setting the spatial extent of the data,
changing its coordinate reference system, and editing the attributes
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Figure 4: Sample points and satellite imagery of Juba

for tabular datasets. When running the workflow for a new area
of study, the task of setting parameters such as the coordinate ref-
erence system is facilitated by the WINGS system, which suggest
the most appropriate value according to the geographic region as
configured by the workflow designer. Figure 5 shows a fragment of
our workflow where we use multiple data preparation components
to perform a format transformation and reprojecting a file.

Mapping of tree coverage includes four components focused on
training the Machine Learning algorithms to classify the Sentinel-2
satellite image using the sample points digitized through visual
inspection. Initially, one component extracts the pixel values of
the satellite image for the 4000 sample locations. Next, another
component uses 80% of these values as training and 20% as valida-
tion data to train the Random Forest and Support Vector Machine

Figure 5:Workflow fragment for data preparation of sample
points

algorithms. Then we use the trained algorithms to perform pixel
level classification of the Sentinel-2 image for the entire area of
interest and output the tree cover map. Subsequently, one more
component evaluates the classification accuracy. Figure 6 shows a
fragment of our workflow where we use multiple components to
map tree cover.

Table 1 shows the normalized confusion matrix resulting from
the evaluation of the Random Forest classification algorithm. We
see that the tree cover category is the one with the lowest accuracy
with only 54% of the trees classified correctly in the test set. This
is likely the result of using medium resolution satellite imagery
(Sentinel-2) with a ground pixel size of 10 m, in other words, the
canopy area of a tree should be about 100 m2 to be easily identifiable
in at least one pixel, without considering boundary issues between
adjacent pixels. The grass and impervious land cover categories
exhibit a comparable accuracy of 65% and 73% consequently. While
areas corresponding to these two categories show a slightly better
accuracy they are still hard to differentiate, presumably due to grass
patches and house rooftops with a size smaller than the area of a
pixel (100 m2). For the water land cover category the algorithm
reaches an almost perfect accuracy, which is anticipated due to the
significant difference in the way it reflects the light compared to
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Figure 6: Workflow fragment for mapping tree cover

Table 1: Normalized confusion matrix

Predicted class

Tr
ee
s

Gr
as
s

Im
p.

W
at
er

Ac
tu
al
cl
as
s Trees 0.54 0.18 0.28 0

Grass 0.32 0.65 0.14 0
Impervious 0.17 0.09 0.73 0

Water 0.01 0 0 0.99

the other three land cover categories, especially in the near infrared
band (B4).

The assessment of carbon storage is performed by one compo-
nent that receives the tree cover map shown in Figure 7, calculates
the total canopy area and uses a carbon removal factor to determine
the total amount of carbon stored as biomass in the city of Juba.
We use a default carbon removal factor of 2.9 tonnes C (ha crown

Figure 7: Resulting land cover map for the city of Juba

cover)-1 yr -1, which is the value suggested by the IPCC for Tier
2a studies [11]. Multiplying the default carbon removal factor by
the total tree cover area (10,519 ha) from the previous stage, we
calculate that trees in the city of Juba remove 30,506 tonnes C yr -1.
This amount is equivalent to the carbon dioxide emitted by 6632
passenger vehicles per year [12]. This value along with the classifi-
cation accuracy from the previous stage are valuable information
for countries to prepare their carbon assessment reports accord-
ing to the IPCC guidelines. The code used to create the geospatial
transformation and the carbon assessment workflows is available
online.12

6 CONCLUSIONS AND FUTUREWORK
In this paper we introduced our work to create a library of workflow
components to perform spatial data transformations, land cover
mapping and assessment of carbon storage. By leveraging scientific
workflows, we aim to ease the reusability of these components
in other workflows and the reproducibility and transparency of
carbon assessment studies. Our future work will focus on two main
areas: first, we aim to test our workflow using data from other
locations around the globe, which requires additional training data
points. Second, we will focus on calibration of the parameters for
the classifiers to improve our classification accuracy during the
land cover mapping stage.
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